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Mass distribution from a quark matter equation of state
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We analyze the equation of state in terms of quasiparticles with continuously distributed mass. We seek for
a description of the entire pressure-temperature curve at vanishing chemical potential in terms of a temperature
independent mass distribution. We point out properties indicating a mass gap in this distribution, conjectured to
be related to confinement.
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According to the proposal of Jaffe and Witten, a successful
quantum Yang-Mills theory must have a mass gap [1]. In heavy
ion collisions a deconfined phase is expected to form, and the
produced quark-gluon plasma (QGP) is described by quantum
chromodynamics (QCD). Thus one can expect the appearance
of such a mass-gap in the spectral function of the basic QGP
degrees of freedom, namely quarks and gluons. In this paper
we perform a quantitative analysis on some results from lattice
QCD on the equation of state (EoS) and reconstruct it from a
mass distribution of noninteracting quasiparticles. We present
strong indications for a mass gap in this distribution.

We have used earlier a mass distribution for massive
quarks and developed a coalescence picture [2] to describe
hadronization of deconfined quark matter, and reproduced final
state hadron ratios and transverse spectra successfully. That
model was based on an earlier coalescence model [3,4], where
quarks and gluons had finite effective masses without any
width. The apparent entropy reduction problem by coalescence
with an associated reduction (confinement) of color degrees
of freedom can be resolved by assuming sufficiently massive
partons around the hadronization temperature in the precursor
matter. The necessary mass scale for quarks is about 300–
350 MeV and even higher (about 700 MeV) for gluons [5],
thus we could assume that in the prehadronization stage the
heavy gluons decay into quark-antiquark pairs [3]. Recently,
partonic level models of heavy ion reactions also utilized the
quark coalescence picture successfully [6,7].

Considering quark coalescence as the mechanism of
hadronization one has to deal with the question, how to make a
hadron with a mass lower than the sum of two parton masses.
In order to solve this problem we have introduced distributed
mass partons into our hadronization model [2]. Having in
medium partons in quark matter as precursors of emerging
hadrons in mind, we connect now the distributed mass parton
picture to a simplified treatment of spectral functions.

The equation of state of an interacting system, when
analyzed in terms of quasiparticles, is coded in the spectral
function ρ(ω, �p). Our ansatz to this assumes a particular form:

ρ(ω, �p) = 2π
w(m)

2m
�(m2)(�(ω) − �(−ω)) (1)
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with m2 = ω2 − �p2 and �(x) being the step function.
A continuous w(m) mass distribution describes a finite
width ansatz for the spectral function. The normalization
of the spectral function,

∫ +∞
−∞ ρ(ω, �p)ωdω/π = 1, requires∫ ∞

0 w(m)dm = 1. The conventional quasiparticle approach
on the other hand often explores a Breit-Wigner form of the
spectral density [9],

ρ(ω, �p) = γ

E

(
1

(ω − E)2 + γ 2
− 1

(ω + E)2 + γ 2

)
(2)

with E2 = M2 − γ 2 + �p2 and temperature dependent
parameters M(T ) and γ (T ).

Thermodynamical consistency of the quasiparticle picture
imposes constraints on the mass distribution, w(m), in partic-
ular on its dependence on the temperature or on other medium
parameters [8]. In this article we investigate the possibility
of a temperature independent mass distribution and therefore
neglect the mean field term for consistency. The total pressure
at vanishing chemical potential is given as the following
integral:

p(T ) =
∫ ∞

0
w(m)p(m, T )dm. (3)

One may suppose that only a single mass scale occurs in the
mass distribution, so it can be expressed by a dimensionless
distribution:

w(m) = 1

Tc

f

(
m

Tc

)
. (4)

The normalization integral for w is inherited by the shape
(form factor) function f (t):∫ ∞

0
w(m)dm =

∫ ∞

0
f (t)dt = 1. (5)

The quark gluon plasma at vanishing chemical potential has
the pressure

p(T ) = σ (z)κT 4, (6)

with z = Tc/T and κ being the Stefan-Boltzmann constant.
In the Boltzmann approximation the fixed m-contributions
are given by the Bessel K-function, p(m, T ) ∝ T 4�(m/T )
with [23] �(u) = u2K2(u)/2. Deviations in �(m/T ) =
p(m, T )/p(0, T ) due to using Bose or Fermi distributions as
a function of m/T never exceed 6% Thus in the distributed
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mass model the σ (z) function in this approximation is given
by the integral

σ (z) =
∫ ∞

0
f (t)

(zt)2

2
K2(zt)dt. (7)

This may be recognized as the so-called Meijer K-transform
[11,12] (a generalized Laplace transform) of the f (t) function.
The inverse of this transformation yields the mass distribution
function in terms of the observed σ (z) values:

f (t) = 2

iπ

∫ c+i∞

c−i∞
σ (z)

I2(zt)

zt
dz. (8)

This raises a peculiar question: is it possible to show, that
to any σ (z) function extracted from an equation of state
(e.g., from lattice QCD calculations) there exists a unique
mass distribution f (t) with the mass scale parameter kept
temperature and chemical potential independent? In this case
the shape of the mass distribution is not arbitrary. Of course,
the Meijer K-transform is invertible, but one has to check
whether the f (t) function obtained by Eq. (8) is positive
semidefinite and normalized to unity. The normalization is
the easier problem, the σ (0) limit being directly the integral
of the f (t) function due to the small argument behavior of the
Bessel K-function. It can, however, be difficult to arrive at a
nowhere negative f (t) by knowing σ (z) only at some points
on the real z-axis.

Before investigating any particular ansatz for σ (z) let us
consider an important general property. There is a relation
between the integration moments of this quantity (the scaled
pressure) and the normalized mass distribution, f (t):

Mn =
∫ ∞

0
zn−1σ (z)dz = In

∫ ∞

0
f (t)t−ndt (9)

with

In = 1

2

∫ ∞

0
un+1K2(u)du = 2n	

(
2 + n

2

)
	

(n

2

)
, (10)

where 	(x) is Euler’s Gamma function. This is finite for
positive n and divergent for zero or negative integer values.
We conclude that as long as the Mn moments of the EoS curve
are finite so must be the inverse mass moments of the mass
distribution. Since due to construction σ (0) = 1 and σ (z) is
rapidly decreasing due to confinement for large z = Tc/T

(low temperature), any mass distribution reconstructing the
equation of state of QCD must be suppressed for low masses.

Let us now discuss how to obtain a particular functional
form for σ (z). The high-temperature (small z) expansion of
�(zt) leads to

p(T )

κT 4
= 1 − 〈m2〉

4T 2
+ 〈m4〉

16T 4

(
3

4
− γ

)
+

〈
m4ln 2T

m

〉
16T 4

+ 〈m6〉
192T 6

(
17

12
− γ

)
+

〈
m6ln 2T

m

〉
192T 6

+ . . . (11)

with γ being the Euler-Mascheroni constant. Accidentally
the perturbative QCD pressure (taken as the finite part at the
scale 2πT ) shows a similar structure,

p(T )

κT 4
= 1 − a2g

2 + a4g
4 + b4g

4ln
2πT



+ . . . (12)
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FIG. 1. The pressure normalized to the massless Stefan-
Boltzmann value as a function of the scaled temperature T/Tc

for different constant mass relativistic gases (full lines in order
for M/Tc = 0, 1, 2, 3, 4, 5, 6, and 7) and from lattice QCD data
of Refs. [13] (down triangles), [14] (open circles), and [15] (up
triangles).

(a2 ≈ 0.072, a4 ≈ 0.061, b4 ≈ 0.008 for Nf = 3 based
on Ref. [17]). It is possible to fit this form as a high-T
asymptotics by assuming a scaling of expectation values,
like 〈m2〉 = cg2T 2, 〈m4〉 = c′g4T 4, etc. This is the basis
of the traditional quasiparticle picture [16], at the same time
it predicts a width changing with the temperature. This view
assumes a temperature-dependent mass distribution, w(m, T ),
which—for the sake of thermodynamical consistency—would
require a temperature-dependent mean field pressure, −B(T )
to be taken into account.

There is, however, another possibility, which we would like
to pursue in the present article. The low-argument expansion
Eq. (11) fails if the expectation values, like 〈m2〉, 〈m4〉, etc.,
are divergent. In fact this assumes a high-mass tail of the w(m)
distribution not decaying faster than m−3. As we shall point
out later, our numerical efforts to obtain w(m) agree with this
statement.

Figure 1 presents the normalized pressure for relativistic
Boltzmann gases with several fixed masses. The lattice QCD
EoS data of the Budapest-Wuppertal group [13] and of the
Bielefeld group [14] seem to lie everywhere below the curve
for the mass M = 3Tc, recent MILC data [15] below the
curve for M = 2.5Tc. As a consequence, if one accepts
this property also for lower temperatures where actually no
reliable simulations are available, the mass spectrum w(m)
would not contain any mass lower than M = 3Tc or M =
2.5Tc, respectively. This property can be verified by rigorous
mathematical estimates of upper bounds for w(m) on the
interval 0 < m < M [22].

The pressure of hot QCD has been recently calculated up to
O(g6ln(1/g)) [17]. The result contains formally ln(2πT/
)
terms, but according to the suggestion of the authors the
coupling g(
) should be taken at 
 ≈ 6.47T [18] and this
way the temperature dependence of the normalized pressure
stems from the temperature dependence of the coupling
strength, renormalized relative to a scale proportional to the
temperature. Agreement with lattice QCD eos data is achieved
at the highest computable level only, with an extra fit of a
constant which is not calculable perturbatively.
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FIG. 2. The lattice QCD pressure normalized to the massless Stefan-Boltzmann value as a function of the temperature T from lattice EoS
results of Refs. [13] (above), [14] (middle), and [15] (bottom). Our fits are indicated by the continuous lines, the 1 − K/ln(ηT/Tc)-type fits by
the dotted lines.

It is intriguing that for practical purposes theO(g2) formula
by using the one-loop renormalized g(T ) = 1/b ln(T/
̄) can
be also fitted to lattice data by fitting 
̄. This results in a
formula

p(T )

κT 4
= 1 − K

ln(ηT /Tc)
(13)

reaching zero pressure at T ≈ Tc. Fits to different lattice
QCD equations of state leads to quantitative, but no qualitative
differences. For the data of Ref. [13] we obtain K = 0.54, η =
1.76, for Ref. [14] K = 0.43, η = 1.6, and for Ref. [15]
K = 0.22, η = 1.12 (cf. dotted lines on Fig. 2).

There are some theoretical signs on the other hand, that the
g(T ) = 1/b ln(T/
) formula is not necessarily the really high
temperature limit prediction of QCD. The finite temperature
renormalization group result is of type [10]

1

α(Q2, T 2)
= b ln

Q2

Q2
0

+ c

(
T 2

Q2
− T 2

Q2
0

)
(14)

with b = 1/α(Q2
0, T

2) +b0 and b0 = (11Nc/2−2Nf /3)/(4π )
being the one-loop perturbative beta function coefficient. This
is usually considered in the Q2

0 � T 2 limit and then, assuming
a sharp thermal distribution of Q2 values, Q2 = (aπT )2 is
taken. This leads to the conjecture

1

α((aπT )2, T 2)
= 1

α(T 2)
= b0 ln

T 2


2
. (15)

Since Q0 was large and 
 is around Tc, also the coefficient
a is taken as a large number. None of these assumptions is
established by the QCD itself. The assumption Q2

0 � T 2

contradicts the T → ∞ limit, the spread of a thermal
distribution of possible Q2 values also increases like T 2, and
finally there is always a non-negligible influence of low Q2

physics on the coupling at any finite temperature. In fact
calculating the thermal distribution of Q2/T 2 between two
massless, Boltzmann-distributed particles one obtains easily

P

(
Q2

T 2

)
= 1

128

(
Q3

T 3
K1

(
Q

T

)
+ 2

Q2

T 2
K2

(
Q

T

))
. (16)

for Q2 > 0. The probability of having Q2 = 0 is finite at any
temperature, P (0) = 3/64 and this is the maximum of P (x).

As a consequence higher twist effects which are not infrared
safe (like lnQ2, 1/Q2, etc.) might destroy the often quoted
logarithmic scaling of the coupling constant with temperature.
It is probably the best to consider a K/ ln(ηT /Tc)-type formula
[Eq. (13)] as a standard, but not the only possible fit to the
lattice EoS, with some parameters of nonperturbative origin.

In order to evaluate the inverse Meijer transform, Eq. (8),
one has to approximate the lattice QCD data by an analytic
σ (z) function. A family of mass distributions can be Meijer-
transformed analytically:

w(m) = 1

	(ν)	(2 − ν)

2λ

m3
(m2 − λ2)1−ν�(m − λ),

σ (T ) = 2

	(ν)

(
λ

2T

)ν

Kν

(
λ

T

) (17)

with 0 < ν < 2. The ν = 2 limit belongs to a Dirac-delta mass
distribution, the ν = 0 limit to the Bessel function K0 with log-
arithmic asymptotics for high temperature (small argument).
All these ansatze contain a mass-gap, the distributions being
zero for m < λ. The ν = 1/2 value leads to the particularly
simple EoS: σ = e−λ/T .

We found that an overall fit in the range of known lattice
data is also achieved by the analytic ansatz

σ (z) = exp(−λz)
1 + e−a/b

1 + e(z−a)/b
(18)

with z = Tc/T , λ = 1.05, a = 0.90, b = 0.11 for data from
[13], λ = 0.87, a = 0.90, b = 0.10 for data from [14], and
λ = 0.56, a = 0.83, b = 0.10 for data from [15]. We note that
in Refs. [13,14] Tc ≈ 170 MeV, but in Ref. [15] Tc ≈ 190 MeV
was taken. These fits are demonstrated in Fig. 2 where the
different sets of lattice QCD data are compared with the fitted
σ (z) = p/pSB curves of Eq. (18).

In this article we investigate the lattice QCD EoS data
of Refs. [13–15] closely, but they qualitatively agree with
other results on this issue. The rise at moderately high
temperatures (low z) cannot be accommodated by quantum
statistical effects, but it can be characterized as the effect of an
exponential factor exp(−λTc/T ) in the range from Tc to 2.5Tc

(cf. Fig. 2). While this moderately high-temperature behavior
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is well fitted by the pure exponential σ (z) function, the part
below Tc is more reduced. The σ (z) = 1 − K/ ln(η/z) form
is also able to fit T > Tc data, but it goes to negative values
at a finite temperature, which is unphysical. Our exponential
fit is overall positive. A most satisfying extrapolation would
interpolate between these two functions.

In Fig. 2 lattice data from Refs. [13] (a), [14] (b), and [15]
(c) on p/pSB = σ (z) as a function of the temperature T/Tc are
plotted. In a one-loop resummed pQCD motivated approach,
using a mass directly proportional to the temperature the
approach to one is logarithmic, 1 − K/ ln(ηT /Tc) (dotted
lines). The exponential behavior, on the other hand, supports
the presence of a lowest mass in high-temperature QCD.
While this fact depends on the low-temperature drop of
the pressure curve, it is not easy to consolidate the effect
due to quantitatively different pressure curves presented by
different lattice QCD calculations. Although we do not intend
to review lattice QCD EoS calculations in this paper, we note
that the investigated simulations differ in the corresponding
value of the physical pion mass (mπ ≈ 140 MeV for [13],
mπ ≈ 540 MeV for [14], and mπ ≈ 300 MeV for [15]). There
can be further differences of technical nature, which we do
not feel to be able to comment on. In our further analysis we
choose the data of the Budapest-Wuppertal group [13] to seek
for a corresponding mass distribution, but of course the same
exercise can be done for other sets of pressure data, too.

To evaluate the integral given by Eq. (8), we choose a
simple path parallel to the imaginary z axis, z = c + iω.
With numerical integration we obtain an f (t) mass distribution
shown in Fig. 3 by full boxes. Fluctuations at small masses are
due to limitations of the applied numerical method. The part
of the mass distribution shown here reconstructs the T > Tc

part of the pressure curve nicely, but it fails to approximate the
pressure at T < Tc. In the following we seek to understand this
phenomenon.

One can obtain simple analytic approximations for the
f (t) function by expanding the expression for σ (z), Eq. (18).
However, requiring a convergent expansion, one arrives at
two distinct series expansions: one for z < a and another one
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FIG. 3. The mass distribution function obtained by evaluating
the complex integral from Eq. (8) (boxes) and using the analytic
fit Eq. (18) to lattice QCD EoS data of Ref. [13]. The full line
corresponds to Eq. (20), circles show the curve obtained by using
the 1 − K/ ln(ηT/Tc) type fit.

for z > a,

σ (z) = e−zλ + . . . for z < a,

σ (z) = e−z(λ+1/b) (1 + ea/b) + . . . for z > a.

(19)

The inverse Meijer K-transform of the simple exponential,
exp(−λz), can be given based on an analytically known integral
[cf. Eq. (17) for ν = 1/2]:

f (t) = 4λ

t2π

√
1 − λ2

t2
. (20)

The above expression is valid for t � λ, for smaller t =
m/Tc values f (t) is identically zero. Hence the t-integration
in the Meijer K-transform, when determining the pressure
contribution, starts at t = λ. Physically this corresponds to a
lowest mass in the continuous spectrum, to a mass gap. Since
both the approximations to T � Tc and to T � Tc parts of the
pressure contain a leading exponential factor [λ and λ + 1/b,
respectively, cf. Eq. (19)], EoS data seem to support a lowest
value of a continuous mass spectrum both in moderately low
and moderately high temperature quark matter (see the full
line in Fig. 3).

Actually, requiring z > a is equivalent to a Hagedorn
limiting temperature TH = Tc/a, and in fact transforms back
nearly to an exponentially rising mass spectrum part. In this
regime the QCD matter also has been fitted by a hadron
resonance gas [19].

Substituting the respective f (t)-s for T < Tc and T > Tc

into Eq. (20) we calculate the pressure from Eq. (7). These
two curves are shown in Fig. 4, together with the lattice QCD
results of Ref. [13]. A numerical method designed to obtain
an overall non-negative (probability like) f (t) distribution,
which fits well some σ (zk) = sk points, is represented by the
maximum entropy method (MEM). We applied this method
to the lattice QCD EoS data discussed in this paper in order
to obtain a mass distribution: both by using a MEM program
designed to invert the Meijer K-transform and also by search-
ing numerically for the inverse Laplace transform of σ (z) first.
We failed, however, to obtain better numerical results then by
evaluating the complex integral Eq. (8) as discussed above.
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FIG. 4. The normalized lattice QCD pressure and the pressure fit-
ted to convergent series expansions, Eq. (19), obtained by numerically
re-integrating f (t) functions given by Eq. (20).
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For calculating quark number susceptibilities or higher
order Taylor coefficients the Boltzmann approximation be-
comes unreliable; starting at the fourth order the Boltz-
mannian term no longer dominates the Fermi distribution.
Experience with the hadronic resonance gas model supports
the expectation that dependence on chemical potential also
can be interpreted in terms of clustered but noninteracting
components [19–21].

In conclusion, we have analyzed lattice QCD pressure
data in terms of a continuous, temperature independent mass
distribution. We find a strong indication for a finite mass
gap in such quasiparticle models, the details depending on
the low temperature behavior of the pressure curve. Since
all simulation data are below the M = 2.5Tc curve, the
immediate conclusion would be that the p(T ) curve can be
fitted by components with higher mass only. Allowing for
a milder drop of the pressure at low temperature the lowest
mass may be lower, we presented an example with M ≈ λTc

with fitted λ-values near to one. In general for any p(T )
curve showing finite T n+1-weighted integrals for p/p0 the

low-m behavior of w(m) is restricted by finite integrals of
m−nw(m). Since a single-mass p(T )/p0 curve cannot fit
the lattice QCD equation of state obtained by any of the
groups calculating it, these data demand a finite width mass
distribution.

For the physical problem of quark matter we have learned
from the above analyses that either the mass distribution
is temperature dependent and then the thermodynamical
description is rather complex then, or there is a mass gap
compatible to the equation of state unless the pressure rises
again at low temperatures (where we have presently no
simulation data, but the idea of a noninteracting pion gas would
correspond to a pressure higher than zero).
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Rev. D 67, 105008 (2003).

[18] K. Kajantie, M. Laine, K. Ruumukainen, and M. Shaposhnikov,
Nucl. Phys. B503, 357 (1997).

[19] F. Karsch, K. Redlich, and A. Tawfik, Eur. Phys. J. C 29, 549
(2003); Phys. Lett. B571, 67 (2003).

[20] M. Gazdzicki and M. I. Gorenstein, Phys. Rev. Lett. 83, 4009
(1999); M. I. Gorenstein, M. Gazdzicki, and W. Greiner, Phys.
Rev. C 72, 024909 (2005).

[21] J. I. Kapusta, Phys. Rev. D 23, 2444 (1981); M. I. Gorenstein,
G. M. Zinovjev, V. K. Petrov, and V. P. Shelest, Teor. Mat. Fiz.
(Russ) 52, 346 (1982).

[22] T. S. Biró, A. László, and P. Ván, hep-ph/0612085.
[23] The coefficients have been chosen here so that �(0) = 1.

034910-5


