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Relating the description of gluon production in pA collisions and parton energy loss
in AA collisions
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We calculate the classical gluon field of a fast projectile passing through a dense medium. We show that
this allows us to calculate both the initial state gluon production in proton-nucleus collisions and the final
state gluon radiation off a hard parton produced in nucleus-nucleus collisions. This unified description of
these two phenomena makes the relation between the saturation scale Qs and the transport coefficient q̂ more
transparent. Also, we discuss the validity of the eikonal approximation for gluon propagation inside the nucleus
in proton-nucleus collisions at RHIC energy.
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I. INTRODUCTION

The advent of a new generation of colliders—the BNL
Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC)—has stimulated the development of
new tools for the understanding of high-energy and high-
density systems. The purpose of studying heavy ion collisions
at high energy is to create such dense systems, leading
eventually to evidence for the existence of the quark-gluon
plasma (QGP) predicted by the QCD phase diagram. Very
early, it appeared that one has to distinguish between final state
interactions, occurring after the hard-parton production, and
initial state interactions responsible for hard-parton production
in nucleus-nucleus collisions; this motivated the study of
deuteron-gold collisions at RHIC where final state interactions
are absent.

The physics of proton-nucleus collisions at high energy
turned out to be very rich in new features compared to
proton-proton collisions [e.g., high pt suppression at forward
rapidities, Cronin enhancement (also observed at low energy),
and centrality dependence of spectra [1,2]). These results have
been compared with the theory of the color glass condensate
(CGC), which describes the nuclear wave function at high
energy [3,4]. Basically, the theory extends small coupling
QCD calculations to a region, called the saturation regime,
characterized by the hard scale Qs (saturation scale), where
high-density effects do not allow one to apply the usual
perturbative QCD.

Historically, the idea of saturation of the gluon distribution
at high energy was introduced in the early 1980s [5–7] as
a necessary condition for unitarity. Indeed at high energy
gluons dominate the dynamics, and the growth of the number
of gluons, driven by the BFKL evolution equation, violates
unitarity. This equation resums large log(s) effects but dis-
regards gluon recombination [8,9]. A first version of the
CGC, known as the McLerran-Venugopalan model, pointed
out the usefulness of employing the semiclassical picture for
describing high-density systems. [10–12]. A couple of years
later, a more sophisticated theory was built, incorporating the
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main BFKL features and extending them to the nonlinear
regime: the saturation regime, leading to the BK-JIMWLK
equation [13–24].

However, several works inspired by the Landau-
Pomeranchuk-Migdal (LPM) effect in QED [25–27] (the
BDMPS formalism, based on Feynman diagram calcula-
tions [28–34], and the Zakharov formalism (Z), based on
path integrals [35–40]) have been dedicated to the study
of final state interactions in nucleus-nucleus collisions, es-
pecially to understand the large suppression of observed
large-pt hadron spectra compared to those of proton-proton
collisions. The basic idea is to explain this suppression
by the energy loss of the initially produced hard parton.
The parton loses part of its energy by radiating gluons
when passing through the dense medium formed after the
collision. In Refs. [41–44], Wiedemann (W) has provided
another treatment of the problem also in terms of Feynman
diagrams.

In the present work, we give a new and simple derivation
of the radiated gluon spectrum, recovering the BDMPS-Z-W
result. We provide a universal formulation for both gluon pro-
duction in proton-nucleus collisions [45] and gluon radiation
off a produced hard parton in nucleus-nucleus collisions. The
basic idea is to calculate gluon radiation off a high-energy
projectile passing through a dense medium in the semiclassical
picture. To do that, we solve the Yang-Mills equations for the
radiated gluon field δAµ, which is treated as a perturbation
of the background medium field A

µ

0 . This medium could be a
nucleus (cold matter) in proton-nucleus collisions or a hot
medium produced after the collision of two heavy nuclei.
This approach turns out to be a very useful framework,
which avoids many technical problems, making the picture
clear. Obviously, the obtained classical field is a function of
the medium source density ρ0 (or, equivalently, the medium
background field A

µ

0 ). The source distribution ρ0 is a random
quantity. Thus, to calculate observables one has to average
over all possible source configurations with a given statistical
weight W[ρ0]:

〈O〉 ≡
∫

D[ρ0]W[ρ0]O[ρ0]. (1)
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The differential average number of produced gluons is given
by the formula

ω
d〈N〉

dωd2q⊥
= 1

16π3

〈∑
λ

∣∣∣∣
∫

d4x�xδAµ(x)εµ

(λ)(q)eix.q

∣∣∣∣
2
〉

(2)

where ε
µ

(λ) is the polarization vector of the radiated gluon and
q ≡ (q+ = ω, q− = q2

⊥/2ω, q⊥) is its momentum.
In Sec. II, we derive the gauge field induced after the

interaction of a fast projectile with an unspecified medium
characterized by the statistical weight W , by solving the
Yang-Mills equations. Choosing the gauge as the light-cone
gauge of the projectile allows us to give a simple derivation,
and we show, in Sec. III, that it is straightforward to deduce
from the classical field the induced radiative gluon spectrum
in nucleus-nucleus collisions, and in the approximation of
independent scattering centers we reproduce a well-known
formula derived in the aforementioned more formal approach
(see BDMPS-Z-W papers previously listed).

In Sec. IV, we consider gluon production in proton-nucleus
collisions. Assuming the interaction time to be much smaller
than any other time scale appearing in the problem (which
amounts to considering gluon propagation inside the nucleus
to be eikonal) we recover the kt -factorization formula, which
resums high-density effects in the nucleus [45–50]. Then we
discuss the validity of this approximation and show that it fails
in some kinematic regime probed at RHIC energies. Finally,
we summarize in Sec. V.

II. THE GAUGE FIELD OF A FAST MOVING PARTON
(OR HADRON) PASSING THROUGH A DENSE MEDIUM

We consider a massless parton (or a hadron described as
a collection of partons) moving with the velocity of light, in
the x+ direction. At some time it passes through a dense static
medium of size L.1 The medium is described by the following
current, in the medium rest frame:

J
µ

0(r.f ) = ρ0(x3, x⊥)δµ0. (3)

We are interested in the induced radiative spectrum off the
hard parton inside the medium. Knowing the simplicity of
solving the Yang-Mills equations in the light-cone gauge of the
parton A+ = 0 [45], we perform a boost of velocity β ∼ −1
(the cross section is Lorentz invariant) that affects only the
medium, namely the parton remains in the x+ direction and
the medium is pushed very close to the light cone in the x−
direction.

In the boosted frame the medium field can be checked to
be [46]2

A
µ

0 = −δ−µ 1

∂2
⊥

ρ0(x⊥, x+). (4)

1The assumption of a static medium (static scattering centers) in
parton energy loss has been used in the BDMPS-W-Z formalism and
in the Gyulassy-Wang model [51].

2For any gauge choice for the medium field in its rest frame the A+

component is suppressed by the boost.

In the light-cone gauge of the fast parton, A+ = 0, the Yang-
Mills equations read

−∂+(∂µAµ) − ig[Ai, ∂+Ai] = J+,

[D−, ∂+A−] − [Di, F i−] = J−,

∂+F−i + [D−, ∂+Ai] − [Dj, F ji] = 0. (5)

We assume that when the parton traverses the medium, it
induces a perturbation δAµ of the strong medium field A0

(linear response):

Aµ = A
µ

0 + δAµ. (6)

Similarly, for the conserved current

Jµ = J
µ

0 + δJµ. (7)

Keeping only terms in the Yang-Mills equations that are linear
in the fluctuation δAµ, we have

− ∂+(∂µδAµ) = δJ+,

�δAi − 2ig [A−
0 , ∂+δAi] = ∂i(∂µδAµ),

�δA− − 2ig [A−
0 , ∂+δA−] = δJ− + 2ig [∂iA−

0 , δAi]

+ ∂−(∂µδAµ) − ig [A−
0 , ∂µδAµ].

(8)

The parton current obeys the conservation relation

∂+δJ− + D−δJ+ = ∂+δJ− + ∂−δJ+ − ig [A−
0 , δJ+] = 0.

(9)

with the initial condition δJ+(x+ = t0) = δ(x−)ρ(x⊥), where
t0 is the source production time, namely the production time of
the hard parton in nucleus-nucleus collisions. In writing this
current, we assume that the hard projectile propagates in the
x+ direction of the light cone; therefore, its interaction with
the medium is eikonal: It only gets a color precession when
passing through the medium. The solution of Eq. (9) reads

δJ+ = U (x+, t0, x⊥)δ(x−)ρ(x⊥)θ (x+ − t0),

δJ− = −θ (x+)ρ(x⊥)δ(x+ − t0), (10)

where U is a Wilson line in the adjoint representation of the
gauge group:

U (x+, t0, x⊥) ≡ T+ exp

[
ig

∫ x+

t0

dz+A−a
0 (z+, x⊥)Ta

]
,

(11)

where T+ denotes the time ordering of the integrals along
z+. The current δJ− corresponds to the propagation of an
antiparticle moving in the opposite direction of the hard parton
we are interested in. It is necessary to get a conserved current.
Making use of the first equation of Eqs. (8) (seen as a constraint
because it contains no time derivative) in the last equation for
δA− we get

�δA− − 2ig [A−
0 , ∂+δA−] = 2ig [∂iA−

0 , δAi] + δJ−

− 1

∂+ (∂−δJ+ − ig [A−
0 , δJ+]).

(12)
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FIG. 1. A schematic representation of Eq. (14). The fast projectile
(thick line) passes through the medium of thickness L and emits a
gluon at the time z+. The gluon emission could also occur outside the
medium, at z+ < 0 or z+ > L.

Because of current conservation (9), δJ+ cancels out on right-
hand side of Eq. (12). Finally, we simplify Eqs. (8), which
reduce to

�δAi − 2ig [A−
0 , ∂+δAi] = − ∂i

∂+ δJ+,

(13)
�δA− − 2ig [A−

0 , ∂+δA−] = 2ig [∂iA−
0 , δAi] + 2δJ−.

The first of Eqs. (8) is solved, leading to3

δAi(x) = −
∫

d4zθ (z−)G(x, z)∂i(U (z+, t0, z⊥)

× ρ(z⊥))θ (z+ − t0). (14)

The gluon propagator G is the retarded Green’s function
obeying the equation of motion:

[�x − 2ig (A−
0 · T )∂+

x ]G(x, y) = δ(x − y), (15)

with the initial condition, the free retarded propagator

G0(x, y) = 1

2π
θ (x+ − y+)θ (x− − y−)δ[(x − y)2]

=
∫

d4p

(2π )4

e−ip·(x−y)

p2 + iεp+ . (16)

The propagation of the emitted gluon, in contrast to the hard
projectile, is not necessarily eikonal. Equation (14) has a
simple diagrammatic representation, shown in Fig. 1. The color
precession of the source before the gluon emission is accounted
for by the U that multiplies ρ, whereas the rescatterings of the
gluon after it is emitted are hidden in the Green’s function G.
The component δA− can be extracted from the constraint [the
first of Eqs. (8)], but it is not relevant for gluon production
since only transverse polarizations are physical. The integral
over z− is restricted to the positive values: this comes from
the term (1/∂+)δJ+ [which contains a δ(z−)] appearing in
the second of Eqs. (8) after the substitution of δA− from the
constraint.

The radiated gluon transverse field (14) is the main result
of this section; it contains, as we will show, the physics of
proton-nucleus collisions at high energy and of the induced
radiative gluon spectrum in nucleus-nucleus collisions.

3In the light-cone gauge, we can forget about the δA− since it plays
no role in the gluon spectrum.

III. INDUCED RADIATIVE SPECTRUM IN AA
COLLISIONS

We assume that the fast projectile is a hard parton produced
in a nucleus-nucleus collision at t0, and we take the origin of
times when the parton enters the medium. In coordinate space,
(for x+ > L) the gluon field (14), amputated of its final free
propagator, reads

�xδA
i(x) = − θ (x−)∂i

x[U (x+, t0; x⊥)ρ(x⊥)]

−
∫

d4zθ (z−)θ (L − z+)θ (z+ − t0)δ(x+ − L)

× 2∂+
x G(x, z)∂i

z[U (z+, t0; z⊥)ρ(z⊥)], (17)

where we used in the second term the following remarkable
property of the Green’s function (valid for y+ < L < x+) [46]:

G(x, y) =
∫

z+=L

dz−d2 z⊥ G(x, z) 2∂+
z G(z, y). (18)

In Eq. (17), the first term corresponds to gluon emission
occurring after the hard parton left the medium and the second
term corresponds to gluon emission before the hard parton left
the medium (if the parton is produced outside the medium,
this emission could also occur before it enters the medium).
The invariance by translation, with respect to the variables, of
this Green’s function occurs because the medium field A−

0 is
independent of x−, as can be seen in Eq. (15). This invariance
implies that G depends on the coordinates only via x− − y−.

It is useful to introduce a new Green’s function, defined as

Gω(x+, x⊥; y+, y⊥)

= 2
∫

dl−∂+
x G(x+, x⊥; y+, y⊥; l− = x− − y−)eil−ω. (19)

It is easy to verify that Gω is a Green’s function of the two-
dimensional Schrödinger operator:[

i∂− + ∂2
⊥

2ω
+ ig (A−

0 · T )

]
Gω(x+, x⊥; y+, y⊥)

= iδ(x+ − y+)δ(x⊥ − y⊥). (20)

Therefore, it can be written in terms of a path integral for a
quantum particle of mass ω moving in a potential:

Gω(x+, x⊥; y+, y⊥) =
∫

Dr⊥(ξ ) exp

[
iω

2

∫ x+

y+
dξ ṙ2

⊥(ξ )

]

×U (x+, y+; r⊥), (21)

where r⊥(x+) = x⊥ and r⊥(y+) = y⊥. This path integral
describes the Brownian motion of the emitted gluon in the
transverse plane. Therefore, the emitted gluon follows a
non-eikonal trajectory inside the medium.4 We recover the
eikonal case by taking ω → ∞ or equivalently by assuming
x+ − y+ → 0:

Gω(x+, x⊥; y+, y⊥) = δ(x⊥ − y⊥)θ (x+ − y+)U (x+, y+; x⊥).

(22)

4Since the medium is static these are the only non-eikonal
corrections to gluon propagation.
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The Fourier transform of Eq. (17) gives

q2δAi(q) = ieiq−L

ω + iε

∫
d2x⊥e−iq⊥.x⊥

×
{

qi

q− + iε
U (L, t0; x⊥)ρ(x⊥)

+
∫

d2 z⊥
∫ L

t0

dz+Gω(L, x⊥; z+, z⊥)

× ∂i
z[U (z+, t0; z⊥)ρ(z⊥)]

}
. (23)

The amplitude for the gluon radiation reads

M(λ) = q2δAi(q)εi
(λ)(q), (24)

where the gluon is taken on-shell, that is, q2 = 0 (or q− =
q2

⊥/2ω). To get the average number of the produced gluons,
we square the amplitude and sum over the polarization vectors
with the help of the completeness identity∑

λ

εi
(λ)(q)εj∗

(λ)(q) = −gij . (25)

In the same way as in the CGC treatment we have to perform
the average over the sources. First, for the fast parton, we write

〈ρa(x⊥)ρb(x′
⊥)〉p = µ2

p(x⊥)δabδ(x⊥ − x′
⊥), (26)

where µ2
p(x⊥) is the parton charge density in the transverse

plane.
From Eq. (24) [or equivalently Eq. (2)], the gluon spectrum

reads

ω
d〈N〉

dωd2q⊥
= 1

16π3

∑
λ

|Mλ|2 = 1

(2π )3ω

e

∫
d2x⊥

∫
d2 y⊥e−i(x⊥− y⊥)·q⊥

∫ L

t0

dz+
[

1

ω

∫
d2 z⊥µ2

p(z⊥)

×
∫ z+

t0

dz′+〈
tr U (z+, z′+, z⊥)∂i

z′G†
ω(L, y⊥; z′+, z′

⊥)∂i
zGω(L, x⊥; z+, z⊥)

〉∣∣
z⊥=z′

⊥

− 2µ2
p( y⊥)

qi

q2
⊥

〈
trU †(L, z+, y⊥)∂i

yGω(L, x⊥; z+, y⊥)
〉] + 2

(
N2

c − 1
)

(2π )3q2
⊥

∫
d2x⊥µ2

p(x⊥). (27)

For a single parton produced at x⊥ = 0⊥ this reduces to

µ2
p(x⊥) = g2CR

N2
c − 1

δ(x⊥), (28)

where R = A for a gluon and R = F for a quark.
In Eq. (27), x⊥ end y⊥ are the coordinates of the emitted

gluon in the transverse plan. The first term in Eq. (27)
corresponds to the probability of producing the gluon inside
the medium, whereas the second term corresponds to the
interference between the amplitudes for producing the gluon
outside (after the parton has left the medium) [the first term in
Eq. (23)] and inside the medium [the second term in Eq. (23)].
This is illustrated in Fig. 2. In the second term, note that the
transverse coordinates of the emitted gluon and of the hard
parton are the same [see the first term in Eq. (23) where the
final gluon free propagator has been amputated]. The last term
is the probability of radiating a gluon in vacuum; it has to
be removed to get the medium-induced gluon spectrum. This

(a) (b)

FIG. 2. The diagrammatic representation of the two first terms in
Eq. (27).

formula is quite general, in the sense that we do not specify
the nature of the medium, so one still has to find a model for
averaging over the medium sources.

Now we will show that this formula leads to the well-known
BDMPS-Z-W spectrum, in the case of uncorrelated sources.
This approximation assumes that the scattering centers at
different times in the medium are independent;5 therefore the
medium sources can be treated as Gaussian:〈
ρa

0 (x+, x⊥)ρb
0 (y+, y⊥)

〉 = n(x+)δ(x+ − y+)δabδ(x⊥ − y⊥).

(29)

Namely, this amounts to choosing the statistical weight W as
follows:

W[ρ0]

=
∫

D[ρ0] exp

{
−1

2

∫
dx+d2x⊥

ρa
0 (x+, x⊥)ρa

0 (x+, x⊥)

n(x+)

}
,

(30)

where n(x+) is the medium scattering center density at time
x+. The corresponding correlator for A−

0 , given by Eq. (4),
reads 〈

A−a
0 (x+, x⊥)A−b

0 (y+, y⊥)
〉

= n(x+)δ(x+ − y+)δabγ (x⊥, y⊥), (31)

5This approximation holds when the range of one scattering center
is much smaller than the mean free path of the radiated gluon and of
the hard parton inside the medium.
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where γ (x⊥, y⊥) can be expressed as follows:

γ (x⊥, y⊥) = 1

(2π )2

∫
d2k⊥

k4
⊥

ei(x⊥− y⊥)·k⊥ (32)

and is related to the dipole cross section by the relation6

σ (x⊥ − y⊥) = CA

2
[γ (x⊥, x⊥) + γ ( y⊥, y⊥) − 2γ (x⊥, y⊥)].

(33)
In this approximation the average of two Wilson lines is a color
singlet:

〈Uac(z+, z′+, x⊥)U †
cb(z+, z′+, y⊥)〉

= δab

N2
c − 1

〈tr U (z+, z′+, x⊥)U †(z+, z′+, y⊥)〉, (34)

and the two-point function reads

〈tr U (z+, z′+, x⊥)U †(z+, z′+, y⊥)〉

= exp

[
−1

2

∫ z+

z′+
dξn(ξ )σ (x⊥ − y⊥)

]
. (35)

The second term in Eq. (27) is easily evaluated, leading to (see
the Appendix for details)

1

N2
c − 1

〈trGω(z′+, y⊥; z+, x⊥)U †(z′+, z+, z⊥)〉

= Kω(z′+, y⊥ − z⊥; z+, x⊥ − z⊥)

=
∫

Dr⊥(ξ ) exp

{∫ z+

z′+
dξ

[
iω

2
ṙ2

⊥(ξ ) − 1

2
n(ξ )σ (r⊥)

]}
,

(36)

where r⊥(z′+) = y⊥ − z⊥ and r⊥(z+) = x⊥ − z⊥.
Using the following property of the Green’s functions,

equivalent to (18),

Gω(x+, x⊥; y+, y⊥) =
∫

y+<u+<x+
d2u⊥Gω(x+, x⊥u+, u⊥)

×Gω(u+, u⊥; y+, y⊥), (37)

and the locality in time of the source average, the first term in
Eq. (27) can be factorized as follows

1

N2
c − 1

〈tr U (z+, z′+, z⊥)G†
ω(L, y⊥; z′+, z′

⊥)Gω(L, x⊥; z+, z⊥)〉

= 1

N2
c − 1

∫
d2u⊥

〈
Uab(z+, z′+, z⊥)G†bc

ω (z+, u⊥; z′+, z′
⊥)

〉
× 〈

G†cd
ω (L, y⊥; z+, u⊥)Gda

ω (L, x⊥; z+, z⊥)
〉
,

= 1(
N2

c − 1
)2

∫
d2u⊥

〈
tr U (z+, z′+, z⊥)G†

ω(z+, u⊥; z′+, z′
⊥)

〉
× 〈

trG†
ω(L, y⊥; z+, u⊥)Gω(L, x⊥; z+, z⊥)

〉
. (38)

Putting everything together, and following the calculations in
the Appendix, we recover the well-known induced radiative
gluon spectrum (see for instance Ref. [33], where it is shown

6For more details on Wilson line averages in the Gaussian
approximation see Refs. [47,52].

to be equivalent to Wiedemann’s formulation [44])

ω
d〈N〉

dωd2q⊥
= αsCR

(2π )2ω
2
e

∫ L

t0

dz+
∫

d2u⊥e−iq⊥·u⊥

×
[

1

ω

∫ z+

t0

dz′+e− 1
2

∫ L

z+ dξn(ξ )σ (u⊥)

× ∂⊥y · ∂⊥uKω(z+, u⊥; z′+, y⊥ = 0)

− 2
q⊥
q2

⊥
· ∂⊥yKω(L, u⊥; z+, y⊥ = 0)

]
. (39)

IV. GLUON PRODUCTION IN PROTON-NUCLEUS
COLLISIONS

In this section, we will rederive the gluon production in
proton-nucleus collisions in the high-energy limit [45,46,48–
50]. We end with a discussion on the validity of the eikonal
approximation at RHIC.

A. Gluon production in the high-energy limit

At high energy the nucleus is Lorentz contracted, so that
we take the limit L → 0, and put t0 = −∞. As a consequence
the produced gluon is eikonal during the interaction time L,
and the retarded gluon propagator (15) simply reads

G(x, y) = 1
2θ (x+ − y+)θ (x− − y−)

× δ(x⊥ − y⊥)U (x+, y+, x⊥). (40)

Thus, the gluon field (14), when amputated of its final free
propatagor, reduces to

�δAi(x) = 2δ(x+)δ(x−)(U − 1)
∂i

∂2
⊥

ρ(x⊥) − θ (x−)θ (−x+)

×∂iρ(x⊥) − θ (x−)θ (x+)∂i[Uρ(x⊥)], (41)

where U ≡ U (+∞,−∞; x⊥). Then the Fourier transform
gives

− q2δAi(q) = −q2Ai
proton(q)

+ 2i

∫
d2k1⊥
(2π )2

[
qi

2(q+ + iε)(q− + iε)
− ki

1

k2
1⊥

]

× ρ(k1⊥)[U (k2⊥) − (2π )2δ(k2⊥)], (42)

where k2⊥ ≡ q⊥ − k1⊥ and Ai
proton(q) is the Fourier transform

of the gauge field of a proton alone, that is, the Fourier
transform of Eq. (42) taking U = 1. The two terms in Eq. (42)
are illustrated in Fig. 3. This expression leads to the standard
result for gluon production in proton-nucleus collisions.

B. Validity of the eikonal approximation

The center of mass energy per nucleon at RHIC is 200 GeV.
This corresponds to a Lorentz contraction factor of about
γ = √

s/2mp � 100. For a nuclear radius RA � 6.5 fm, we
end up with the estimate L � 0.5 GeV−1. For the eikonal
approximation to be valid, the gluon production time has to be
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0 L
x+

0 L
x+

(a) (b)

FIG. 3. The two diagrams contributing to gluon production in
proton-nucleus collisions in the limit L → 0. In this limit the gluon
is eikonal when passing through the nucleus, and the gluon emission
inside the nucleus is neglected.

much bigger than the maximum interaction time:

tprod ∼ ω

q2
⊥

 L. (43)

At mid-rapidity, at RHIC, ω ∼ q⊥ ∼ Qs ∼ 1 GeV. We get tprod

of order of L. Therefore, one probably has to go beyond the
eikonal approximation for the gluon propagator to describe
mid-rapidity data at RHIC.

The corrections to the eikonal approximation are taken
into account in formula (27) for gluon radiation. Even if
Eq. (27) has been derived in the framework of final state
interactions in nucleus-nucleus collisions, it is applicable for
gluon production in proton-nucleus collisions (assuming the
medium to be a nucleus and the projectile to be a proton,
and taking the projectile production time t0 = −∞). This
is a possible phenomenological application for mid-rapidity
hadron production at RHIC.

At forward rapidity, ω ∼ q⊥eη, therefore, ω is enhanced
by a large factor (exponential of the rapidity), leading to a
much larger gluon production time compatible with the eikonal
approximation.

V. THE RELATION BETWEEN q̂ AND Qs

The transport coefficient q̂ that characterizes the density
of the scattering centers (gluons in the medium) in the
medium produced in nucleus-nucleus collisions is defined to
logarithmic accuracy by 1

2 q̂(ξ )r2
⊥ = n(ξ )σ (r⊥) [53]. Using

Eq. (35), we can write the following relation:

1

N2
c − 1

〈tr U †(x+, y+; z⊥)U (x+, y+; z′
⊥)〉

= exp

[
−1

4

∫ x+

y+
dξ q̂(ξ )(z⊥ − z′

⊥)2

]
. (44)

Whereas q̂ is local in time, the saturation scale Qs is a global
quantity defined as [47]

1

N2
c − 1

〈tr U †(L, 0; z⊥)U (L, 0; z′
⊥)〉

= exp

[
−1

4
Q2

s (z⊥ − z′
⊥)2

]
, (45)

where L ≡ 2RA is the nuclear diameter. From this formal
analogy it becomes clear that the saturation scale appears as an
initial condition for the transport coefficient in nucleus-nucleus
collisions as suggested in [54]:

q̂(ξ = 0) ∼ q̂cold ∼ Q2
s /2RA. (46)

Obviously, the transport coefficient increases owing to the
strong interactions of the freed gluons, from cold to hot matter.
This mechanism is not discussed in this work; however, the
medium dynamics could be encoded in the time evolution of
the medium field, which could lead eventually to thermaliza-
tion.

VI. SUMMARY

In this paper, we calculate the gluon spectrum of a
high-energy and point-like projectile passing through a dense
medium, presenting a compact and simple derivation based
on the solution of the Yang-Mills equations in the light-cone
gauge of the fast projectile. We reproduce in a straightforward
way the gluon spectrum in proton-nucleus collisions at high
energy and the induced gluon spectrum in the final state of
nucleus-nucleus collisions. We also discuss the validity of
the eikonal approximation in gluon production in proton-
nucleus collisions at RHIC and argue that one could have
non-negligible non-eikonal contributions at mid-rapidity gluon
production. As an application of our formula for gluon produc-
tion beyond the eikonal approximation (27) to phenomenology,
it could be interesting to see whether this complete solution
leads to an appreciably different answer for hadron production
spectra and for the Cronin peak at RHIC. Finally, we recall the
relation between the saturation scale in initial state interactions
and the transport coefficient in final state interactions, as the
transition from cold to hot matter in nucleus-nucleus collisions.
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APPENDIX: AVERAGES OVER MEDIUM SOURCES

In this appendix we shall derive analytic expressions for
some useful averages over the medium sources in the Gaussian
approximation:

A = 1

N2
c − 1

〈trGω(x+, x⊥; y+, y⊥)U †(x+, y+; z⊥)〉

=
∫

Dr⊥(ξ ) exp

[
iω

2

∫ x+

y+
dξ ṙ2

⊥(ξ )

]

× 1

N2
c − 1

〈tr U (x+, y+; r⊥(ξ ))U †(x+, y+; z⊥)〉, (A1)

where r⊥(x+) = x⊥ and r⊥(y+) = y⊥. In the Gaussian
approximation the two-point function can be easily evaluated
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and gives

1

N2
c − 1

〈tr U (x+, y+; r⊥(ξ ))U †(x+, y+; z⊥)〉

= exp

[
−1

2

∫ x+

y+
dξn(ξ )σ (r⊥ − z⊥)

]
. (A2)

Now we define

Kω(x+, x⊥; y+, y⊥)

=
∫

Dr⊥(ξ ) exp

[∫ x+

y+
dξ

(
iω

2
ṙ2

⊥(ξ ) − 1

2
n(ξ )σ (r⊥)

)]
.

(A3)

Making v⊥ = r⊥ − z⊥, we get

1

N2
c − 1

〈trGω(x+, x⊥; y+, y⊥)U †(x+, y+; z⊥)〉
= Kω(x+, x⊥ − z⊥; y+, y⊥ − z⊥). (A4)

Now let us evaluate the following useful average:

B = 1

N2
c − 1

〈trG†
ω(x+, x⊥; y+, y⊥)Gω(x+, z⊥; y+, z′

⊥)〉

=
∫

Dr⊥(ξ )
∫

Du⊥(ξ )

× exp

[
iω

2

∫ x+

y+
dξ

(
u̇2

⊥(ξ ) − ṙ2
⊥(ξ )

)]

× 1

N2
c − 1

〈tr U †(x+, y+; r⊥)U (x+, y+; u⊥)〉 (A5)

with the following boundary conditions: r⊥(x+) =
x⊥, r⊥(y+) = y⊥, u⊥(x+) = z⊥, and u⊥(y+) = z′

⊥. Recall-
ing that the two-point function depends only on r⊥ − u⊥ we
perform the following change of variables:

α⊥ = u⊥ − r⊥,

β⊥ = u⊥ + r⊥,

yielding

B =
∫

Dα⊥(ξ )
∫

Dβ⊥(ξ )

× exp

[∫ x+

y+
dξ

(
iω

2
α̇⊥(ξ )β̇⊥(ξ ) − 1

2
n(ξ )σ (α⊥)

)]
.

(A6)

Now we can perform the β integration, yielding a δ function
constraining the α variable to a straight line as follows:

l⊥(ξ ) = 1

(x − y)+
[(ξ − y+)α⊥(x+) + (x+ − ξ )α⊥(y+)].

(A7)

It is straightforward to show, for instance by discretizing the
path integral, that

B =
(

ω

2π (x − y)+

)2

exp

[
iω

2(x − y)+
(
(x − y)2

⊥

− (z − z′)2
⊥
) − 1

2

∫ x+

y+
dξn(ξ )σ (l⊥(ξ ))

]
. (A8)

We shall calculate the Fourier transform appearing in Eq. (27):

C =
∫

d2x⊥
∫

d2 z⊥B e−ik⊥.(x−z)⊥ . (A9)

Let

v⊥ = (x − y − z + z′)⊥,
(A10)

w⊥ = (x − y + z − z′)⊥,

We get

C =
(

ω

2π (x − y)+

)2

e−ik⊥·( y−z′)⊥
∫

d2 v⊥
∫

d2w⊥e−ik⊥·v⊥

× exp

[
iω

2(x − y)+
v⊥ · w⊥ − 1

2

∫ x+

y+
dξn(ξ )σ (l⊥(ξ ))

]
,

(A11)

where now

l⊥(ξ ) = (ξ − y+)

(x − y)+
v⊥ + ( y − z′)⊥. (A12)

σ (l⊥) is independent of w⊥; thus the integral over w⊥ yields
a δ(v⊥) and we finally get

C = exp

[
−ik⊥.( y − z′)⊥ − 1

2

∫ x+

y+
dξn(ξ )σ (( y − z′)⊥)

]
.

(A13)
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