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Analyzing correlation functions with tesseral and Cartesian spherical harmonics
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The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique
information on the space-time features of emission in reactions with multiparticle final states. In the present
paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of
surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and
the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated.
The physical content of different angular harmonic components in a correlation is described. The resolving power
of different final-state effects with regard to determining angular features of emission regions is investigated.
The considered final-state effects include identity interference, strong interactions, and Coulomb interactions.
The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave
sources for proton-charged meson and baryon-baryon pairs.
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I. INTRODUCTION

Measurements of low-relative-velocity correlations yield
access to the size and shape of relative emission sources in
reactions with multiparticle final states [1–4]. This information
plays an especially important role in in heavy ion collisions.
The duration of emission, which is linked to the nuclear equa-
tion of state, can be also inferred from those measurements.
Perhaps the most startling finding that occurred during the
first years of the BNL Relativistic Heavy Ion Collider (RHIC)
program was the disagreement between the features of exper-
imentally determined emission sources [5–7] and predictions
of hydrodynamic models [8–11] incorporating an anticipated
phase transition, which would yield a long emission duration.
A long emission duration would have resulted in an elongated
shape (Rout/Rside � 1 in the usual RHIC nomenclature) of the
emission source for particles of a specific momentum. In the
literature, the most exhaustively studied correlation has been
that produced by interference for identical mesons. For pure
interference, the correlation expressed as a function of the
relative particle momentum is related to the relative emission
source through a simple Fourier transformation, principally
yielding direct access to the source shape. In the measured
charged-meson correlations, the Coulomb effects competing
with interference had been normally compensated for with
cumbersome corrections. However, as we demonstrate, the
correlations induced by the Coulomb and further by the strong
interactions can also provide information on the source shapes.
For any type of correlation, the analysis is facilitated by
the use of spherical harmonics, either the standard complex
tesseral harmonics or the real Cartesian harmonics [12]. The
harmonics allow for a straightforward faithful representation
of the three-dimensional correlation data, and also better
facilitate isolating and focusing on specific physical properties

of the source. Different source parametrizations will be
employed for illustration of our discussions. For example,
the � = 2 harmonic expansion coefficients, characterizing
quadrupole deformation, provide information on the ratio of
radii Rout/Rside in the common Gaussian source representation.

The correlation associated with the final-state effects at
low relative velocities within a subsystem of the particles
a and b can be linked to a source function S through the
relation

d6Nab/d3pad
3pb

(dNad3pa)(dNbd3pb)
= 1 + R(P, q)

=
∫

d3r|φ(−)(q, r)|2S(P, r). (1)

Here, R(P, q) is the deviation of the left-hand side correlation
function from unity, P is the total momentum of the pair, and
q is the relative momentum measured in the two-particle rest
frame. The factor |φ(−)|2 represents the relative wave function
squared, in the two-particle rest frame, with asymptotic
condition imposed on the outgoing wave. The square of the
wave function is averaged over spins. The function S(P, r)
represents the probability density that the particles a and
b, moving with the same velocity V corresponding to the
total momentum P , are emitted from the reacting system a
distance r apart in their rest frame. Since at large q, the
emission in multiparticle final states becomes uncorrelated,
i.e., R → 0 while |φ(−)|2 averages to 1 as a function of r ,
it follows that S is normalized to 1,

∫
d3rS(P, r) = 1. A

detailed derivation of Eq. (1) can be found in Ref. [13] (see also
Ref. [14]).

The probability density of emission at the relative distance
may be expressed in terms of single-particle probability
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densities s:

S(P, r) =
∫

d4xad
4xbsa(ma P/(ma + mb), xa)sb(mb P/(ma + mb), xb)δ(r − ra − rb)∫
d4xad4xbsa(ma P/(ma + mb), xa)sb(mb P/(ma + mb), xb)

, (2)

where sa( p, x) is the density for emitting particles of type
a with momentum p from space-time point x. The spatial
arguments are for the frame moving at the center-of-mass
velocity V . According to Eq. (1), the correlation data access
the probability distribution in the relative rest-frame separation
only. Information on emission duration can only be inferred
from the influence of that duration on the relative spatial
distribution [15–17]. Similarly, single-particle distributions s

can be deduced only indirectly from data (1) because of the
folding in Eq. (2) with an integration over the average particle
position. For a set of investigated particles, the constraining of
single-particle distributions may be enhanced by an analysis
of correlations (1) of all possible particle pairs.

In the following, we concentrate on what might be directly
determined from data, i.e., the determination of S(P, r) given
measurement of R(P, q). Since each individual value of P
nominally represents a different problem, we suppress the P
arguments in the functions. As access to S is conditioned on
any deviations of |φ|2 from unity, we subtract unity from both
sides of Eq. (1) arriving at

R(q) =
∫

d3r[|φ(−)(q, r)|2 − 1]S(r) ≡
∫

d3rK(q, r)S(r),

(3)

where we have utilized the normalization of S(P, r). Here,
both q and r are evaluated in a frame where P = 0. It is
seen that R is related to S through an integral transform where
|φ2(q, r)|2 − 1 plays the role of the kernelK of transformation.
The determination of S(r) from R(q) amounts then to the
inversion of the integral transform, often referred to as imaging
[18–23].

Imaging has already been extensively performed for angle-
averaged correlation functions, R(q), which can provide
angle-averaged distributions S(r). It is the goal of this paper
to describe how one might extract the angular information
in S(r) by decomposing R(q) in terms of surface-spherical
tesseral and Cartesian harmonics. A parallel effort, employing
tesseral harmonics in the case of pure interference, is described
in Ref. [24].

The wave function squared |φ(q, r)|2 depends, after sum-
mation over spins, only on the magnitudes of q and r and on the
angle θqr between q and r . Thus, the square is invariant under
rotations. As a consequence, the coefficients of expansion in
terms of spherical harmonics, for the correlation and source
functions, are directly related to each other [21],

R�m(q) = 4π

∫
drr2K�(q, r)S�m(r). (4)

Here, the expansion coefficients and expansion for the corre-
lation function are defined by the relations

R(q) =
√

4π
∑
�m

R∗
�m(q)Y�m(�),

(5)
R�m(q) ≡ 1√

4π

∫
d�qY�m(�)R(q),

with analogous expressions for the source function. The partial
kernelK� encodes the information from the wave function, that
is,

K�(q, r) ≡ 1

2

∫
d cos θqr [|φ(−)(q, r, cos θqr )|2 − 1]

×P�(cos θqr ). (6)

According to the above, an (�,m) coefficient of the correlation
function is tied to the coefficient of the source function with
the same (�,m). Thus, the source restoration can be reduced
to a series of one-dimensional inversions of the integral
transformations for individual (�,m), employing kernels for
specific �. This sequence of one-dimensional inversions
is computationally simpler than a single three-dimensional
inversion. The angular resolution of data would determine
how far the restoration can proceed in �.

One problem with the above is the emergence of complex
coefficients for the real-valued correlation and source func-
tions, lacking direct geometric interpretation. The last issue
is circumvented by introducing an alternate real-valued basis
in the space of spherical angles, surface-spherical Cartesian
harmonics A��(�) [12,25,26].

Cartesian harmonics A�� are linear combinations of Y�m

with different m but the same � = �x + �y + �z. In terms of
the directional unit vector n pointing in the � direction, the
Cartesian harmonics are explicitly given by [12]

A��(�) =
∑

�m
0� mi� �i /2

(
−1

2

)m (2� − 2m − 1)!!

(2� − 1)!!

�x!

(�x − 2mx)!mx!

× �y!

(�y − 2my)!my!

�z!

(�z − 2mz)!mz!

× n�x−2mx

x n
�y−2my

y n�z−2mz

z , (7)

where m = mx + my + mz and (−1)!! = 1. The leading term

ofA�� is n�x
x n

�y

y n
�z
z , while the subsequent terms ensure that r�A��

satisfies the Laplace equation and, thus, is a combination of
the Y�m of different m.
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The expansion in terms of Cartesian harmonics are defined
with the relations

R(q) =
∑

��

�!

�x!�y!�z!
R��A��(�q)

(8)
=

∑
��

�!

�x!�y!�z!
R��q̂

�x

x q̂
�y

y q̂�z

z ,

R��(q) ≡ (2� + 1)!!

�!

∫
d�q

4π
A��(�q)R(q). (9)

In many situations the explicit form of A�� is not needed. Just
the existence of the Cartesian harmonics and their properties
justify representing a function of the spherical angle in the
second series in Eq. (8).

Since A�� is a combination of Y�m with � = �x + �y + �z,
the coefficients of expansion in terms of Cartesian harmonics
for the source and correlation function are related to each other
in the same way as the coefficients of expansion in terms of
tesseral harmonics in Eq. (4), that is,

R��(q) = 4π

∫
drr2K�(q, r)S��(r). (10)

In the next section, the structure of the kernel K� in
Eqs. (4) and (10) is investigated for the cases of pure identical-
particle interference and for strong interactions and Coulomb
interactions within a pair. We find that all three classes
of final-state effects provide significant resolving power for
different �. Section III provides a detailed discussion of the
properties of Cartesian harmonics. The subsequent section
presents a discussion of the utility of higher � moments and
their relation to specific geometric features of the source. In
particular, we show that the � = 1 moments can reveal an offset
between the probability clouds for two different species, that
the � = 2 moments can reveal the magnitude and orientation
of axes in the ellipsoidal approximation for a source, while
the � = 3 moments can reveal the “boomerang” nature of a
source. In Sec. V, the cases of Gaussian and blast-wave sources
are studied, as examples, in quantitative detail. In the final
section, we summarize our results and discuss the prospects
and challenges expected in analyses employing the harmonics.

II. CORRELATION KERNELS K�

The ability to extract source S anisotropies depends on the
kernels K�(q, r) defined in Eq. (6). Data on R are obtained
at a certain resolution in q and suffer from errors. The
theoretical relation (1) involves approximations [13,27], in
assuming that the relative momentum q is small compared to
the scales characterizing the rest of the system and in ignoring
final-state effects other than those between the two studied
particles moving slowly relative to each other. If the kernels
K� drop rapidly as � increases for typical q values and for
values of r characteristic to the source function, there will
be no chance to determine details of the shape of S(r). In
the following, we analyze the situation for different types of
final-state interactions at different �, q, and r .

In the process of source restoration, the values of R�� would
be known at discrete values of q. In parallel, the source S��(r)

might be discretized in r or decomposed in some basis. The
source restoration would then amount to the inversion of a
matrix out of K�(q, r), cf. [21,28]. An inability to extract
source features might be signaled by the proximity of matrix
eigenvalues to zero, resulting in an instability of the inversion.
Such a situation could be encountered when extracting details
of S�� in an r region where K� lacks resolving power. Practical
experience in matrix-inversion strategy in analyzing data has
been gained for � = 0 [18–23]. Importantly, this strategy
has revealed non-Gaussian features in S�=0(r), which were
especially significant for proton sources in intermediate energy
collisions. More common in the literature than the source
discretization, has been a parametrization of the source which
is then fit to R. When parametrizing the source in three
dimensions, the benefit regarding angular moments can be
in understanding a systematic of the moments R�� and S�� as
a function of ��. With regard to the fit strategy, the features of
K�(q, r) determine what parameters of S may be potentially
constrained by data.

In the first subsection, we discuss kernels for the case of
pure identity interference between spin-0 bosons. The two
subsequent subsections are dedicated to the Coulomb and the
strong interactions. Before launching into a detailed discussion
of specific classes of interactions, we emphasize a general
observation that a three-dimensional source S��(r), expanded
in a Taylor series around r = 0, behaves as r� for small r .
Consequently, there is not much to be discerned about the
source at small r for � � 1, particularly for large �, and the
structure of K�� 1 at small r will not be overly important.
On the other hand, much could be learned about the angular
structure of the source at large r . However, when the large-r
region gets mapped onto small q, the ability to gain angular
information becomes limited by the experimental resolution
capabilities. Thus, in practice, the most important features of
K�� 1(q, r) are those at moderate q combined with moderate
to high r . The naive expectation regarding strong interactions
may be that when an s wave dominates the interaction, there
is no possibility of discerning source shapes. We shall see that
this is not the case.

A. Kernels for spin-0 boson identity interference

For noninteracting identical spin-0 bosons, the squared
relative wave function is

|φ(q, r, cos θqr )|2 = 1 + cos (2qr cos θqr ), (11)

where the relative momentum convention is that q stands for
the momentum of one of the particles in the center-of-mass
frame. In this case, the three-dimensional transformation (3)
becomes the cosine Fourier transform [23]. Since the cosine
term in Eq. (11) may be represented as the real part of
exp(2iq · r) and the latter may be expanded in Legendre poly-
nomials and spherical Bessel functions, theK� transformations
(4) and (10), with Eq. (6), emerge as the spherical Bessel
transforms (see also Ref. [24])

K�(q, r) =
{

(−1)�/2j�(2qr), for even �,

0, for odd �.
(12)
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The properties of j�(2qr), as a function of qr , are as
follows. At low qr , the function starts out in the power
form, j�(2qr) ≈ (2qr)�/�!!, which is followed for � � 2 by a
maximum at qr ∼ �

2 + 1
4 and by a subsequent alternation at the

approximate period of π . This has the following consequences
for the ability to discern the source angular components S�. If R

is a scale characterizing S�, then S� will have little impact onR�

if, at � � 2, qR falls into the hole in j� at low argument values.
Likewise, S� will have little impact on R� if many oscillations
of j� are averaged over in the spatial integration over the
source. The maximal impact is expected if qR falls into the
region of the first maximum in j�; thus, most information on
S� may be expected in R� at q ∼ (� + 1

2 )/(2R). Otherwise,
the coefficients R� are expected to behave as q� for low q and
vanish at large q.

As characteristic for Fourier transforms, q and r enter the
kernels as a product, and the low-r region of the source gets
predominantly mapped onto the high-q region of the corre-
lation function. Conversely, the high-r region of the source
function mainly affects the low-q region of the correlation
function. The inverse to the cosine Fourier transform is again
the cosine Fourier transform, and the inverse to the spherical
Bessel transform is the spherical Bessel transform. Given the
Bessel function completeness relation∫ ∞

0
dqq2j�(2qr)j�(2qr ′) = π

16
δ(r − r ′), (13)

we can introduce an inverse kernel

K−1
� (r, q) =

{
(−1)�/2

π3 j�(2qr), for even �,

0, for odd �,
(14)

and obtain

S��(r) = 4π

∫
dqq2K−1

� (r, q)R��(q). (15)

B. Kernels for repulsive Coulomb interaction

The Coulomb final-state interaction also provides means
for determining S(r) from R(q) [29,30]. In the Coulomb
case, there is no straightforward way to invert the relation
to the source function as in the case of pure interference. To
understand how S impacts R for the Coulomb interaction, the
structure of the kernel must be considered in detail.

In the classical limit of a repulsive Coulomb interaction, the
kernel depends solely on θqr and on the ratio of the pair relative
energy to the pair Coulomb energy at emission, namely,

x = Z1Z2e
2

r

2µ

q2
= rC

r
, (16)

where µ is the reduced mass and rC is the radius of the
Coulomb barrier in the pair interaction. Quantal effects
become important for qr/h̄ of the order of unity. In the
quantal situation, the kernel also depends on the dimensionless
variable qr/h̄. The Gamow factor parameter is then given by
the parameter product η = xqr/2 = Z1Z2e

2/v and a further
parameter multiplication yields x(qr)2 = 2r/a0, where a0 =
1/Z1Z2e

2µ is the Bohr radius.

In the classical limit, the squared wave function represents
the ratio of initial and final spatial densities during motion
to the detectors for particles of a given initial momentum or,
due to the conservation of phase-space density, the inverse
ratio of the momentum densities at a fixed initial separation,
that is,

|φ(−)(q, r, cos θqr )|2 → d3r∞
d3r

= d3q0

d3q

= 1 + cos θqr − x√
(1 + cos θqr − x)2 − x2

×� (1 + cos θqr − 2x). (17)

Here, q0 represents the relative momentum of the particles
at separation r , while r∞ represents a remote separation of
the particles at some instant when the relative momentum
has approached q. The right-hand-side result in Eq. (17)
follows from Coulomb-trajectory considerations [29]. The
implications of this result simplify [25] for � = 0 and in the
high-energy (x � 1) and low-energy (x � 1) limits. Thus, for
� = 0, the partial kernel is

K0(q, r) = q2
0

q2

dq0

dq
− 1 = q0

q
− 1 = �(x)√

1 − x
− 1. (18)

The three-dimensional kernel K is illustrated in Fig. 1 as
a function of cos θqr , for two x values. In the high-energy
limit of x � 1, the wave function squared |φ|2 is close to
unity for most values of cos θqr . In that limit, the trajectories
emerging from r are practically straight lines. The exception
are the trajectories aiming toward the center of interaction
that cannot penetrate the region of radius rC . The trajectory
directions with cos θqr < −1 + 2x get shadowed. (The factor
of 2 in front of x stems from the fact that trajectories get
deflected both during the motion toward and away from the
barrier.) The deflected trajectories pile up primarily outside
of the shadowed region. The pileup produces an integrable
singularity in the kernel as shown by the peaks in Fig. 1.
At low �, the Legendre polynomials have a limited angular
resolution. Given that limited resolution, for the purpose of

FIG. 1. Kernel K(q, r, cos θqr ) = |φ(−)|2 − 1 for classical repul-
sive Coulomb interaction as a function of cos θqr at two values of
dimensionless parameter x = rC/r , where rC = 2µZ1Z2e

2/q2. The
structure around cos θqr = −1 is due to the deflection of classical
trajectories directed toward the center of the repulsive Coulomb
interaction. As the relative momentum within the pair increases, at
fixed r , the range of backward angles where the kernel is significant
shrinks.
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the angular integration in Eq. (6), the angular structure in |φ|2
in the vicinity of the backward direction cos θqr = −1 may be
approximated by a δ function multiplied by the integral over
the structure, that is,

|φ(−)(q, r, cos θqr )|2 ≈ 1 − x

2
δ(1 + cos θqr ),

for

x · max (1, �) � 1. (19)

Since P�(−1) = (−1)�, the high-energy kernel can be then
approximated as

K�(q, r) ≈ (−1)�+1x/2,

for

x � 1/ max (1, �) and qr � max (1, �). (20)

For more implications of the classical limit (17) for
kernels K�, see Ref. [25]. The classical limit of the Coulomb
interaction is of interest in the context of emission of
intermediate-mass fragments (IMF) from low-energy central
nuclear reactions [30]. The practical condition of applicability
for the classical approach is that QR � max (1, �), where Q is
the characteristic momentum which yields rC ∼ R. With Z ∼
A/2, this produces, at low �, the condition (e2A3mNR)3/2 � 2.
Given a typical value of R ∼ 5 fm for heavy ion reactions, this
amounts to A3/2 � 5, and the classical limit is met at the
fragment mass of A >∼ 6. IMF correlations are commonly ex-
pressed in terms of reduced velocity vred = q/µ(Z1 + Z2)1/2.
With Z ∼ A/2, rC ∼ 2e2/mNvred, and R ∼ 5 fm, the high-
energy limit of x � 1 for the kernel is reached at vred >∼ 0.04 c.

At small qr in an interacting system, quantum effects
become important as phase-space delocalization produces
diffraction and tunneling. The diffraction affects the angle
of an emerging particle at the level of 1/qr , smearing out
the angular structure in the kernel. Given the resolution of
Legendre polynomials changing with �, the diffraction effects
become consequently important for qr <∼ max (�, 1), with the
kernel K� then being reduced on average. The tunneling into
the region of x > 1 becomes significant down to r = 0, for
2η = xqr ≡ qrC <∼ 1. For singly charged particles, such as
identical pions, this corresponds to v >∼ 0.02c. Unlike the
classical expression (17), the Coulomb wave function squared

|φ(−)(q, r, cos θqr )|2 = G(η)|M(iη, 1,−iqr(1 + cos θqr )|2
(21)

is analytic around r = 0 in the argument r(1 + cos θqr ) ≡ r +
r · q̂. In the quantal expression,

G(η) = 2πη

e2πη − 1
(22)

is the Gamow factor. The terms in the Taylor series for the
squared wave function (21) behave as r�(1 + cos θqr )�. Since
the highest power of cos θqr for an �th term is �, the quantal
Coulomb kernel K� from Eq. (6) behaves around r = 0 as
r�, similar to the identity-interference kernel (12). The power
behavior associated with the quantal delocalization holds up
to r <∼ min (a0, q

−1). The behavior extends past the classical

FIG. 2. (Color online) Kernels K�, multiplied by (−1)�, for pK+

interactions at q = 15 MeV/c (left panels) and q = 75 MeV/c (right
panels), shown as a function of 1.5 < r < 30 fm, for �� 3. Classical
and quantal Coulomb kernels and quantal kernels with inclusion of
strong interactions are represented by solid lines, dashed lines, and
symbols, respectively. Vertical scale may change from panel to panel
to emphasize details. Kernels are suppressed at the lowest r for the
sake of clarity.

Coulomb barrier when rC <∼ min (a0, q
−1), leading to a further

dampening of K� at � � 1 in the barrier region.
As an example, in Fig. 2, we consider K� kernels for

the pK+ interaction. The kernels are shown for � = (0–3),
at relative momenta of q = 15 (left panels) and 75 MeV/c
(right panels), as a function of distance r . Regions of higher
and lower relative momenta within a correlation functionR(q)
are typically used to determine, respectively, about the short
and long-range features of the source S(r). The solid lines,
dashed lines, and symbols represent the classical Coulomb
kernels, quantal Coulomb kernels, and quantal kernels with
inclusion of strong interactions.

FIG. 3. In the asymptotic region of r → ∞, for short-range
interactions, the kernel K represents changes to the flux of particles
emerging at relative momentum q, produced by scattering. Here, the
particles were initially separated by r .
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We first address the Coulomb kernels at 75 MeV/c. At large
r in the right panels of Fig. 2, the classical Coulomb kernels
K� are, up to a sign, independent of � and fall off as 1/r , which
is consistent with Eq. (20). Differences emerge at low r . At
� � 1, the different classical kernels K� switch sign (� − 1)
a number of times, cf. Ref. [25]. With the distance scale of
rC being, though, a fraction of a Fermi, rC = 0.17 fm at q =
75 MeV/c, the structures associated with the sign switching
are all pushed to very small r . Those sign-switching structures
cannot be seen in the figure because the kernels at r < 1.5 fm
are suppressed for the sake of clarity. For the quantum kernels,
given q−1 = 2.6 fm, those kernels are seen to fluctuate with r

around the classical kernels at r � max(1, �)q−1. At lower r

and � � 1, quantal effects dampen the kernels; in particular,
at very low r , the classical sign-switching in the kernels
gets completely erased with the kernels behaving as r�. With
inclusion of the effects of strong interactions in the kernels,
additional oscillations are observed with r within the figure, as
the asymptotic behavior of the partial-wave functions changes
for low angular momenta, producing wave-function distortions
at moderate distances. We will focus on strong interactions in
the next subsection.

At q = 15 MeV/c, the classical Coulomb radius rises to
rC = 4.1 fm, on one hand, pushing the asymptotic high-energy
region out of the r range shown in Fig. 2 and, on the other hand,
making some of the low-r details of the classical Coulomb
kernels visible within the shown range. Also, since q−1 =
13.1 fm, much of the region for the left panels of Fig. 2 is
dominated by quantal effects. The kernels with inclusion of
strong interactions get to be very close to the Coulomb kernels,
since the phase shifts characterizing changes in the partial-
wave asymptotic behavior are close to zero at low q.

The quantal suppression of the kernels at qr <∼ �, progress-
ing with �, makes it difficult to learn about the directional
characteristics of a source from the particle correlations at low
q <∼ R−1 = 40 MeV/c for R = 5 fm. Small kernels produce
small contributions to the correlation which are difficult to
detect experimentally. At the other end, at high qr , while the
kernels become independent of �, they also become small,
falling off as 1/(q2r), cf. Eq. (20). As a consequence, an
optimal bracket of q emerges for accessing the directional
characteristic of sources with typical size, such as q ∼ (30 −
100) MeV/c for the pK+ system.

We have seen the importance of the analyticity of |φ|2
in r around r = 0, which implied the r� suppression of the
K�(� � 1) kernels at low r . The analyticity in q is of interest
in the context of the analysis of correlation functions as a
function of q. In the case of pure identity interference, the
wave function squared (11) is analytic in q, which makes the
kernels from Eq. (3) analytic in q. The resulting correlation
coefficients R� are also analytic and behave as q� at small q. In
contrast, because of the general dependence on the parameter

η = Z1Z2e
2µ

q
, (23)

inversely proportional to q, and because of the appearance
of the Gamow factor (22), the square of the Coulomb wave
function (21) lacks analyticity in q around q = 0. Still, it
may be tempting to factor out the Gamow factor, as has

been done in the analysis of pion correlations, arriving, with
|φ|2/G ≡ |M|2, at a Gamow-corrected kernel. The corrected
kernel remains finite at a given r and θrq , when q → 0, but
retains a dependence in this limit on cos θqr for any finite
value of r . Thus, |M| reaches a different value depending
on the side from which q = 0 is reached and lacks therefore
analyticity in q. Correspondingly, even the Gamow-corrected
correlation functions from Eq. (3) lack analyticity in q. The
Gamow-corrected kernels K� tend to finite values as q → 0,
rather than behaving as q�.

As to the high-q limit of the Coulomb kernels, while
the resolving power becomes independent of �, the accessed
information on the source represents one moment only per
correlation coefficient, as

R�m(q) ≈
q→∞

2
√

π (−1)�Z1Z2e
2µ

q2

〈
1

r
Y ∗

�m(�)

〉
, (24)

R��(q) ≈
q→∞

(−1)�Z1Z2e
2µ

q2

〈
1

r
A��(�)

〉
, (25)

where

〈F 〉 =
∫

d3rS(r)F (r). (26)

Since the classical approximation is accurate at large qr , this
relation is unchanged by quantum considerations. Working
within the classical approximation, one might be tempted to
continue the rC/r kernel expansion, producing expansion of
the correlation in powers of 1/q2. The next expansion term
could give access to the moment of the source function with
a factor of 1/r2 in place of 1/r . However, beyond the leading
term, the expansion gets altered by quantum effects, making
the expectation invalid for lighter particle pairs such as pK+.

C. Kernels for short-range interactions

Strong interactions between two particles also provide
leverage for extracting source information from measured
correlations and are particularly effective when the strong-
interaction cross sections are large [29]. In analyzing the
effects of the interaction, the two-particle scattering wave
function may be conveniently decomposed into angular-
momentum eigenstates, here with any intrinsic spins sup-
pressed

φ(−)(q, r, cos θqr ) =
∑
�1

a�1

R�1 (r)

r
P�1 (cos θqr )

≈
r→∞ exp(iqr cos θqr ) + f ∗(π − θqr )

× exp(−iqr)

r
. (27)

The coefficients a� in front of the radial wave functions R�

are adjusted to make the large-r outgoing wave contributions
to φ(−) identical to those for a wave in the absence of
short-range interactions. The explicit asymptotic form of the
wave function, on the right-hand side, is shown for the case
with no Coulomb interactions. The amplitude f ≡ f (+) is
the scattering amplitude associated with the more standard
scattering wave function φ(+) where conditions are imposed
onto incoming wave contributions in the asymptotic region.
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The amplitude factors in the two wave functions are related
with f (−)(θ ) = [f (+)(π − θ )]∗.

The three-dimensional kernel from Eq. (27) is

K(q, r, cos θqr ) ≡ |φ(−)|2 − 1 = 1

r2

∑
�1�2

a�1a
∗
�2

R�1 (r)R�2 (r)

×P�1 (cos θqr )P�2 (cos θqr ) − 1. (28)

Since most shape information is contained at intermediate to
large r , the large-r limit is especially insightful and can be
found from Eq. (27) to be

K(q, r, cos θqr )

≈
r→∞

1

r2

dσ

d�
(π − θqr ) − Imf (π − θqr )

r
sin[qr(1 + cos θqr )]

+ Ref (π − θqr )

r
cos[qr(1 + cos θqr )] (29)

→ 1

r2

dσ

d�
(π − θqr ) − σ

2πr2
δ(1 + cos θqr ). (30)

In arriving at Eqs. (29) and (30), we used an expression for
the scattering cross section, |f |2 = dσ/d�, and the optical
theorem, Imf (0) = qσ/4π . Furthermore, in obtaining the
expression (30) we exploited the fact that for qr → ∞, under
an r integration, the respective products in Eq. (29) approach
the limits qr sin(qrx) → δ(x) and qr cos(qrx) → 0. As illus-
trated in Fig. 3, the result [Eq. (30)] has a simple geometric
interpretation. The first term represents the probability that a
particle aimed directly at the scatterer reflects into the direction
of q, while the negative term represents the shadowing of a
spherical angle, σ/4πr2, around the backward direction.

The partial kernels K�, respectively, from Eqs. (28) and
(30), are

K�(q, r) = 1

r2

∑
�1�2

(
� �1 �2

0 0 0

)2

a�1a
∗
�2

R�1 (r)R�2 (r) − δ�0

(31)

≈
r→∞

(−1)�

r2

[
1

2

∫
d cos θP�(cos θ )

dσ

d�
(θ ) − σ

4π

]
,

(32)

where we have made use of the Wigner 3j symbol. In the
asymptotic region, all � � 1 kernels decrease as 1/r2 and
are proportional to the scattering cross section. Larger cross
sections, such as those associated with resonances, will lead to
larger kernels at a given q. Otherwise, the kernels are sensitive
to the angular dependence of the cross sections. For q in
the range for which correlations are typically studied, cross
sections are usually fairly isotropic. Thus, the first term in the
brackets on the right-hand side of Eq. (32) decreases quickly
as � increases, yielding

K�(q, r) ≈ (−1)�+1σ

4πr2
(33)

for large r and �. Apart from the sign, this kernel
is independent of �, similar to the Coulomb kernel in
Eq. (20). In analogy to the classical Coulomb results for
individual �, the asymptotic results [Eq. (32)] require qr � �

for their validity. An additional condition for validity is that
r/d � �, where d is the interaction range.

Regarding the limiting short-range [Eq. (33)] and Coulomb
[Eq. (20)] K� results, their independence from � results from
the kernels being exclusively influenced by the shadowing of
particles by each other. The effect of shadowing decreases
with distance between the particles, but more slowly for
the Coulomb than for the purely short-range interaction. For
short-range interactions, the kernel falls off as σ/r2; while
for Coulomb forces., the kernels fall off as rC/r , where
rC = 2µZ1Z2e

2/q2 is the radius of the Coulomb barrier.
Since rC explicitly decreases with q, Coulomb kernels de-
crease monotonically with increasing q; whereas for the strong
interaction, the q dependence on the kernel tends to follow the
energy dependence of the cross section. Strong interactions can
thus provide resolving power at large q, if the cross sections
are large, e.g., at resonance energies.

When the two terms in the asymptotic form of the kernel
in Eq. (30) are integrated over the full spherical angle, those
terms exactly cancel, reflecting the fact that for a short-range
interaction, the particles which are shadowed for cos θqr = −1
reappear at other angles at the same magnitude of relative
momentum. Consequently, the � = 0 coefficient for the 1/r2

asymptotic falloff in Eq. (32) vanishes, implying that the K0

kernel from Eq. (31) vanishes faster than 1/r2 as r → ∞.
These results may be contrasted with what is found for
the Coulomb interactions. The large-r Coulomb kernel from
Eq. (19) yields a finite result when integrated over the spherical
angle. In direct consequence, the � = 0 kernel is finite in the
asymptotic region [Eqs. (18) and (20)]. The difference between
the short-range and Coulomb cases is due to the fact that a
Coulomb interaction does not just change the orientation of the
relative momentum but also makes the momentum magnitude
different from the asymptotic value at any finite distance from
the interaction center.

At low relative momenta q, s-wave scattering is likely
to dominate. An important result, visible already in the
asymptotic limit [Eqs. (32) and (33)], is that the s-wave
scattering contributes to the kernels at all �. At the level of
Eq. (31), it is associated with the interference between the
waves. At resonance, the radial wave functions R� will be
particularly large in the near zone giving rise to enhanced K�

there, including � = 0. At low q and finite �, the effects of the
centrifugal barrier can be important. When q is so low that
the barrier is encountered outside of the strong-interaction
range, qr < � + 1

2 at r > d, the radial wave functions are
approximately given in terms of the spherical Bessel functions,
R�/r ∝ j�(qr) ∝ (qr)�. With R0 approaching a constant value
as a function of both q and r in the region d < r � 1/q,
at q → 0, given the triangle inequality for the � values in
the 3j symbol in Eq. (32), the strong-interaction kernels will
behave as K�(q, r) ∝ (qr)�(1 + b/r) for � � 1 in the region.
The kernels will be suppressed then at low q and low r as
well as for larger �. A short-range repulsion may enhance
suppression at the lowest r < d beyond that produced by the
centrifugal barrier.

Outside of the interaction range, at r > d, the wave
functions R� are fully determined by the respective strong-
interaction phase shifts, both in the absence and presence
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of Coulomb interactions. We exploit this [29] in obtain-
ing the kernels for strong interactions, e.g., the kernels in
Fig. 2. Energy derivatives additionally constrain the integrals
of the wave functions R� squared over the region r < d

[29,31]. This facilitates an extrapolation of the kernels down to
r = 0, adequate for source resolutions that can be practically
achieved, without the need to resort to potential models for
the strong interaction. Still, with the strong-interaction kernels
becoming model dependent at short distances, we refrain from
displaying them at r < 1.5 fm. Needless to say, that given
the quark substructure of hadrons, the description in terms of
wave function for relative motion becomes questionable at the
shortest distances r <∼ 0.5 fm. For IMFs the same becomes true
at even larger distances, because of the finite size of the nuclei.

III. SPHERICAL CARTESIAN HARMONICS

A. Harmonics within spherical coordinates

We start out with a review of basic concepts concerning
surface spherical harmonics. A harmonic function is one that
satisfies the Laplace equation

∇2F (r) = 0. (34)

When using spherical coordinates, it is convenient to express
harmonic functions, which are regular at the origin, in terms
of tesseral harmonics Y�m,

F (r) =
√

4π
∑
�m

F ∗
�mr�Y�m(�), (35)

where the coefficients F�m take on arbitrary values. In the
summation over �, the individual terms in Eq. (35), of the
form

F (�)(r) =
√

4πr�
∑
m

F ∗
�mY�m(�), (36)

are harmonic functions of degree �. The latter stand for
homogenous functions of degree � in x, y, and z that are
harmonic. A surface spherical of degree � is a harmonic
function of degree �, taken on a unit sphere, r = 1:

F (�)(�) =
√

4π
∑
m

F ∗
�mY�m(�). (37)

Given the completeness relation for the tesseral spherical
harmonics,

δ(� − �′) = 1

4π

∑
�

(2� + 1)P�(n · n′)

=
∑
�m

Y ∗
�m(�′)Y�m(�), (38)

any function of spherical angle, and in particular R and S in
Eqs. (8)–(10), can be expanded in the tesseral harmonics upon
using Eq. (38) with the identity

G(�) =
∫

d�′δ(� − �′)G(�′). (39)

Equation (35) for the harmonic functions represents an
example of the expansion in which the expansion coefficients
have a specific radial dependence. Within every rank � of

an expansion, the expanded functions are generally described
in terms of (2� + 1) complex coefficients F�m. However, for
real expanded functions, the coefficients F�,m=0 must be real;
otherwise, the coefficients must satisfy F�−m = (−1)mF ∗

�m.
Thus, for each �, the expansion is described in terms (2� + 1)
independent real numbers. Under rotations of the coordinate
system for a given �, the tesseral functions transform like the
components of a spherical tensor of rank �. For a function
that is independent of the coordinate choice, the expansion
coefficients transform further in this fashion; the sums over
m in Eqs. (35), (36), and (5) represent scalar products of the
spherical tensors. In fact, the right-hand side of Eq. (38) also
represents a superposition of the scalar products and, in this,
represents a covariant generalization of the middle result in
Eq. (38), which is seen as a superposition of the scalar products
of the tensors in the case when the coordinate z axis is oriented
either along n or n′.

B. Cartesian harmonics

Cartesian harmonics allow functions of the spherical angle
to be expressed as superpositions of the scalar products of
Cartesian tensors. For real functions, the coefficients of expan-
sion in Cartesian harmonics are real, which is not necessarily
the case when expanding functions in tesseral harmonics. The
expansion coefficients for Cartesian harmonics are generally
easier to interpret than those for tesseral harmonics.

Let us consider a homogenous function of degree �. When
using Cartesian coordinates, a homogenous function may be
represented as

F (�)(r) =
∑

α1α2...α�

F (�)
α1α2...α�

rα1rα2 . . . rα�
, (40)

where α = x, y, z are Cartesian indices. The following re-
marks can be made regarding this representation in terms
of Cartesian coordinates. Since the product of Cartesian
coordinates on the right-hand side of Eq. (40) is symmetric
under the interchange of its terms, attention may be limited to
the coefficients of expansion Fα1α2...α�

which are symmetric
under the interchange of indices. Since the product of �

coordinates transforms further as a Cartesian tensor of rank
�, the coefficients Fα1α2...α�

must transform as a Cartesian
tensor of rank � for a function F (�) that is independent
of the choice of directions for coordinate axes. Given the
symmetry of the tensorial coefficients, the right-hand side of
Eq. (40) can be conveniently rewritten by grouping terms with
different numbers, �x, �y , and �z, respectively, of the x, y, and
z coefficients, obtaining the representation such as in Eq. (8),

F (�)(r) =
∑

��

�!

�x!�y!�z!
F��x

�x y�y z�z ≡ F�r�, (41)

where � = �x + �y + �z. The last expression in Eq. (41) is a
schematic representation for the convolution of the Cartesian
tensors.

On substituting the representation (40) into the Laplace
equation (34), we find that the homogenous function is
harmonic if and only if the Cartesian tensorial coefficients
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are traceless [12], i.e.,∑
α

F (�)
α1...α�−2αα = 0, (42)

or

F�x+2,�y ,�z
+ F�x,�y+2,�z

+ F�x,�y ,�z+2 = 0, (43)

where �x + �y + �z + 2 = �. The components for a symmetric
tensor, labeled with the values of (�x, �y, �z), are illustrated
with a triangle in Fig. 4. When moving along lines parallel to
the different sides of the triangle, either the value of �x, �y ,
or �z stays constant. The tracelessness condition (43) relates
components at the corners of an equilateral triangle two � units
on the side in the figure.

In the Appendix, we show that there exists a real projection
operator P , which operates in the space of Cartesian tensors
of rank � and projects, out of any tensor, the part which is
symmetric and traceless. As an operator in the space of rank
� tensors, P itself is a rank 2� tensor, � times covariant and
� times contravariant. As a projection operator, P satisfies
P2 = P and P� = P . In terms of the operator P , for any
tensor T of rank �, the function given by

(PT )�r� = T �P�r� = T �P r� (44)

is harmonic, where we follow the schematic notation. Since
the function (44) is harmonic for any tensor T , each of the
components of P r� on the right-hand side must be harmonic.

FIG. 4. Triangular diagram representing the components of a
symmetric tensor, in terms of dots labeled with the component
[�x, �y, �z] values, for � = �x + �y + �z = 4, after Ref. [26]. When
moving along the lines parallel to the respective sides of the triangle,
either �x, �y, or �z stays constant. The tracelessness condition (43)
relates tensor components at the corners of an equilateral triangle two
� units on the side, within the diagram, such as those marked by the
squares. As the set of linearly independent components of a traceless
symmetric tensor, the �z = 0 and �z = 1 components may be chosen
(thick grey lines).

On the sphere of r = 1, those components define the Cartesian
surface spherical harmonics

A(�)
α1α2...α�

(�) =
∑

α′
1α

′
2...α

′
�

P (�:�)
α1α2...α�:α′

1α
′
2...α

′
�
nα′

1
nα′

2
. . . nα′

�
, (45)

where n = (sin θ cos φ, sin θ sin φ, cos θ ), which can be fur-
ther also written as

A��(�) =
∑

��′

�!

�′
x!�′

y!�′
z!
P��:��′n

�′
x

x n
�′
y

y n
�′
z

z . (46)

Cartesian components of the direction vector n are com-
binations of the tesseral rank-1 harmonics Y1m. The product
of � components as, e.g., demonstrated by the quantal rules of
angular-momentum superposition is a superposition of tesseral
harmonics of rank � and lower, of the same evenness as �:

nα1nα2 . . . nα�
=

∑
�′m′�′ � �

c�′m′∗
α1α2...α�

Y�′m′(�) ≡ A(�)
α1α2...α�

+ (
nα1nα2 . . . nα�

− A(�)
α1α2...α�

)
. (47)

Since r�A(�) are harmonic,A(�) can consist of the tesseral rank-
� harmonics only. As will be demonstrated in the Appendix,
the operator P consists of a symmetrization operator, i.e., the
unit tensor in the space of symmetric Cartesian tensors, and of
operator terms that involve taking traces of one or more pairs
of the Cartesian indices. In acting on the the Cartesian product
n�, the symmetrization operator leaves the product n� intact,
while the other operator terms inP produce symmetrized terms
of the form n�−2k(δ)k , where k = 1, . . . , �/2. The latter terms
represent superpositions of tesseral harmonics up to the rank
of � − 2, of the same evenness as �. The implication is that the
projection operator P removes from n� a portion represented
by the superposition of the lower rank tesseral harmonics [in
parenthesis on the right-hand side of Eq. (47)] while retaining
the highest rank � portion intact. Given the general form of
A(�), from application of P onto n�, the Cartesian harmonics
may be constructed recursively [25], based on the tracelessness
of the A(�) tensors within each rank, starting with A(�=0) = 1:

A(�)
α1···α�

= 1

�

�∑
i=1

nαi
A(�−1)

α1···αi−1αi+1···α�
− 2

�(2� − 1)

×
∑

1 � i<j � �

∑
α

δαiαj
nαA(�−1)

αα1···αi−1αi+1···αj−1αj+1···α�
.

(48)

Expressions for Cartesian harmonics of lowest rank are given
in Table I, and the recursion with Eq. (48), otherwise, produces
the series in Eq. (7). One of the features of the Cartesian
harmonics is that the three Cartesian axes are treated equally,
unlike in the case of tesseral harmonics. Within a given
rank �, not all Cartesian harmonics are independent. A sym-
metric tensor has (� + 1)(� + 2)/2 different components, cf.
Fig. 4. The tracelessness condition (44) reduces the number
of linearly independent components, including the number of
independent A(�) functions, to (2� + 1), equal to the number of
Y�m functions. As a linearly independent set, one might choose
the components with �z = 0 and �z = 1, see the figure.
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TABLE I. Cartesian harmonics for �� 4. Other harmonics can
be found by either permuting the indices, i.e., Axyx = Axxy , or by
swapping indices on both sides of an equality, e.g., x ↔ y. Thus,
given Axxy = n2

xny − (1/5)ny , swapping the indices y ↔ z yields
Axxz = n2

xnz − (1/5)nz.

A(1)
x = nx A(3)

xyz = nxnynz

A(2)
xx = n2

x − 1/3 A(4)
xxxx = n4

x − (6/7)n2
x + 3/35

A(2)
xy = nxny A(4)

xxxy = n3
xny − (3/7)nxny

A(3)
xxx = n3

x − (3/5)nx A(4)
xxyy = n2

xn
2
y − (1/7)n2

x − (1/7)n2
y + 1/35

A(3)
xxy = A(4)

xxyz = n2
xnynz − (1/7)nynz

n2
xny − (1/5)ny

In the case of α1 = α2 = . . . = α� = z in Eq. (47), both the
Cartesian component product n� and A(�) are invariant with
respect to rotations around the z axis. For invariance, both
functions must be a superposition of m′ = 0 tesseral harmonics
only. It follows then that A(�)

z...z must be proportional to Y�0

or P�. Since the action of the projection operator P leaves
the highest rank terms unchanged, the coefficient for P� in
A(�) must be the same as in n�. Accordingly, the respective
Cartesian harmonics are given by

A(�)
zz...z(�) = �!

(2� − 1)!!
P�(cos θ ). (49)

Starting with the first equality in Eq. (38), we are now
in position to produce a completeness relation in terms of
the Cartesian harmonics. Thus, if n′ is directed along the
z axis in Eq. (38), we can express, given Eq. (49), the
Legendre polynomial in the middle term in Eq. (38) as
[(2� − 1)!!/�!](n′�)�A. When rotating n′ and n, to move n′
away from the alignment with the z axis, the scalar product
of the tensors transforms covariantly, allowing us to obtain
different general representations for the δ function in spherical
angle in terms of the Cartesian harmonics:

δ(� − �′) = 1

4π

∑
�

(2� + 1)P�(n · n′)

= 1

4π

∑
�

(2� + 1)!!

�!

∑
α1...α�

n′
α1

. . . n′
α�
A(�)

α1...α�
(�)

= 1

4π

∑
�

(2� + 1)!!

�!

∑
α1...α�

A(�)
α1...α�

(�′)A(�)
α1...α�

(�)

= 1

4π

∑
��

(2� + 1)!!

�x!�y!�z!
A��(�′)A��(�)

= 1

4π

∑
��

(2� + 1)!!

�x!�y!�z!
A��(�′)n�x

x n
�y

y n�z

z . (50)

In obtaining the third equality in Eq. (50) and later, we use the
projection properties of the operator P:

(n′�)�A = (n′�)�PA = (Pn′�)�A = (A′)�A. (51)

Use of Eq. (50) in the identity (39) allows functions of
the spherical angle to be expressed as a sum of Cartesian
harmonics, such as in Eq. (8). Independent of the orientation of
the coordinate axes, the coefficients of expansion in Cartesian

harmonics, such as in Eq. (9), transform as components of
a Cartesian tensor under rotations. As the tensor is traceless,
only (2� + 1) coefficients are independent within each rank �.

C. Operations with Cartesian harmonics

When given some specific expansion coefficients in terms
of Cartesian harmonics, it may be of interest to calculate
the associated Cartesian moments. To facilitate that, it is
useful to express products of Cartesian components in terms
of Cartesian harmonics, which can be done [25] through
recursion starting from Eq. (7), obtaining

n�x

x n
�y

y n�z

z =
∑

�m
0� mi� �i /2

(2� − 4m + 1)!!

2m(2� − 2m + 1)!!

�x!

(�x − 2mx)!mx!

× �y!

(�y − 2my)!my!

�z!

(�z − 2mz)!mz!
A��−2 �m(�).

(52)

The rank of A within each Cartesian component on the
right-hand side is equal to or lower than the power of the
corresponding Cartesian component on the left-hand side.
From Eqs. (52) and (9), we find∫

d3rS(r)x�x y�y z�z

= 4π�!

(2� + 1)!!

∑
�m

0�mi� �i /2

(2� − 4m + 1)!!

2m(2� − 2m + 1)!!

× �x!

(�x − 2mx)!mx!

�y!

(�y − 2my)!my!

�z!

(�z − 2mz)!mz!

×
∫ ∞

0
drr�+2S��−2 �m(r), (53)

which allows the moments to be obtained from Cartesian
harmonic coefficients.

As combinations of tesseral harmonics of different rank �,
the Cartesian harmonics of different rank are orthogonal to one
another. Due to different behavior under inversion, see Eq. (7),
two Cartesian harmonics are further orthogonal if any pair of
their �i subscripts differs by an odd number. Otherwise, the
scalar product of harmonics is given by [26]

〈��|��′〉 ≡
∫

d�

4π
A��A��′ = 1

(2� + 1)!!(2� − 1)!!

×
∑

�m
max (0,(�′

i
−�i )/2)� mi

mi� min (�′
i
−�i /2,�i /2)

(
−1

2

)m

m!(2� − 2m − 1)!!

×
∏

i=x,y,z

�i!�′
i!

((�′
i − �i)/2 + mi)!(�i − 2mi)!mi!

. (54)

The anticipated symmetry between �� and ��′ on the right-hand
side of Eq. (54) may be seen by eliminating mi in favor of
m′

i = mi + (�i − �′
i)/2.

Cartesian expansion coefficients may be converted into
tesseral expansion coefficients and vice versa. In terms of
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Cartesian harmonics, the m � 0 tesseral harmonics are given
by [26]

Y�m(�) = (−1)m(2� − 1)!!

[
2� + 1

4π (� + m)!(� − m)!

]1/2

×
m∑

k=0

im−k m!

(m − k)!k!
A[k,m−k,�−m](�). (55)

The Cartesian harmonics may be, on the other hand, expressed
as

A��(�) =
�∑

m=−�

(
am

��
)∗

Y�m(�), (56)

where [26] for m � 0,

am
�� = (−1)m(2� − 1)!!

[
2� + 1

4π (� + m)!(� − m)!

]1/2

×
m∑

k=0

im−k m!

(m − k)!k!
〈��|[k,m − k, � − m]〉, (57)

the overlap integral 〈·|·〉 is given in Eq. (54), and a−m
�� =

(−1)m
(
am

��
)∗

. Formulas for conversion between tesseral and
Cartesian harmonics for � � 4 are given in Table II.

Many circumstances require multiplication or division of
the functions of spherical angle. For example, the empirical
correlation function C = 1 + R, as a function of spherical
angle at a given P and q, follows from an equation of the form

X(�) = C(�)B(�), (58)

where the left-hand side represents the measured two-particle
yield, X(�) ≡ d6Nab

d3pad3pb
, cf. Eq. (1), while B on the right-

hand side is the product of single-particle yields, dNa

d3pa

dNb

d3pb
,

and possibly of two-particle efficiency. To find C(�), one could
bin the three functions in two dimensions of cos θ and φ and
obtain C within each bin by dividing the value of X in the bin
by the value of B in the bin. However, if one next wanted to
expand C in Cartesian harmonics, the result could be distorted
by residual binning effects, which would disappear in the limit
of fine binning but could only be afforded for high statistics. An
alternative approach is to explicitly solve for the coefficients
C�� given X�� and B��. With this, one could forego the binning in
cos θ and φ. For instance, when assessing X and identifying a
particle pair at an angle �, one could increment values in an
array for X�� by [(2� + 1)!!/�!]A��(�), as described by Eq. (9).
One could then carry out an analogous procedure for the mixed
pairs, filtering them through two-particle efficiency. In this
way, both X�� and B�� could be obtained in a straightforward
fashion, without any binning in cos θ and φ.

Though the determination of X�� and B�� could be straight-
forward, the determination of C�� can be more difficult. Here,
we outline one possible procedure based on the expansion (8)
of the functions in powers of q̂. If we introduce

γ (��) = �!

�x!�y!�z!
, (59)

we can write

X(q̂) =
∑

��
γ (��)X��q̂

�x

x q̂
�y

y q̂�z

z

=
∑

��

∑
��′

0� �′
i
� �i

γ (�� − ��′)γ (��′)B��−��′C��′ q̂
�x

x q̂
�y

y q̂�z

z . (60)

If the condition of tracelessness for C̄�� is lifted, the solution to
Eq. (60) ceases to be unique, because q̂i are not independent
due to the constraint q̂2

x + q̂2
y + q̂2

z = 1. We will first find
a solution to Eq. (60) without imposing the tracelessness
condition, which will provide us with C(�) from which we
can next find the traceless C��.

The simplest strategy in finding a solution to Eq. (60) is
to treat the components q̂i as if they were independent. If we
denote the solution by C̄��, we obtain

γ (��)X�� =
∑

��′
0� �′

i
� �i

γ (�� − ��′)γ (��′)B��−��′C̄��′ , (61)

which may be solved for C̄�� iteratively. The � = 0 term follows
right away,

C̄0 = X0

B0
, (62)

while the subsequent coefficients follow from

C̄�� = X��
B��

− 1

γ (��)B��

∑
��′

�′� �−1
0� �′

i
� �i

γ (�� − ��′)γ (��′)B��−��′C̄��′ . (63)

The combination of

C(�) =
∑

��
γ (��)C̄��q̂

�x

x q̂
�y

y q̂�z

z , (64)

and of Eq. (9) next yields for the traceless coefficients

C�� = (2� + 1)!!

�!

∫
d�

4π
A��(�)C(�)

= (2� + 1)!!

�!

∑
�m

γ (�� + 2 �m)〈��|�� + 2 �m]C̄��+2 �m, (65)

with

〈��|��′] ≡
∫

d�

4π
A��(�)n̂

�′
x

x n̂
�′
y

y n̂
�′
z

z = (2� + 1)!!

(� + �′ + 1)!!

×
∑

�m
0�mi� �′/2
m=(�′−�)/2

1

2m

�′
x!

(�′
x − 2mx)!mx!

�′
y!

(�′
y − 2my)!my!

× �′
z!

(�′
z − 2mz)!mz!

〈��|��′ − 2 �m〉, (66)

where in the second equality, we made use of the expansion
(52) for the product of direction vector components.

In practical circumstances, the sums over � must be cut off
at some �max. This is because, on one hand, the experimental
apparatus and the statistics limit the angular resolution and,
on the other, the features of a reaction limit the number of
� for which C�� may be significant. Exceeding a sensible
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TABLE II. Transformation equations between Cartesian and tesseral harmonics for � � 4.

Y10 = (1/2)
√

3/πA(1)
z

Y1±1 = −(i/2)
√

3/2πA(1)
y ∓ (1/2)

√
3/2πA(1)

x

Y20 = (3/4)
√

5/πA(2)
zz

Y2±1 = −(i/2)
√

15/2πA(2)
yz ∓ (1/2)

√
15/2πA(2)

xz

Y2±2 = −(1/4)
√

15/2πA(2)
yy ± (i/2)

√
15/2πA(2)

xy + (1/4)
√

15/2πA(2)
xx

Y30 = (5/4)
√

7/πA(3)
zzz

Y3±1 = −(5i/8)
√

21/πA(3)
yzz ∓ (5/8)

√
21/πA(3)

xzz

Y3±2 = −(1/4)
√

105/2πA(3)
yyz ± (i/2)

√
105/2πA(3)

xyz + (1/4)
√

105/2πA(3)
xxz

Y3±3 = (i/8)
√

35/πA(3)
yyy ± (3/8)

√
35/πA(3)

xyy − (3i/8)
√

35/πA(3)
xxy ∓ (1/8)

√
35/πA(3)

xxx

Y40 = (105/16)
√

1/πA(4)
zzzz

Y4±1 = −(21i/8)
√

5/πA(4)
yzzz ∓ (21/8)

√
5/πA(4)

xzzz

Y4±2 = −(21/8)
√

5/2πA(4)
yyzz ± (21i/4)

√
5/2πA(4)

xyzz + (21/8)
√

5/2πA(4)
xxzz

Y4±3 = (3i/8)
√

35/πA(4)
yyyz ± (9/8)

√
35/πA(4)

xyyz − (9i/8)
√

35/πA(4)
xxyz ∓ (3/8)

√
35/πA(4)

xxxz

Y4±4 = (3/16)
√

35/2πA(4)
yyyy ∓ (3i/4)

√
35/2πA(4)

xyyy − (9/8)
√

35/2πA(4)
xxyy ± (3i/4)

√
35/2πA(4)

xxxy + (3/16)
√

35/2πA(4)
xxxx

A(1)
z = 2

√
π/3Y10

A(1)
y = i

√
2π/3Y11 + i

√
2π/3Y1−1

A(1)
x = −√

2π/3Y11 + √
2π/3Y1−1

A(2)
zz = (4/3)

√
π/5Y20

A(2)
yz = i

√
2π/15Y21 + i

√
2π/15Y2−1

A(2)
yy = −√

2π/15Y22 − (2/3)
√

π/5Y20 − √
2π/15Y2−2

A(2)
xz = −√

2π/15Y21 + √
2π/15Y2−1

A(2)
xy = −i

√
2π/15Y22 + i

√
2π/15Y2−2

A(2)
xx = √

2π/15Y22 − (2/3)
√

π/5Y20 + √
2π/15Y2−2

A(3)
zzz = (4/5)

√
π/7Y30

A(3)
yzz = (4i/5)

√
π/21Y31 + (4i/5)

√
π/21Y3−1

A(3)
yyz = −√

2π/105Y32 − (2/5)
√

π/7Y30 − √
2π/105Y3−2

A(3)
yyy = −i

√
π/35Y33 − (i/5)

√
3π/7Y31 − (i/5)

√
3π/7Y3−1 − i

√
π/35Y3−3

A(3)
xzz = −(4/5)

√
π/21Y31 + (4/5)

√
π/21Y3−1

A(3)
xyz = −i

√
2π/105Y32 + i

√
2π/105Y3−2

A(3)
xyy = √

π/35Y33 + (1/5)
√

π/21Y31 − (1/5)
√

π/21Y3−1 − √
π/35Y3−3

A(3)
xxz = √

2π/105Y32 − (2/5)
√

π/7Y30 + √
2π/105Y3−2

A(3)
xxy = i

√
π/35Y33 − (i/5)

√
π/21Y31 − (i/5)

√
π/21Y3−1 + i

√
π/35Y3−3

A(3)
xxx = −√

π/35Y33 + (1/5)
√

3π/7Y31 − (1/5)
√

3π/7Y3−1 + √
π/35Y3−3

A(4)
zzzz = (16/105)

√
πY40

A(4)
yzzz = (4i/21)

√
π/5Y41 + (4i/21)

√
π/5Y4−1

A(4)
yyzz = −(2/21)

√
2π/5Y42 − (8/105)

√
πY40 − (2/21)

√
2π/5Y4−2

A(4)
yyyz = −(i/3)

√
π/35Y43 − (i/7)

√
π/5Y41 − (i/7)

√
π/5Y4−1 − (i/3)

√
π/35Y4−3

A(4)
yyyy = (1/3)

√
2π/35Y44 + (2/21)

√
2π/5Y42 + (2/35)

√
πY40 + (2/21)

√
2π/5Y4−2 + (1/3)

√
2π/35Y4−4

A(4)
xzzz = −(4/21)

√
π/5Y41 + (4/21)

√
π/5Y4−1

A(4)
xyzz = −(2i/21)

√
2π/5Y42 + (2i/21)

√
2π/5Y4−2

A(4)
xyyz = (1/3)

√
π/35Y43 + (1/21)

√
π/5Y41 − (1/21)

√
π/5Y4−1 − (1/3)

√
π/35Y4−3

A(4)
xyyy = (i/3)

√
2π/35Y44 + (i/21)

√
2π/5Y42 − (i/21)

√
2π/5Y4−2 − (i/3)

√
2π/35Y4−4

A(4)
xxzz = (2/21)

√
2π/5Y42 − (8/105)

√
πY40 + (2/21)

√
2π/5Y4−2

A(4)
xxyz = (i/3)

√
π/35Y43 − (i/21)

√
π/5Y41 − (i/21)

√
π/5Y4−1 + (i/3)

√
π/35Y4−3

A(4)
xxyy = −(1/3)

√
2π/35Y44 + (2/105)

√
πY40 − (1/3)

√
2π/35Y4−4

A(4)
xxxz = −(1/3)

√
π/35Y43 + (1/7)

√
π/5Y41 − (1/7)

√
π/5Y4−1 + (1/3)

√
π/35Y4−3

A(4)
xxxy = −(i/3)

√
2π/35Y44 + (i/21)

√
2π/5Y42 − (i/21)

√
2π/5Y4−2 + (i/3)

√
2π/35Y4−4

A(4)
xxxx = (1/3)

√
2π/35Y44 − (2/21)

√
2π/5Y42 + (2/35)

√
πY40 − (2/21)

√
2π/5Y4−2 + (1/3)

√
2π/35Y4−4
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�max will result in coefficients dominated by noise. A likely
situation is that of a suitable value of �max higher for X,B,
and C̄ than for C. This is because the anisotropies associated
with measurement efficiencies, particularly at small q, can be
much stronger than physical anisotropies, especially when the
experiment is blind in certain directions. In the latter case,
the binning method would necessarily fail for small bins,
while the method relying on the �� decomposition from the
start could succeed when using large �max for X and B, as long
as only low � values were demanded of C.

Strategies similar to that employed for finding C in
Eq. (58) may be employed for finding the expansion coef-
ficients for an inverse of an angular function or for a product
of angular functions. In finding the inverse of B in terms of B��,
one would replace X(�) in Eq. (58) by 1, leading to X�� = δ�0

in Eqs. (62) and (63). On the other hand, in looking for the
product of B and C in terms of expansion coefficients, one can
first obtain the coefficients

X̄�� = 1

γ (��)

∑
��′

0� �′
i
� �i

γ (�� − ��′)γ (��′)B��−��′C��′ , (67)

which do not meet the condition of tracelessness. Next, one
can obtain traceless coefficients X�� following such a procedure
as for C in Eqs. (65)–(66). Obviously, that specific detracing
procedure is a form of application of the projection operator
P , described in the Appendix, to a symmetric tensor.

We have thus demonstrated some practical procedures for
dividing, inverting, and multiplying angular functions in terms
of �� arrays without resorting to binning of the functions in cos θ

or cos φ and without performing matrix inversion operations.

IV. PRACTICAL ASPECTS OF SHAPE ANALYSIS

The expansion of correlations and sources in tesseral
or Cartesian harmonics brings about practical benefits. The
three-dimensional dependencies on relative momentum and
spatial separation of the functions are replaced by sets of one-
dimensional dependencies of angular expansion coefficients.
The replacement of the three-dimensional by one-dimensional
dependencies principally allows a more thorough representa-
tion of the correlation data and of the physical picture of those
data’s implications. The three-dimensional integral relation
between the correlation function and source gets replaced
by a set of one-dimensional relations between the respective
expansion coefficients, simplifying the task of finding the
source features. The expansion coefficients for the functions,
as either spherical or Cartesian tensors, transform covariantly
under rotations.

Of the two sets of harmonic functions for expansion,
the tesseral set represents an orthonormal basis but leads to
coefficients which are complex and hard to interpret. On the
other hand, the Cartesian set is overcomplete and generally
nonorthogonal within any rank, but it yields real coefficients
with relatively straightforward interpretations. The transfor-
mation properties under rotations are more straightforward for
the Cartesian than for the tesseral coefficients. We have shown,

in the preceding section, how to transcribe results between the
two harmonic representations.

A. Shapes in terms of Cartesian harmonics

Along any direction of relative momentum or separation,
the correlation or source function is equal to combinations of
the Cartesian coefficients [Eq. (8)]. Particularly simple results
follow along any of the employed Cartesian axes; e.g., along
the positive direction for the x axis the correlation function is

R(q) = R(0)(q) + R(1)
x (q) + R(2)

xx (q) + R(3)
xxx(q) + · · · . (68)

Terms for subsequent � refine the information on the depen-
dence of the function on q, along the direction. As we have
mentioned, the physics on the one hand and statistics and
apparatus on the other will limit the number of significant
terms in the expansion, with the high-� terms being dominated
by noise [24].

For identical particles, the correlation function and accessed
emission source are invariant under inversion. In such a case,
the odd-� terms in the harmonic expansion vanish. That is
generally not the case for nonidentical particles. For instance,
if the protons in a reaction are, on the average, emitted earlier
than pions, the distributionS of pairs in rp − rπ will be pushed
out in the outward direction, away from 0. The three � = 1
Cartesian moments in Eq. (52), computed from S (1)

α , yield the
magnitude and precise direction of the average displacement of
the distribution. At individual r , the effects onto S of different
emission times and possibly different emission locations will
result in a dipole distortion representable in terms of magnitude
and direction as

S (1)
α (r) = S(1)(r)e(1)

α (r). (69)

In the above, the direction vector is e(1) = [sin θ (1)

cos φ(1), sin θ (1) sin φ(1), cos θ (1)]. Not only the magnitude of
the angular distortion but also the characteristic directions
of the distortion can depend on the relative distance. If
the distortion direction is independent of the distance, this
direction will be the same for the average displacement and
for the correlation at any relative momentum. The latter occurs
because the kernel K� is universal within a given rank, i.e., the
same for different tensor components. The � = 1 distortions
are behind the effects investigated by Gelderloos et al. [32] and
Lednicky et al. [33], who compared pair emission probabilities
for pairs with relative momenta directed along and opposite to
the pair total momentum. The advantage of using the Cartesian
harmonics is the ability to determine the distortion directions
in correlation, and the implication of those distortions for
source distortions, without any presumption regarding the
distortion direction when no possible symmetry arguments
can be invoked.

Quadratic moments of the emission source are associated
with the rank � = 2 and � = 0 expansion coefficients, cf.
Eq. (53), with the � = 2 rank giving rise to an anisotropy
of the tensor out of the moments 〈rα1rα2〉. A triaxial ellipsoid
could be associated with those moments, with Euler angles
describing rotation from the coordinate axes to the axes of
the ellipsoid, i.e., the axes along which the tensor of moments
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gets diagonalized. At any value of the corresponding relative
variable, for either the source or the correlation function,
the rank � = 2 symmetric and traceless tensor of expansion
coefficients may be diagonalized and described in terms of
five independent parameters, two distortions and three angles:

S (2)
α1α2

(r) = S
(2)
1 e

(2)
1α1

e
(2)
1α2

− (
S

(2)
1 + S

(2)
3

)
e

(2)
2α1

e
(2)
2α2

+ S
(2)
3 e

(2)
3α1

e
(2)
3α2

. (70)

The three eigenvectors e(2)
i in Eq. (70) form an orthonormal set.

Because of the tracelessness of S (2), the distortions associated
with the three directions add up to zero, S

(2)
2 = −(S(2)

1 + S
(2)
3 ).

In terms of the Euler angles �(2),�(2), and (2), for rotation
of unit vectors along coordinate axes to {e(2)

i }i=1,2,3, the
eigenvectors may be represented as

e1 = [cos  cos � − cos � sin  sin �, cos  sin �

+ cos � cos  sin �, sin  sin �],

e2 = [− sin  cos � − cos � sin  cos �,− sin  sin �

+ cos � cos  cos �, cos  sin �],

e3 = [sin � sin �,− sin � cos �, cos �], (71)

where the (2) superscripts are suppressed. Just as the distortion
values, the angles may depend on r . If the angles do not
depend on r , then those angles coincide with those for the
diagonalization of the tensor of quadratic moments 〈rα1rα2〉
and for the diagonalization of the quadrupole coefficients of
the correlation function at any q. The five independent param-
eters at any relative variable correspond to five independent
expansion coefficients for rank � = 2.

With regard to the higher, � > 2, shape distortions, one way
to associate the directions of axes with them is to choose one
direction, defined by e(�)

1 , by demanding that the distortion
along that direction, equal to

S(�)(�) =
∑

α1... α�

S (�)
α1... α�

e
(�)
1α1

. . . e
(�)
1α�

, (72)

is extremal, minimal or maximal [25]. Directing a coordinate
axis along e(�)

1 , makes the two S (�) coefficients, characterized
by �1 = � − 1, vanish. The next axis, defined by e(�)

2 , may
be chosen again as one extremizing the distortion, but now
within the direction plane perpendicular to e(�)

1 . When directing
the second coordinate axis along e(�)

2 and the third along the
direction perpendicular to the first two, we find that the choice
puts to zero the S (�) coefficient characterized by �1 = 0, �2 =
� − 1, and �3 = 1.

B. Harmonic decomposition vs fits in three dimensions

For a given total momentum, the correlation function
contains three-dimensional information pertinent to the three-
dimensional structure of the source function. Effectively, there
are three competing approaches for handling the information
in the correlation function. The first approach, most common
till now in literature, presents the data along chosen discrete
directions of relative momentum, typically one or three. The
second approach fits the data to a parametrized form, e.g.,

a three-dimensional Gaussian, in the full three-dimensional
space of relative momentum. When going beyond the simplest
parametrizations in this approach, it may be difficult to assess,
working in the three-dimensional space, which aspects of
the source parametrization affect which particular aspects
of the correlation. The third approach expands the data in
harmonic functions. A set of one-dimensional functions then
yields a complete representation of the three-dimensional
data. Upon decomposition, the deduction of source features is
reduced to a set of one-dimensional problems, with one-to-one
correspondence between the coefficients of the correlation and
the source. A specific coefficient of the source affects the
specific coefficient of the correlation function and no other
independent coefficients. Whether one advances the source
analysis as an inversion problem or as a problem of fitting,
it should be certainly preferable to divide and conquer, i.e.,
approach the issue as a set one-dimensional problems.

Spherical harmonic decompositions generally carry more
information than can be expressed with parameters of Gaus-
sian sources employed in the literature. The integrated nine
independent source coefficients S (�) for � � 2 fully determine
the moments 〈rα1rα2〉 and 〈rα〉, for all α indices, cf. Eq. (52).
Those moments and the integral of S(0), λ = 4π

∫
drr2S (0)(r),

determine all 10 parameters that can be set for a Gaussian
source such as discussed in Ref. [25] or in the next section.
However, the coefficients S (�) for � � 2 may have a different
dependence on r than those for a Gaussian source. In addition,
the � > 2 coefficients may further yield different characteristic
moments. When coordinate axes are directed along the
principal axes of the Gaussian quadrupole deformation, the
Gaussian moments, relative to Gaussian center, factorize:

〈(r1 − 〈r1〉)�1 (r2 − 〈r2〉)�2 (r3 − 〈r3〉)�3〉
= 〈(r1 − 〈r1〉)�1〉〈(r2 − 〈r2〉)�2〉〈(r3 − 〈r3〉)�3〉. (73)

For distinguishable particles in the midrapidity region of
symmetric ultrarelativistic collisions, the above implies that
〈routr

2
long〉 = 〈rout〉〈r2

long〉. The latter factorization will be vi-
olated, for instance, for boost-invariant particle emission,
such as discussed in Sec. V B. In the case of boost-invariant
emission, with a transverse expansion, the single-particle
sources acquire a boomerang-type shape, as particles at lower
positions along the beam axis get emitted locally earlier than
particles at higher positions. The violation of the factorization
above will become apparent if one, e.g., observes that the
boomerang shape will be preserved in the relative source
when one of the emitted particles is heavy (baryon) and the
other light (π meson). Features of a boomerang shape may
be quantified with the source expansion coefficients for � = 3,
which contribute to the moment 〈routr

2
long〉, cf. Eq. (52), which

may be compared to the product 〈rout〉〈r2
long〉 from � = 1 and

� = 2, besides � = 0.
With regard to the dependence of S (�) on r , several studies

have already focused on determining the non-Gaussian be-
havior of the angle-averaged source function, S (�=0)(r). With
regard to � � 1, significant values of S (�)(r) are principally
expected only where S (�=0)(r) begins to fall, i.e., around
the edges of the source; whereas at small r,S (�)(r) ∝ r�.
Concerning the low-r region, in the source-correlation relation,
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the convolution with kernelK� brings in a factor r2. That low-r
suppression generally reduces the impact of small-r S(�) on
the correlation, enhancing errors in the restored source and
making it likely difficult to detect any non-Gaussian features
there at � � 1. On the other hand, in the source tails at � � 1
in the source coefficients, the non-Gaussian behavior may
be actually enhanced compared to � = 0, both at low and
high reaction energies. For instance, long-lived slowly cooling
systems with emission rates falling off as exp(−t/τ ) should
give rise to relative sources with an exponential falloff along
the direction that the pair total momentum has in the frame of
the emitting system. For low �, strength of the exponential tail
should increase with (�) for distortion along the direction of
the total momentum, Eq. (72). In fact, looking for the maximal
distortion in source tail may help locate the emitting source
within the velocity space. In ultrarelativistic collisions, the
emission becomes boost invariant around the midrapidity. For a
freezing-out boost-invariant thermal source, the single-particle
distribution of emission points in the space-time, cf. Eq. (2),
has the form

s( p, r, t) ∼ δ(τ − τf )exp(−E⊥
√

1 + z2/τ 2/T ), (74)

where τ = √
t2 − z2 and z points along the beam axis. The

single-particle source above falls off exponentially with an
increase in |z| and so would the relative source with an increase
in |rlong|. This behavior should be particularly revealed in the
S[0,0,2k] coefficients of the relative source.

While it may be straightforward to compute the expansion
coefficients as convolutions of the correlation with different
harmonics, some caution should be exerted in selecting the
range of relative momentum q for the source investigation.
The caution is required because there exist other causes for
interparticle correlation than the final-state effects within a
two-particle system. At the mathematical level, those causes
can give rise to a q dependence of the source S, assumed to
be negligible in arriving at Eq. (1). The dependence might be
produced by a collective expansion of strength comparable
to or larger than the local thermal motion in the emitting
region. If the dependence is not explicitly corrected for, the
analysis for source restoration should be limited to the region
where the source q dependence is deemed weak. In the case
of the final-state effects due to resonances, short distances in
S are important, with the q dependence governed there by
local temperature at freeze-out, giving rise to the requirement
of q � √

2µT for the source analysis. This condition is
practically always satisfied for pp pairs whose correlation
function peaks at q ∼ 20 MeV/c. On the other hand, for pπ+
pairs in the region of � resonance at q ∼ 225 MeV/c, the
condition is practically never satisfied in nuclear reactions.
Correlations due to directed flow associated with the reaction
plane, such as elliptic and sideward flows, can be partially
accounted for by controlling the reaction plane in constructing
the denominator in Eq. (1). Otherwise, that type of correlation
tends to peak at q of the order of the mean p⊥ (i.e., a few
hundred MeV/c for p or π in energetic collisions), reaching
there values of the order of a few percent. By comparison,
Coulomb correlations fall off with increase of q, as 1/q2,
down to about 1% for pp typically at q ∼ 100 MeV/c. That

further underscores the need to limit the range of q in source
analysis. In ultrarelativistic collisions, jets are an additional
cause for interparticle correlations. The characteristic scale
for those correlations is of the order of several hundred MeV/c
and the magnitude of the order of 1% toward lower p⊥.
Overall, it is apparent that caution should be executed when
considering small values of the R, i.e., of the order of half
a percent or less. If conclusions are to hinge on such small
values, some supporting evidence should be provided to justify
the assumption that the correlation originates from final-state
interactions or symmetrization.

V. EXAMPLES OF EMISSION

Here, we provide examples of what may be expected in
reactions regarding harmonic characterization of emission
sources and correlation functions.

A. Gaussian sources

In the analyses of correlation functions, it is quite common
to aim at a Gaussian representation of the emission sources.
When cast in the Gaussian form, a source is expressed in
terms of a minimal number of parameters needed for shape
description.

Thus, a Gaussian source is generally described in terms
of nine parameters, of which three describe the position of
the source center d and six correspond to the independent
independent matrix elements of the symmetric positive shape
matrix M:

S(r)

= [det M]1/2

(4π )3/2
exp

{
−1

4

∑
α1α2

Mα1α2

(
rα1 − dα1

)(
rα2 − dα2

)}
.

(75)

A tenth parameter would describe the normalization of the
source, which could vary from unity if a significant fraction
of the pairs had effectively infinite separations due to weak
decays and were outside the description in terms of a single
Gaussian. For identical particles, the accessed relative source
must be symmetric under inversion, representing particle
interchange. In that case d = 0, leaving only six independent
shape parameters for the source.

The convenient choice for the shape parameters are three
Euler angles describing an orientation of the eigenvectors {ui}
of M and three Gaussian radii Ri in terms of which the matrix
is Mα1α2 = ∑

i(1/R2
i )uiα1 uiα2 . The specific factor of (1/4)

multiplying M and (1/R2) in Eq. (75) is associated with the
tradition of assigning the radii to the single-particle sources s

in Eq. (2). However, absolute positions in a reaction are not
observable; more appropriate for the description of relative
positions would be a factor of (1/2) yielding radii larger by
a factor of

√
2. When coordinate axes are oriented along the

Gaussian shape eigenvectors, the Gaussian shape takes the
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form

S(r) = 1

(4π )3/2RxRyRz

exp

{
− (x − dx)2

4R2
x

− (y − dy)2

4R2
y

− (z − dz)2

4R2
z

}
. (76)

The displacement d of the source for distinguishable
particles, relative to r = 0, is of interest in both intermediate-
and high-energy collisions [33,34]. For instance, at low energy,
it might be of interest whether neutron emission preceded
proton emission [35], producing a d in the direction of pair
total momentum, or whether intermediate-mass fragments
were emitted simultaneously with the protons [32]. At high
energy, one might look for evidence of strange particles leaving
early [36]. A simultaneous emission combined with radial
expansion should lead to heavy-particle emission shifted out
in the direction of expansion relative to light-particle emission
[37].

In many circumstances, the structure of anisotropies for
measured correlation functions and the corresponding struc-
ture for imaged sources simplify. Thus, if the reaction plane
is not identified, the measured correlation function and the
corresponding source must obey reflection symmetry with
respect to the plane formed by the pair total momentum
P and the beam axis. In the Gaussian representation, the
displacement vector d must lie within that plane and so
must two of the eigenvectors of the Gaussian shape matrix
M . In the midrapidity region of a symmetric system, the
correlation function and source must be moreover symmetric
with respect to forward-backward reflection. That makes the d
vector perpendicular to the beam axis and makes the in-plane
Gaussian-shape eigenvectors pointing along and perpendicular
to the beam axis [3].

The nine Gaussian parameters discussed above may be
related to the angular moments of both the source and
the correlation function. It may be tempting, in particular,
to associate the three independent � = 1 moments with
the displacement d and the five � = 2 moments with the
shape anisotropy of a Gaussian. However, the situation is
more involved. For illustration, one can consider an isotropic
Gaussian displaced in the x direction, that is,

S(r) = 1

(4π )3/2R3
exp

{
− (x − d)2 + y2 + z2

4R2

}

= 1

(4π )3/2R3
exp

{
− r2 + d2

4R2

}
exp

{
xd

2R2

}

= 1

(4π )3/2R3
exp

{
− r2 + d2

4R2

}
(77)

×
∞∑

�=0

(2� + 1)I�

(
rd

2R2

)
P� (nx)

= 1

(4π )3/2R3
exp

{
− r2 + d2

4R2

}

×
∞∑

�=0

(2� + 1)!!

�!
I�

(
rd

2R2

)
A(�)

xx... x(�).

Here, I� are the modified spherical Bessel functions of the
first kind. For small argument values of those functions, the
functions are proportional to the power of the argument,
I�(x) ∝ x�. Equation (77) illustrates that the source displace-
ment d produces nonzero angular moments for all � � 1
even when the Gaussian source is isotropic around its center.
Incidentally, in a similar manner, for d = 0, the anisotropy of
a Gaussian gives rise to nonzero angular moments for all even
� � 2, not just � = 2.

For a general displaced and anisotropic Gaussian, the
angular coefficients can be obtained, as a function of r , through
a direct angular integration. Otherwise, the power series for
an exponential may be employed, in combination with the
properties of spherical harmonics, to yield converging series
for the coefficients. Specifically, as the argument of a source
Gaussian is quadratic in coordinates, that argument can be
represented in terms of harmonics of rank � � 2, leading to

S(r) = c(r)e�(r), (78)

where

�(r) =
√

4π
∑

1� �� 2
m

�∗
�m(r)Y�m(�)

=
∑

��
1� �� 2

γ (��)���(r)n̂�x n̂�y n̂�z . (79)

The exponential e� may be next expanded in the power series,
yielding

S(r) =
∞∑

N=0

SN (r), (80)

where

SN (r) = SN−1(r)
�(r)

N
, (81)

and S0(r) = c(r). Individual terms of the sum in Eq. (80) may
be represented in terms of the surface spherical harmonics of
either type, leading to the corresponding expansion for the
source S. The rules of superposition for tesseral harmonics
yield the following recursion relation for the tesseral expansion
coefficients:

SN�m(r) =
√

4π

N

∑
�′�′′m′

(�′m′�′′(m − m′)|�m)��′m′ (r)

×S(N−1)�′′(m−m′)(r), (82)

where (·|·) represents a Clebsch-Gordan coefficient. It follows
that terms in the sum (80) decrease rapidly with N , for
N � max �m|��m(r)|. When aiming at the source in terms of
Cartesian harmonic coefficients, first the Cartesian coefficients
S̄N �� which do not meet the tracelessness condition are found
through recursion:

S̄N ��(r) = 1

Nγ (��)

∑
�m

γ ( �m)γ (�� − �m)� �m(r)S̄(N−1)(��− �m)(r).

(83)

In the next stage, the traceless coefficients SN �� are found
following such a procedure as in Eqs. (65)–(66). Finally, the
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coefficients for the source may be obtained by summing over
the respective series:

S�m(r) =
∞∑

N=0

SN�m(r), or S��(r) =
∞∑

N=0

SN ��(r), (84)

depending on whether the tesseral or Cartesian harmonics are
followed. Coefficients for Gaussian sources in this section have
been obtained following the recursion outlined above. Kernels
for use in Eqs. (4) and (10) have been obtained using [29]
known phase shifts.

To illustrate the possibility of measuring source shapes, we
consider a relative source represented by an axially symmetric
Gaussian oriented along the beam axis with parameters Rx =
Ry ≡ R⊥ = 4 fm and Rz = 8 fm. For distinguishable particles,
we additionally displace this Gaussian away from the origin
at r = 0 by d = (0, 0, 4) fm. Such a source may result in
consequence of emission of the individual species within two
single-particle sources differently elongated along the z axis,
with the source for the a species displaced by d along the z axis
relative to the source for the b species. For the chosen relative
source, the anisotropies of associated correlation functions can
be quite significant. Examples of the associated correlations,
for different particle pairs, pK+, pπ+, pp, pn, nn, and p�,
are presented in Fig. 5 as a function of cos θq at fixed q. The
observed angular dependence of the functions is exclusively

FIG. 5. (Color online) Correlations associated with a relative
source in the form of an axially symmetric Gaussian, characterized by
Rx = Ry = 4 fm and Rz = 8 fm, for different indicated particle pairs.
For distinguishable particle pairs, the center of this Gaussian is shifted
by d = (0, 0, 4) fm relative to the origin at r = 0. The correlations are
shown as a function of cosine of the angle that the relative momentum
q makes with the z axis, for two values of momentum magnitude
q = 25 and 55 MeV/c. For the specific employed source, angular
anisotropies in the correlation functions are of the same order as the
functions.

due to the source anisotropy. While the correlations are
stronger at low than at high q, the correlations and their
anisotropies are generally of the same order. In the dependence
of correlations on cos θq , for distinguishable particles, one
recognizes both odd and even components in cos θq . The
odd components are associated with the displacement d in
the source, while the even are associated with both the
displacement d and R⊥ �= Rz. In the correlations of identical
particles, only the effects of R⊥ �= Rz are present.

With the choice of axial symmetry for the specific source,
all Cartesian components with odd number or x or y

indices vanish. For identical particles, this further implies
vanishing of Cartesian components with odd number of
z indices, since there are no indices left to pair them
with to yield a net even index number. For distinguish-
able particles at � � 3, the only nonvanishing moments
are S (0),S (1)

z ,S (2)
xx ,S (2)

yy ,S (2)
zz ,S (3)

xxz,S (3)
yyz, and S (3)

zzz. Not all of
those moments are independent, as S (2)

xx = −(S (2)
yy + S (2)

zz ) and
S (3)

xxz = −(S (3)
yyz + S (3)

zzz), in consequence of the tensor traceless-
ness. In addition, the axial symmetry implies equality between
components: S (2)

xx = S (2)
yy and S (3)

xxz = S (3)
yyz. The left panels of

Fig. 6 show the � � 3 Cartesian coefficients of correlations
for proton-charged meson pairs. Those coefficients which

FIG. 6. (Color online) Angular coefficients of the correlations
associated with an axially symmetric Gaussian source characterized
by Rx = Ry = 4 fm and Rz = 8 fm, for proton-charged meson
pairs (symbols in the left panels) and baryon-baryon pairs (symbols
in the right panels), as a function of relative momentum q. For
distinguishable particle pairs, the center of the Gaussian source is
shifted by d = (0, 0, 4) fm relative to the origin at r = 0. The pK+

and pπ+ correlations in the left panels tend to be dominated by the
Coulomb interaction. To illustrate the degree to which quantal effects
wash out the information on emission source, the left panels show also
(solid lines) the pK+ correlations in the limit of classical Coulomb
interactions.
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are not shown are easily generated from those shown, e.g.,
S (2)

xx = −S (2)
zz /2, etc.

The correlations of protons with charged mesons in Fig. 6
are plotted for q < 80 MeV/c. Within that momentum range,
the correlation should be dominated by Coulomb effects. For
comparison purposes, also shown in the figure are the pK+
correlations expected in the classical limit of the Coulomb
interactions. As expected following the discussions in
Sec. II, the quantum effects seriously affect the correlations at
qR <∼ � + 1

2 , dampening out in that region the classical
structures and hampering thus practical extraction of source
shape information. With a smaller reduced mass in the pπ+
than in the pK+ system, the classical Coulomb hole has a
smaller q size in the pπ+ system. In consequence, the quantal
effects have a stronger impact on the features of the pπ+
correlations, making the extraction of source shape harder
from the pπ+ than from the pK+ correlations.

Although difficult, it is certainly tenable to measure
correlations of the order of 1% or less. To exhibit better the
correlations at large q, Fig. 7 displays the same proton-charged
meson correlations as those shown in Fig. 6, but they are now
weighted by q2. It is apparent that the correlations decrease as
� increases. An important feature of the exhibited correlations
is that they are smooth in q for all �. Because of this smooth
behavior, it is possible to analyze those correlations utilizing
wide momentum bins. The phase space increasing as q2 should
further help one to garner statistics needed for analyzing the
correlations at the level of 1% or less. The practical limitation
for the analysis at large q, though, may turn out to be the need
to separate the correlations due to final-state effects within

FIG. 7. (Color online) Same proton-charged meson correlation
coefficients as in Fig. 6, but now multiplied by the factor of q2 to
better exhibit the features of the correlations at large q.

the pair from the possible competing correlations induced by
collective flow and, at RHIC, by jets.

Correlations of elementary baryons are good candidates for
source analyses because of the large scattering lengths within
the pairs which lead to strong correlation structures on the
relative-momentum scale of q ∼ 20 MeV/c. The right-side
panels of Fig. 6 display the correlations for pn, nn, pp, and
p� pairs, associated with the Gaussian sources. When present,
the � � 1 baryon-baryon correlations tend to be significantly
stronger at most momenta of experimental interest than the cor-
responding Coulomb-dominated meson-baryon correlations.
The odd correlation moments vanish for the pp and nn pairs as
the pair sources and correlations are symmetric under particle
interchange. The odd-� correlations are especially important
for the pn pairs emitted from intermediate-energy heavy ion
collisions, because these correlations tie to the issue of whether
neutrons are emitted earlier than protons and, further, to the
symmetry energy. Within high-energy collisions, odd-� p�

correlations are of interest as they can provide information on
whether the hyperons leave earlier than protons.

B. Boost-invariant blast-wave sources

Results of early pion-pion correlation measurements at
RHIC have been satisfactorily described with fits within the
blast-wave models [37,38]. Those fits have suggested a nearly
instantaneous emission, directly contradicting the formation
of a long-lived mixed phase which would have resulted in a
dilatory emission and in relative sources with sizes extended
in the outward direction of the pair total momentum. Given the
importance of those measurements and findings, it is important
to verify the conclusions on the nature of particle emission at
RHIC by extracting sources from the correlations of other pairs
such as involving kaons or protons. The minimal blast-wave
model used here for illustration employs four parameters
describing the single-particle sources that are boost invariant
along the beam axis:

s( p, r, t)

×∝ δ(τ − τf )θ (rmax − r⊥)m⊥ cosh (y − η) exp

(
−pµuµ

T

)
.

(85)

Here, y and η are, respectively, energy-momentum and
space-time longitudinal rapidities. The emission is assumed
to occur at one proper time τf = 10 fm/c. The decoupling
is assumed to be spread out over the cylindrical volume
of radius rmax = 13 fm and to take place in the presence
of a collective motion characterized by transverse rapidity
ρ (u⊥ = sin ρ) proportional to transverse position, ρ ∝ r⊥,
producing the maximal transverse velocity in the longitudinal
center of mass of vmax

⊥ = tanh ρmax = 0.75c, at r⊥ = rmax . The
breakup temperature is assumed to be T = 105 MeV/c. The
chosen parameters describe [37] particle spectra at p⊥ < 1
GeV/c, as well as basic aspects of pion-pion correlations, in
Au+Au collisions at

√
sNN = 130 GeV. Here, our goal is

not to fit data but to use the blast-wave model to see what
results might be expected for correlations of other particle
pairs analyzed in terms of R(�)(q).
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FIG. 8. (Color online) Angular Cartesian coefficients at �� 3,
multiplied by 4πr2, of relative sources for pK+ (left) and pπ+

(right) pairs moving out at transverse velocity of 0.6c relative
to the beam axis. Symbols represent the results obtained in the
blast-wave model. Lines represent the results from a Gaussian source
with the same pair c.m. Cartesian moments, 〈ri〉 and 〈rirj 〉, as
the blast-wave source. The non-Gaussian features of a blast-wave
source become more apparent as the mass difference within a pair
increases.

We focus on correlations of nonidentical particles because
of the possibility for associated finite odd angular moments.
The � � 3 relative-source moments for the pK and pπ pairs
moving at transverse velocity of v⊥ = 0.6c are shown in
Fig. 8. To obtain the displayed results, emission positions ra,b

for each of the particles a and b were generated within the
particle rest frame following the blast-wave description. After
several thousand points were generated, the number of relative
positions ra − rb for the relative source became of the order
of a few million, sufficient for finding quite smooth source
moments, except at the lowest |ra − rb|. We associate the
z-axis direction with the beam axis and the x-axis direction
with the outward direction along the pair momentum. The
angular moments for the blast-wave model are compared in
Fig. 8 to the moments for a Gaussian source with the same
Cartesian moments, 〈x〉, 〈x2〉, 〈y2〉, and 〈z2〉, as the blast-wave
relative source.

As elsewhere, values for the underlying three-dimensional
source structure can be restored along any direction from the

Cartesian coefficients, in particular from those displayed in
Fig. 8, exploiting tracelessness. Thus, e.g., along the x axis the
source values are

S = S (0) ±S (1)
x + 1

2

(
S(2)

xx − S(2)
yy

) − 1
2S(2)

zz ∓ S(3)
xyy ∓ S(3)

xzz + . . . ,

(86)

where the upper and lower signs refer to the positive and
negative directions along the axis. Within the xy plane, at 45◦
to the x axis, the source values are

S = S (0) ± 1√
2
S (1)

x − 1

2
S(2)

zz ∓ 1

2
√

2
S(3)

xzz + · · · , (87)

with the upper signs again referring to the positive direction
along the x axis.

Within the blast-wave model, the heavier particles end up
being emitted farther out, on the average, along the outward
direction, than the lighter particles. This is due to the following.
In an infinite system with Hubble expansion, a particle with
a given velocity would be, on the average, emitted from a
spatial patch centered around the point with the collective
velocity matching the particle velocity. The size of such an
emission patch would depend on the particle mass, with the
patch being tighter for heavier particles with lower thermal
velocities and being more extended for lighter particles.
Relative to the infinite system, however, in a system with a
finite transverse extension, the outer portions of the emission
patches would get cut off and more so for the light than
for heavy particles, forcing the emission region of the light
particles inward relative to the heavy ones. In the past, relative
displacements of emission between particles of different mass,
e.g., Kπ , have been accessed by comparing the correlations at
opposite signs of outward momentum, qout > 0 and qout < 0,
at low values of the remaining q components [39,40]. Such a
strategy discards potentially useful information on the relative
displacement in the remainder of the relative momentum space.
The displacement of species within a pair is visible in Fig. 8 in
the finite values of S (1)

x . With the mass difference being larger
within the pπ than the pK pairs, the S (1)

x coefficients peak
farther out and reach significantly higher values for the pπ

than the pK pairs.
Some other features of blast-wave sources become apparent

in the context of comparisons with Gaussian sources. When
making such a comparison, a few points need to be kept in
mind. In an infinite system with a Hubble-like expansion along
the longitudinal direction, the associated relative source should
fall off exponentially at large r in the longitudinal direction,
rather than falling in a Gaussian fashion; see, e.g., Eq. (74). On
the other hand, when the emission within a model is confined
to a finite transverse domain, the source function should fall
off more sharply in the transverse directions, especially in the
sideward direction which is less affected by decays. For our
comparison, we chose the parameters of the Gaussian source
to match the norm and 〈ri〉 and 〈rirj 〉 of the blast-wave source.
Given Eq. (53), this means that the � � 2 integrals of r�+2S (�)(r)
for the Gaussian are made to match those for the blast
wave.

When comparing the blast-wave and Gaussian source
coefficients in Fig. 8, we can see that the agreement between
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them generally worsens as � increases, and it is worse for pπ

than for pK pairs. These tendencies are to an extent associated
with the source tails. Since the emission region is wider in the
case of pions than kaons, the larger-scale geometry of the
emitting region is explored more stringently in the case of
pions. In addition, the pions become relativistic at lower pt

than do kaons. The finite transverse extension of the emission
zone most strongly suppresses the tail of the relative source
in the negative x direction. In terms of angular coefficients,
this suppression generally results in a large enhancement of
the high-� blast-wave coefficients at high r , compared with
the Gaussian coefficients. This enhancement is particularly
visible for the pπ pairs. The one case in Fig. 8 where the
pπ S (2)

zz is smaller in magnitude for the blast-wave than the
Gaussian source is associated with the change in sign for that
coefficient. The change in sign is itself associated with the
trimming of the relative source by extension of the emitting
region, present in the x and y directions, but absent in the z

direction. Further sign changes are seen for the blast-wave
� = 3 coefficients, while there are no such changes for
the corresponding Gaussian coefficients. These sign changes
reflect the more complex nature of the blast-wave sources of a
crescent-like shape in the xy and xz directions. The latter shape
results from the relativistically noninstantaneous nature of the
boost-invariant blast-wave emission, mentioned already in the
preceding section. Coded in the S (3)

xyy and S (3)
xzz coefficients,

cf. Eq. (53), are the violations of the factorizations which
hold for the Gaussian source: 〈xy2〉 = 〈x〉〈y2〉 and 〈xz2〉 =
〈x〉〈z2〉. These violations result in significant differences
between the � = 3 coefficients for the Gaussian and blast
wave.

Regarding the examples of source coefficients in Fig. 8,
it is important to note that while the � = 0 coefficients have
most of their strength within the 5–15 fm region of separation,
the � � 1 coefficients have most of their strength within the
7–25 fm region. The fact that the source anisotropies are most
pronounced at large r , combined with the difference in falloff
for strong and Coulomb kernels of 1/r2 vs 1/r , allows the
Coulomb-induced correlations to compete effectively with the
correlations induced by strong interactions in providing access
to the source anisotropies.

Figure 9 displays the proton-charged meson correlations
calculated by convoluting the source functions illustrated in
Fig. 8 with the respective kernels. The utilized pK+ and
pπ+ kernels have been obtained accounting both for the
Coulomb as well as the strong interactions [29]. Relative
magnitudes of discrepancies between the blast wave and
Gaussian are similar for the corresponding correlation and
source coefficients. The level of difficulty in accessing the
shape information may be assessed in Fig. 9 by examining the
absolute magnitudes of coefficients for the different � values.
For � = 1, the magnitude is of the order of a few percent,
which should be observable with statistics characteristic for
the past correlation measurements. For � � 2, the magnitude
is of the order of 1% and less. Particularly well suited
for investigating the high-� correlations should be the high-
statistics data from the 2004 run at RHIC. Eventually, the reach
of the analysis may be limited by systematics rather than by
statistics.

FIG. 9. (Color online) Cartesian coefficients for the correlations
of pK+ (left) and pπ+ (right) pairs moving out at transverse velocity
of 0.6c relative to the beam axis. Symbols represent the results
obtained in the blast-wave model, while lines represent the results
from a Gaussian source with the same pair c.m. Cartesian moments,
〈ri〉 and 〈rirj 〉, as the blast-wave source. The corresponding Cartesian
source coefficients have been represented in Fig. 8. As in Fig. 8,
differences between the blast-wave and Gaussian results are more
pronounced for the pπ+ than for pK+ pairs.

VI. SUMMARY

Correlation measurements are a crucial tool for under-
standing the dynamics of central nuclear reactions. One of
the forefront tasks of a correlation analysis is to decipher the
mire of RHIC data. Without carrying out a multidimensional
correlation analysis, there is little chance for a detailed
understanding of the impact of dynamics on correlations
in those reactions or for understanding the role played by
the equation of state. To date, correlation analyses at RHIC
have focused on identical pions. In identical-pion correlations,
strong interactions play little role. In the analyses to date,
Coulomb interactions have been normally corrected for in a
shape-independent manner, leaving off correlations induced
by identical-particle interference. The latter are related to
the source through Fourier transformation allowing for easy
modeling with specific sources such as Gaussian. The de-
composition of correlations in terms of Cartesian coefficients
offers an alternative way of carrying out a multidimensional
correlation analysis for identical pion pairs and it provides the
possibility for carrying out multidimensional analysis for other
classes of final-state effects.

One of the benefits of decomposing information with
angular harmonics is that the correlations induced by Coulomb
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and strong interactions carry, on their own, some shape
information that can be exploited in the correlation analysis.
The representation of the correlations in terms of the Cartesian
or tesseral coefficients carries the full three-dimensional
information in terms of a set of one-dimensional functions.
Data represented in this fashion can be then be compared with
models visually, one harmonic at a time, providing the means
to better identify which shape characteristics of the data are
being described by the model.

The ability to discern information about source shapes
from correlation measurements depends on the structure of
the kernels, K�(q, r), for different spherical ranks �. In Sec. II,
we demonstrated that the identical-particle interference,
Coulomb interactions, and strong interactions all produce
effective kernels. The resolving power of Coulomb interactions
was shown to rise with mass and charge within the interacting
pair. Strong interactions are most effective in the resonance
region and, otherwise, for large cross sections. Even purely
s-wave interactions can produce kernels of good resolving
power at higher �.

While expansions employing tesseral harmonics nominally
provide means that are as powerful for storing information in
correlation functions as those employing Cartesian harmonics,
the basis is not as transparent or as intuitive. Cartesian
harmonics have a variety of useful properties which can be
exploited in manipulating the angular information, as was
shown in Sec. III. The connection between specific aspects
of the source geometry and specific angular moments has
been emphasized in Sec. IV. It has been pointed out that
the average relative displacement of emission points in the
c.m. frame of nonidentical particles can be assessed through
the � = 1 angular moments. The quadrupole distortion, most
commonly quantified in terms of the radii Rout, Rside, and Rlong,
can be studied with the � = 2 moments. The � = 3 moments
test the more complex aspects of sources such as boomerang
features.

Detailed examples of sources and correlations have been
presented in Sec. V. Using Gaussian sources, it has been, in
particular, demonstrated that the pK+ and pπ+ correlations
can realistically be expected to provide shape information on
emission sources. The strengths of correlations characterizing
shape anisotropies can reach the magnitude of a few percent.
While the upcoming RHIC data sets will provide sufficient
statistics to assess correlations between different particles at
the level of 1% or better, the true challenge may turn out to
be the subtraction of competing correlations, such as those
produced by jets. The proton-charged meson correlations are
dominated by Coulomb interactions. The strong interactions in
baryon-baryon systems, though, can also provide good means
for discerning shape anisotropies at low relative momenta,
yielding correlations of the same order or larger than the
proton-meson correlations. One common feature of all pairs
and sources examined here is that the variation of the
correlation with angle is comparable in magnitude to the angle-
integrated correlation. Consequently, if one has sufficient
statistics to measure a one-dimensional correlation, only a
modest enhancement in statistics would suffice to find, or
constrain in a meaningful manner, the higher angular moments.
In the context of the blast-wave sources, opportunities for

detecting more complex shapes have been discussed, such as
boomerang shapes.

In conclusion, a treasure trove of potential information lies
largely ignored in the huge volumes of data from high-energy
collisions. This information can address what is the perhaps the
greatest surprise of the first several years of RHIC experiments,
the source sizes and shapes inferred from identical-pion
correlations. The main difficulty with the proposed new class
of correlation analyses is that they rely on observables that
are quantitatively small, of the order of a percent. This will
require a careful analysis of competing correlations from jets
and collective flow, but we believe that the objectives will
indeed prove feasible.
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APPENDIX: PROJECTION OPERATOR P

In arriving at the Cartesian harmonics, an important role
has been played by the Cartesian projection operator P which
projects out the symmetric traceless portion of any Cartesian
tensor. As a projection operator, P must have the following
properties:

P (�:�)
α1...α�:α′

1...α
′
�
= P (�:�)

α′
1...α

′
�:α1...α�

, (A1)

P (�:�)
α1... α�:α′

1... α
′
�
=

∑
α′′

1 ... α′′
�

P (�:�)
α1... α�:α′′

1 ... α′′
�
P (�:�)

α′′
1 ... α′′

� :α′
1... α

′
�
. (A2)

The projection operator acting on any tensor T must yield a
traceless resultPT . Since we can choose, in particular, a tensor
that is finite for any single set of indices and zero otherwise,
we find that the operator P itself must be traceless:∑

α

P (�:�)
α1... α�−2αα:α′

1... α
′
�
=

∑
α

P (�:�)
α1... α�:α′

1... α
′
�−2αα

= 0. (A3)

We shall demonstrate existence of the operator P by con-
struction. Notably, when acting onto a symmetrized traceless
tensor, the operator must reproduce the tensor. Thus, we can
represent P as

P (�:�)
α1... α�:α′

1... α
′
�
= S

(�:�)
α1... α�:α′

1... α
′
�
+ �P (�:�)

α1... α�:α′
1... α

′
�
, (A4)

or, in shortened notation,

P (�:�) = S(�:�) + �P (�:�), (A5)

where S is the symmetrized identity operator

S
(�:�)
α1... α�:α′

1... α
′
�
= 1

�!

∑
σ∈�(�)

δασ (1)α
′
1
. . . δασ (�)α

′
�
, (A6)

and �P is an operator which yields a zero when acting upon
a traceless tensor. In Eq. (A6), the sum is over permutations
of � indices. Importantly, a traceless symmetric tensor of rank
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(a)

(c) (d) (e)

(b)

FIG. 10. Diagrams illustrating the construction of the projection
operator P (�:�), using the lower-rank operator P (�−1:�−1), represented
by the rectangular block, and δ symbols, represented by lines.
(a) Leading term IP (�:�), Eq. (A8). (b) Terms resulting from evaluating
the trace of IP (�:�); terms in left diagram yield zero due to the traceless-
ness of P (�−1:�−1). (c) IIP (�:�) and IIIP (�:�) terms within the construct of
Eqs. (A9) and (A10), respectively. (d) Nonvanishing terms from
evaluating the trace of IIIP . (e) Final IVP (�:�) term within the construct
Eq. (A11).

�′ is traceless and symmetric within any subset � < �′ of its
indices. When acting on any of � indices of a rank-�′, �′ > �,
traceless tensor, the constructed operator P (�:�) will reproduce
that tensor and �P (�:�) alone will annihilate it.

In our construction of P , we will find useful a graphical
method similar to that employed for interactions [41]. Within
the method, the Kronecker δαα′ is represented as a line
joining the indices α and α′. A convolution of δ symbols∑

α1...αn
δαα1δα1α2 . . . δαnα′ = δαα′ is represented by joining the

line segments, which produces a single line from α to α′. A
line which closes on itself represents a scalar factor which is
the trace of the δ symbol, equal to the dimension of space,∑

α δαα = 3. Examples are provided in Fig. 10.
For � = 0 and � = 1, the operator P is simply the identity

operator, P (0:0) = 1 and P (1:1)
α:α′ = δαα′ . We will show that when

the operator for the rank (� − 1) tensors is known, it is possible
to construct the operator with the required properties for
the next rank-� tensors. Thus, the operator for any rank can
be constructed by recursion. Let us assume that we know the
operator for rank (� − 1),P (�−1:�−1). We shall construct the
next rank operator as a sum of terms,

P (�;�) = IP (�;�) + IIP (�;�) + · · · , (A7)

exploiting the operator P (�−1:�−1). The terms of different
structure will be added to achieve in Eq. (A7) the properties

in Eqs. (A1)–(A3) for P (�:�). In particular, only IP in our
construction will contain the symmetrization operator S on
the right-hand side of Eq. (A5).

Since, within each rank, the operator must not only contain
a symmetrized identity operator but also be traceless, it is
natural to start with IP as a tensor product of the lower-rank
operator and identity, illustrated in Fig. 10(a),

δα�α
′
�
P (�−1;�−1)

α1... α�−1:α′
1... α

′
�−1

, (A8)

symmetrized separately in the index sets α and α′.
Evaluation of the trace for IP produces terms which cor-
respond to the trace of the lower-rank operator P (�−1:�−1),
represented by the left diagram in Fig. 10(b), and to the
convolutions of the δ symbol with P (�−1:�−1), represented
by right diagram in Fig. 10(b). Terms of the first type yield
zero due to the tracelessness of P (�−1:�−1), but those of the
second type generally yield a finite contribution. Aiming at
the tracelessness of P (�:�), one can next add to the construct a
counter-term IIP of the form

− cIIδα�−1α�
P (�−1;�−1)

α1... α�−2α
′
�:α′

1... α
′
�−1

, (A9)

to cancel the last contribution, symmetrized separately in the
indices α and α′, represented by the left diagram in Fig. 10(c).
The constant cII should be adjusted to achieve the tracelessness
of P (�:�). Taking the trace of IIP produces the same type of
terms as for IIP , that were represented in Fig. 10(b). Thus, an
adjustment of cII can indeed produce a traceless sum IP + IIP .
However, the operator P (�:�) should be symmetric under the
transposition of the indices α and α′, Eq. (A1). In consequence,
when adding the term IIP to the construction, one also needs
to add a term IIIP = (IIP)�, of the form

− cIIδα′
�−1α

′
�
P (�−1;�−1)

α1... α�−1:α′
1... α

′
�−2α�

, (A10)

symmetrized separately in the index sets α and α′ and repre-
sented by the right diagram in Fig. 10(c). The nonvanishing
terms from evaluating the trace of IIIP are illustrated in
Fig. 10(d). That last contribution to the trace may be com-
pensated for by adding the final term IVP to the construct,
symmetric under transposition, of the form

cIVδα�−1α�
δα′

�−1α
′
�

∑
β

P (�−1;�−1)
α1... α�−2β:α′

1... α
′
�−2β

, (A11)

symmetrized separately in the indices α and α′, and illustrated
with the diagram in Fig. 10(d). Taking the trace of IVP
produces, up to a factor, the same result as taking the trace
of IIIP .

The constants cII and cIV can be now set to make the
trace of P (�;�) vanish. The net result for the operator, with
the symmetrizations made explicit, is

P (�;�)
α1... α�:α′

1... α
′
�
= 1

�2

�∑
m,n=1

δαmα′
n
P (�−1:�−1)

α1... αm−1αm+1... α�:α′
1... α

′
n−1α

′
n+1... α

′
�

− 2

�2(2� − 1)

∑
1�m<r� �

1� n� �

δαmαr
P (�−1:�−1)

α1... αm−1αm+1... αr−1αr+1... α�α′
n:α′

1... α
′
n−1α

′
n+1... α

′
�
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− 2

�2(2� − 1)

∑
1�m� �

1� n<s� �

δα′
nα

′
s
P (�−1:�−1)

α1... αm−1αm+1... α�:α′
1... α

′
n−1α

′
n+1... α

′
s−1α

′
s+1... α

′
�αm

+ 4

�2(2� − 1)2

∑
1�m<r� �

1� n<s� �

δαmαr
δα′

nα
′
s

∑
β

P (�−1:�−1)
α1... αm−1αm+1... αr−1αr+1... α�β:α′

1... α
′
n−1α

′
n+1... α

′
s−1α

′
s+1... α

′
�β

. (A12)

By now, we have constructed an operator P (�;�) which
is symmetric separately in the covariant and contravariant
indices, traceless, and symmetric under the transposition.
The remaining question is whether repeated applications of
the operator yield the same result, i.e., whether Eq. (A1) is
satisfied.

To answer the last question, let us apply P (�;�), out
of the four components in Eqs. (A7) and (A12), to the
constructed P (�;�) with the properties we have established. The
IP component reproducesP (�;�), as both the Kronecker symbol
and P (�−1;�−1) reproduce a traceless symmetric tensor. On the
other hand, all the other components of the construct annihilate
P (�;�), because they involve calculation of the trace of that

operator, either directly or after application ofP (�−1;�−1). Thus,
Eq. (A1) is satisfied.

Use of Eq. (A12) for � = 2 produces

P (2:2)
α1α2:α′

1α
′
2
= 1

2

(
δα1α

′
1
δα2α

′
2
+ δα1α

′
2
δα2α

′
1

) − 1
3δα1α2δα′

1α
′
2
. (A13)

In general, for P (�;�) at � � 2, the repeated recursion with
Eq. (A12) produces, besides the leading symmetrized identity
term, the correction terms which involve replacing k pairs of
Kronecker symbols in the identity linking the covariant and
contravariant indices, with the pairs of Kronecker symbols
linking separately the covariant and contravariant indices,
k = 1, 2, . . . , �/2. Application of both sides of Eq. (A12) for
P to n� produces the recursion relation (49) for A.
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