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The exclusive production of one µ+µ− pair in collisions of two ultrarelativistic nuclei is considered. We present
a simple method for the calculation of the Born cross section for this process based on an improved equivalent
photon approximation. We find that the Coulomb corrections to this cross section (corresponding to multiphoton
exchange of the produced µ± with the nuclei) are small, whereas the unitarity corrections (corresponding to the
exchange of light-by-light blocks between nuclei) are large. This is in sharp contrast to the exclusive e+e− pair
production where the Coulomb corrections to the Born cross section are large, whereas the unitarity corrections
are small. We calculate also the cross section for the production of one µ+µ− pair and several e+e− pairs in the
leading logarithmic approximation. Using this cross section we find that the inclusive production of µ+µ− pair
coincides in this approximation with its Born value.
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I. INTRODUCTION

Lepton pair production in ultrarelativistic nuclear collisions
were discussed in numerous articles (see Ref. [1] for a review
and references therein). For the Relativistic Heavy Ion Collider
(RHIC) and CERN Large Hadron Collider (LHC) the charge
numbers of nuclei Z1 = Z2 ≡ Z and their Lorentz factors γ1 =
γ2 ≡ γ are given in Table I.

The cross section of one e+e− pair production in Born
approximation, described by the Feynman diagram of Fig. 1,
was obtained many years ago [2]. Because the Born cross
section σ e+e−

Born is huge (see Table I), the e+e− pair production
can be a serious background for many experiments. It is also an
important issue for the beam lifetime and luminosity of these
colliders [3]. It means that various corrections to the Born cross
section, as well as the cross section for n-pair production, are
of great importance. At present, there are a lot of controversial
and incorrect statements in articles devoted to this subject. The
corresponding references and critical remarks can be found in
Refs. [1,4,5].

Because the parameter Zα may be not small (Zα ≈ 0.6 for
Au-Au and Pb-Pb collisions), the whole series in Zα has to be
summed to obtain the cross section with sufficient accuracy.
The exact cross section for one pair production σ1 can be split
into the form

σ1 = σBorn + σCoul + σunit, (1)

where two different types of corrections need to be dis-
tinguished. The Coulomb correction σCoul corresponds to
multiphoton exchange of the produced e± with the nuclei
(Fig. 2); it was calculated in Ref. [4]. The unitarity correction
σunit corresponds to the exchange of light-by-light blocks
between nuclei (Fig. 3); it was calculated in [5]. It was found
in Refs. [4] and [5] that the Coulomb corrections are large,

whereas the unitarity corrections are small (see Table II). The
results of Ref. [5] were confirmed recently in Ref. [6] by a
direct summation of the Feynman diagrams.

In this article we present our calculations related to the
exclusive and inclusive muon pair production. This process
may be easier to observe experimentally than e+e− pair
production described above. It should be stressed that the
calculation scheme, as well as, the final results for the µ+µ−
pair production are quite different than those for the e+e− pair
production.

In the next section we calculate the Born cross section
for one µ+µ− pair production using the improved equiva-
lent photon approximation with an accuracy about 5%. In
Sec. III we present the Coulomb and unitarity corrections to
the exclusive production of one muon pair. In this section we
also obtain the probability for the production of one muon
and several electron pairs in collisions of nuclei at a given
impact parameter ρ. This result allows us to calculate the
inclusive production of one muon pair in Sec. IV. In Sec. V
we calculate the cross section for two muon pair production
in lowest order. The conclusion of the article is given in
Sec. VI. In the Appendix we consider the relatively simple
process of one muon pair production by a real photon off a
nucleus γZ → Zµ+µ−, which serves as a good test of the
approach used. A short preliminary version of this article was
published in Ref. [7].

II. BORN CROSS SECTION FOR ONE µ+µ− PAIR
PRODUCTION

The production of one µ+µ− pair

Z1 + Z2 → Z1 + Z2 + µ+µ− (2)
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TABLE I. Colliders and cross sections for the lepton pair
production.

Collider Z γ σ e+e−
Born (kb) σ

µ+µ−
Born (b)

RHIC, Au-Au 79 108 36.0 0.23
LHC, Pb-Pb 82 3000 227 2.6
LHC, Ar-Ar 18 3400 0.554 0.0082

in the Born approximation is described by the Feynman
diagram of Fig. 1. When two nuclei with charges Z1e and Z2e

and four-momenta P1 and P2 collide with each other, they emit
equivalent (virtual) photons with the four–momenta q1, q2,
energies ω1, ω2 and their virtualities Q2

1 = −q2
1 ,Q2

2 = −q2
2 .

Upon fusion, these photons produce a µ+µ− pair with the
total four–momentum q1 + q2 and the invariant mass squared
W 2 = (q1 + q2)2. In addition to this we denote

(P1 + P2)2 = 4E2 = 4M2γ 2, α ≈ 1/137

and use the system of units in which c = 1 and h̄ = 1.

A. General formulae

The Born cross section of the process [Eq. (2)] can be
calculated to a good accuracy using the equivalent photon
approximation (EPA) in the improved variant presented, for
example, in Ref. [8]. Let the numbers of equivalent photons
be dn1 and dn2. The most important contribution to the
production cross section stems from photons with very small
virtualities Q2

i � µ2 where µ is the muon mass. Therefore to a
good approximation, the photons move in opposite directions,
and W 2 ≈ 4ω1ω2. In this very region the Born differential
cross section dσB for the process considered is related to
the cross section σγγ for the process with real photons:
γ γ → µ+µ− by the equation

dσB = dn1dn2dσγγ (W 2), W 2 ≈ 4ω1ω2. (3)

The number of equivalent photons are (see Eq. (D.4) in
Ref. [8])

dni

(
ωi,Q

2
i

) = Z2
i α

π

(
1 − ωi

Ei

)
dωi

ωi

×
(

1 − Q2
i min

Q2
i

)
F 2(Q2

i

)dQ2
i

Q2
i

, (4)

where

Q2
i � Q2

i min = ω2
i

γ 2
(5)

TABLE II. Coulomb and unitarity correc-
tions to the e+e− pair production.

Collider σCoul
σBorn

σunit
σBorn

RHIC, Au-Au −25% −4.1%
LHC, Pb-Pb −14% −3.3%
LHC, Ar-Ar −1.06% −0.025%
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FIG. 1. The Feynman diagram for the lepton pair production in
the Born approximation.

and F (Q2) is the electromagnetic form factor of the nucleus.
It is important that the integral over Q2 converges rapidly for
Q2 > 1/R2, where

R = 1.2 A1/3fm (6)

is the radius of the nucleus with A ≈ M/mp the number of
nucleons (R ≈ 7 fm, 1/R ≈ 28 MeV for Au and Pb). Because
Q2

min <∼ 1/R2, the main contribution to the cross section is
given by virtual photons with energies

ωi <∼ γ /R. (7)

Therefore, we can use the spectrum of equivalent photons
neglecting terms proportional to ωi/Ei given by:

dni

(
ωi,Q

2
i

) = Z2
i α

π

dωi

ωi

(
1 − ω2

i

γ 2Q2
i

)
F 2

(
Q2

i

)dQ2
i

Q2
i

. (8)

After the transformation

dω1

ω1

dω2

ω2
= dω1

ω1

dW 2

W 2
(9)

we cast the cross section in the form

dσB = Z2
1Z

2
2α

2

π2

dω1

ω1

(
1 − ω2

1

γ 2Q2
1

)
F 2

(
Q2

1

)dQ2
1

Q2
1

×
(

1 − ω2
2

γ 2Q2
2

)
F 2(Q2

2

)dQ2
2

Q2
2

dW 2

W 2
σγγ (W 2), (10)

where ω2 ≈ W 2/(4ω1).

B. Leading logarithmic approximation (LLA)

Before using the calculation scheme above, it is instructive
to present a rougher but simpler approximation—the so-
called leading logarithmic approximation (LLA). In the LLA,
the equivalent photon spectrum as a function of photon

FIG. 2. The Feynman diargam for the Coulomb correction.
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FIG. 3. The Feynman diagram for the unitarity correction.

energy dni(ωi) is obtained after integrating dni(ωi,Q
2
i ) over

Q2
i in the region between

Q2
i min � Q2

i
<∼ 1/R2 (11)

which leads to

dni(ωi) ≈ Z2
i α

π
ln

γ 2

(Rωi)2

dωi

ωi

. (12)

The restriction Q2
i min <∼ 1/R2 corresponds to the integration

interval

a = W 2R

4γ
<∼ ω1 <∼ b = γ

R
, (13)

which gives

σ LLA
B = Z2

1Z
2
2α

2

π2

∫ ∞

4µ2

dW 2

W 2
σγγ (W 2)

∫ b

a

dω1

ω1
ln

b2

ω2
1

ln
ω2

1

a2
.

(14)

Because σγγ (W 2) ≈ (4πα2/W 2) ln (W 2/µ2) for large values
of W � µ, the main contribution to the Born cross section
comes from the region of small values of W near the threshold.
Therefore, within logarithmic accuracy we replace W by some
fixed value W0 ∼ 2µ in the lower bound a. After that the
integral over W 2 gives

I =
∫ ∞

4µ2

dW 2

W 2
σγγ (W 2) = 14πα2

9µ2
(15)

and further integration over ω1 leads to∫ b

a

dω1

ω1
ln

b2

ω2
1

ln
ω2

1

a2
= 2

3
L3, (16)

where

L = ln
γ 2

(W0R/2)2
. (17)

As a result, we obtain

σ LLA
B = 28

27π

(Z1αZ2α)2

µ2
L3 (18)

in accordance with the result of Landau and Lifshitz [2]. The
accuracy of the LLA depends on the choice of the value for
W0. If we use for numerical estimations W0 = 3µ, then the
accuracy of the LLA for the colliders discussed is about 15%.

The same result can be obtained in the framework of the
impact parameter-dependent representation, which will also
be useful later. For this aim we introduce the probability for
muon pair production PB(ρ) in the collision of two nuclei at
a fixed impact parameter ρ. For γ � 1, it is possible to treat

the nuclei as sources of external fields and to calculate PB(ρ)
analytically using the same approach as in Ref. [5]. The Born
cross section σB can then be obtained by the integration of
PB(ρ) over the impact parameter:

σB =
∫

PB(ρ)d2ρ. (19)

We calculate this probability in the LLA using Eq. (3) with

dni = Z2
i α

π2

dωi

ωi

d2ρi

ρ2
i

; ωi � γ

R
; R � ρi � γ

ωi

, (20)

where ρi is the impact parameter of i-th equivalent photon
with respect to the i-th nucleus. This allows us to write the
above probability in the form

PB(ρ) =
∫

dn1dn2δ(ρ1 − ρ2 − ρ)σγγ (W 2)

= 28

9π2

(Z1αZ2α)2

(µρ)2
�(ρ). (21)

Depending on the value of ρ two different forms for �(ρ) need
to be used:

�(ρ) =
(

4 ln
γ

µρ
+ ln

ρ

R

)
ln

ρ

R
for R � ρ �

γ

µ
, (22)

�(ρ) =
(

ln
γ 2

µ2ρR

)2

for
γ

µ
� ρ � γ 2

µ2R
. (23)

Note that the function �(ρ) is continuous at ρ = γ /µ together
with its first derivative. As expected the integration of PB(ρ)
over ρ in the region R < ρ < γ 2/(µ2R) gives back the result
in Eq. (18).

To prove Eqs. (21)–(23), we make the transformation given
in Eq. (9) together with the integration over W 2 according to
Eq. (15). This gives

PB(ρ) = 14

9π3

(Z1αZ2α)2

µ2

∫ γ /R

µ2R/γ

dω1

ω1

∫
d2ρ1

ρ2
1 (ρ − ρ1)2

×ϑ

(
γ

ω1
− ρ1

)
ϑ

(
γω1

µ2
− |ρ − ρ1|

)
, (24)

where ϑ(x) is the step function. The main contribution
to this integral is given by two regions: R � ρ1 � ρ and
R � |ρ − ρ1| = ρ2 � ρ. Moreover, the two regions in the ω1

integration with µ < ω1 < γ/R and µ2R/γ < ω1 < µ give
the same contributions. As a result we get

�(ρ) = 2(J1 + J2),

J1 =
∫ γ /R

µ

dω1

ω1

∫ ρ

R

dρ1

ρ1
ϑ(γ /ω1 − ρ1)ϑ(γω1/µ

2 − ρ),

J2 =
∫ γ /R

µ

dω1

ω1

∫ ρ

R

dρ2

ρ2
ϑ(γ /ω1 − ρ)ϑ(γω1/µ

2 − ρ2).

(25)

Next we consider the two regions of ρ.
In the region of relatively small impact parameters, R �

ρ � γ /µ, the second step function does not impose any
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limitations, therefore,

J1 =
∫ γ /ρ

µ

dω1

ω1

∫ ρ

R

dρ1

ρ1
+

∫ γ /R

γ/ρ

dω1

ω1

∫ γ /ω1

R

dρ1

ρ1

= ln
γ

µρ
ln

ρ

R
+ 1

2

(
ln

ρ

R

)2

J2 =
∫ γ /ρ

µ

dω1

ω1

∫ ρ

R

dρ1

ρ1
= ln

γ

µρ
ln

ρ

R
.

Summing up, we obtain (22).
In the region of relatively large impact parameters,

γ /µ � ρ � γ 2/(µ2R), we have

J1 =
∫ γ /R

µ2ρ/γ

dω1

ω1

∫ γ /ω1

R

dρ1

ρ1
= 1

2

(
ln

γ 2

µ2Rρ

)2

, J2 = 0,

therefore, the sum gives (23).
We compare Eqs. (21)–(23) for �(ρ) with the numerical

calculations based on the exact matrix element calculated with
the approach as outlined in Ref. [9]. We find good agreement
for Pb-Pb collisions: the discrepancy is less then 10% at µρ >

10 and it is less then 15% at µρ > 2µR = 7.55.

C. More refined calculation

In the calculation below we use for the form factor of the
nucleus the simple approximation of a monopole form factor,
which corresponds to an exponentially decreasing charge
distribution, whose mean squared radius

√
〈r2〉 is adjusted

to the experimental value:

F (Q2) = 1

1 + Q2/
2
, 
2 = 6

〈r2〉 . (26)

For lead and gold, the parameter is 
 ≈ 80 MeV. This
approximate form of the form factor enables us to perform
some calculations analytically, which otherwise could only be
done numerically.

The equivalent photon spectrum dni(ωi) is obtained after
integrating dni(ωi,Q

2
i ) over Q2

i (the upper limit of this
integration can be set to be equal to infinity in a good
approximation, due to the fast convergence of the integral at
Q2 > 
2):

dni(ωi) = Z2
i α

π
f

(
ωi


γ

)
dωi

ωi

. (27)

Here the function

f (x) = (1 + 2x2) ln

(
1

x2
+ 1

)
− 2 (28)

is large for small values of x,

f (x) ≈ ln
1

x2
− 2 = ln

1

(e x)2
at x � 1, (29)

but drops very quickly for large x in accordance with Eq. (7):

f (x) <
1

6x4
for x > 1. (30)

Finally we obtain

σB = Z2
1Z

2
2α

2

π2

∫ ∞

4µ2

dW 2

W 2
G(W 2)σγγ (W 2)

= (Z1αZ2α)2

πµ2
J (γ
/µ), (31)

where

G(W 2) =
∫ ωmax

ωmin

dω

ω
f

(
ω


γ

)
f

(
W 2

4
γω

)
. (32)

Because ωi < E and ω1ω2 ∼ µ2 we have ωmin ∼ µ2/E and
ωmax = E. However, due to the fast decrease of f (x) for x > 1
one can extend these limits up to ωmin = 0 and ωmax = ∞
without any lack of accuracy, therefore,

G(W 2) = 2
∫ ∞

0
f (x1)f (x2)dy, x1,2 = W

2
γ
e±y. (33)

A numerical evaluation of the integrals in Eqs. (31)–(33) yields
the function J (γ
/µ) presented in Fig. 4 and cross sections
σ

µ+µ−
Born given in Table I.

Corrections to the photon spectrum are represented by terms
in Eqs. (3) and (8) of the order of Q2

i /W 2 (see Eqs. (E.1) in
Ref. [8]), which are dropped before the integration over Q2

i

is done. After the integration with weight 1/Q2
i the relative

value of these corrections becomes of the order of

η1 = 
2

W 2L
. (34)

Thus, for the collisions considered here one can estimate the
accuracy of the calculations on the level η1 ∼ 5%. Another
test of accuracy of the approach used is given in Appendix.

Note that in the LLA the function G(W 2) is just

GLLA(W 2) = 2

3

[
ln

γ 2

(eW/2
)2

]3

≈ 2

3

[
ln

γ 2

(WR/2)2

]3

(35)
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FIG. 4. (Color online) The function J (γ
/µ) from Eq. (31).
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in accordance with Eq. (16) (taking into account that 
/e ≈
1/R).

III. COULOMB AND UNITARITY CORRECTIONS

The Coulomb corrections correspond to Feynman diagram
of Fig. 2. In the case of the muon pair production by exchange
photons we can neglect theses corrections because of a dipole
interaction of the photon field with the muon pair. Indeed,
the form factor F (k2

i⊥) cuts out all exchange photon momenta
k2

i⊥ > 1/R2. Therefore, the “remaining” long-wave photons
with k2

i⊥ <∼ 1/R2 cannot resolve a dipole formed by a muon
pair, with a typical space separation of the pair components
of the order of 1/µ. For this reason, any additional photon
exchange brings in an additional suppression factor ∼1/(Rµ)2

in the cross section. In another words, due to the restric-
tion of the transverse momenta of additionally exchanged
photons to the range below 1/R, the effective parameter
of the perturbation series is not (Zα)2 but (Zα)2/(Rµ)2. In
addition, the contribution of the additional exchange photons
is suppressed by a logarithmic factor, because the cross
section for two-photon production mechanism (the Born cross
section) is proportional to L3, whereas the cross section for the
multiple-photon production mechanism is proportional only to
L2. Therefore, the real parameter describing the suppression
of the Coulomb correction is of the order of

η2 = (Zα)2

(Rµ)2L
, (36)

which corresponds to Coulomb corrections of less then 1%.
The example considered in Appendix confirms this estimate.

The unitarity correction σunit to the one muon pair pro-
duction corresponds to the exchange of light-by-light blocks
between the two nuclei (Fig. 3). We start with a more general
process—the production of one µ+µ− pair and n electron-
positron pairs (n � 0) in a collision of two ultrarelativistic
nuclei

Z1 + Z2 → Z1 + Z2 + µ+µ− + n(e+e−) (37)

taking into account the unitarity corrections, which correspond
to the exchange of the blocks of light-by-light scattering
via the virtual lepton loops. The corresponding cross section
dσ1+n can be calculated by a simple generalization of the
results obtained in Ref. [6] for the n-pair process without
muon pair production: Z1 + Z2 → Z1 + Z2 + n(e+e−). This
multiple pair production process was studied in a number of
article; see [1] for a review. It was found that the probability
is to a good approximation given by a Poisson distribution
with the deviations found to be small. Indeed, it is not difficult
to show that the basic equations for the latter process should
be modified as follows. In Eq. (26) of Ref. [6] the additional
factor

B̃µ(ρ, rn+1)e−L[Aµ(ρ)/2+iϕµ(ρ)] (38)

appears under the integral, where L = ln (γ1γ2) and the
functions B̃µ, Aµ, and ϕµ are the same as the functions B̃, A,
and ϕ in Eq. (27) of Ref. [6] but with the replacement of
electrons by muons. As a result, Eq. (31) of Ref. [6] is

replaced by

dσ1+n

d2ρ
= LA

µ

1 (ρ)
[LA1(ρ)]n

n!
e−LA

µ

1 (ρ)−LA1(ρ), (39)

where LA
µ

1 (ρ) ≈ PB(ρ) is the probability for one muon
pair production in the Born approximation, as discussed in
Sec. II B. In the region of interest, ρ > 2R, the function A

µ

1 (ρ)
is small,

LA
µ

1 (ρ) � 1, A
µ

1 (ρ) � A1(ρ), (40)

therefore, we can rewrite Eq. (39) in the simpler form

dσ1+n

d2ρ
= P1+n(ρ), P1+n(ρ) = PB(ρ)

[n̄e(ρ)]n

n!
e−n̄e(ρ),

(41)
where n̄e(ρ) = LA1(ρ) is the average number of e+e− pairs
produced in collisions of the two nuclei at a given impact
parameter ρ. The result that the probabilities for the diff-
erent processes factories is due to the independence of the
individual processes. For a general discussion of the validity
of this factorization together with possible violations we refer
to Ref. [10].

In particular, we get the cross section for the exclusive one
µ+µ− pair production, including the unitarity correction, as

σ1+0 =
∫

PB(ρ)e−n̄e(ρ)d2ρ. (42)

This expression can be rewritten in the form

σ1+0 = σB + σunit, (43)

where

σB =
∫

PB(ρ)d2ρ (44)

is the Born cross section discussed in Sec. II and

σunit = −
∫

[1 − e−n̄e(ρ)]PB(ρ)d2ρ (45)

corresponds to the unitarity correction for the one muon pair
production.

A rough estimation of σunit can be done as follows. The
main contribution to σunit comes from the region

R � ρ � 1/me (46)

in which the function n̄e(ρ) ≈ n̄e(2R) and the integral (45) can
be calculated in LLA. It gives

σunit ≈ − 28

27π

(Z1αZ2α)2

µ2
[1 − e−n̄e(2R)]Junit, (47)

where

Junit = 6
∫ 1/me

2R

�(ρ)
dρ

ρ
. (48)

As a result, we find σunit ≈ −1.2 b for the Pb-Pb collisions
at LHC, which corresponds approximately to (−50)% of the
Born cross section.

It is seen that unitarity corrections are large, in other words,
the exclusive production of one muon pair differs considerable
from its Born value.
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IV. INCLUSIVE PRODUCTION OF ONE µ+µ− PAIR

The experimental study of the exclusive muon pair pro-
duction seems to be a very difficult task. Indeed, this process
requires that the muon pair should be registered without any
electron-positron pair production including e± emitted at very
small angles. Otherwise, the corresponding cross section will
be close to the Born cross section.

To prove this, let us consider the process (37), whose
probability is given by Eq. (41). The corresponding cross
section is

σ1+n =
∫

P1+n(ρ)d2ρ. (49)

It is clearly seen from this equation that after summing up over
all possible electron pairs we obtain the Born cross section

∞∑
n=0

σ1+n = σB. (50)

Therefore, there is a very definite prediction: the inclusive
muon pair production coincides with the Born limit. This direct
consequence of calculations, which take into account strong
field effects, may be easier to test experimentally than the
prediction for cross sections of several e+e− pair production.

V. TWO MUON PAIR PRODUCTION

The cross section of the process

Z1Z2 → Z1Z2 + µ+µ−µ+µ− (51)

can be calculated in lowest order in α according to

σ2 = 1

2

∫
[PB(ρ)]2d2ρ (52)

with the integration region ρ � 2R. But in this region
the probability PB(ρ) is given to a good accuracy by
Eqs. (23)–(25). From this we get σ2 = 1.24 mb for Pb-Pb
collisions at LHC.

VI. CONCLUSION

The exclusive production of one µ+µ− pair in collisions of
two ultra-relativistic nuclei is considered. We present a simple
method for the calculation of the Born cross section for this
process.

We found that the Coulomb corrections to this cross section
are small, while the unitarity corrections are large. This is in
sharp contrast to the exclusive e+e− pair production where the
Coulomb corrections to the Born cross section are large while
the unitarity corrections are small.

We calculate also the cross section for the production of one
µ+µ− pair and several e+e− pairs in LLA. Using this cross
section we found that the inclusive production of µ+µ− pair
coincides in this approximation with its Born value.

Let us discuss the relation of the cross sections obtained for
the muon pair production with the the differential cross section
of the e+e− pair production in the region of large transverse
momenta for the e±, for example at p±⊥ >∼ 100 MeV. It is clear

that for the e+e− pair production in this region, the situation
is similar to the case considered for µ+µ− pair production.

We expect that the inclusive production of a single e+e−
pair with large transverse momenta of e± (together with
several unobserved e+e− pairs in the region of small transverse
momenta of e± of the order of me) coincides with the Born
limit.
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APPENDIX

To tests the approach used in Sec. II C, we consider the
simpler case of the muon pair production by a real photon
with the energy ω off an nucleus

γZ → Zµ+µ−. (A1)

This cross section was calculated by Ivanov and Melnikov
in Ref. [11] using the same expression [Eq. (26)] for the
form factor of the nucleus and assuming 
2/(2µ)2 � 1. The
corresponding formula for the Born contribution and the first
Coulomb correction is

σγZ = 28

9

Z2α3

µ2
(l − C1 − C2), (A2)

where

l = ln
2ω


µ2
− 57

14
, C1 = 12

35

(



2µ

)2

,

(A3)
C2 = 0.92(Zα)2C1.

Therefore, the relative magnitude of the Coulomb correction
is given by

η2 = C2

l
, (A4)

which confirms the estimate in Eq. (36).
In the equivalent photon approximation, the cross section

is given by

dσ EPA
γZ = dn2σγγ (W 2), (A5)

which has the form

σ EPA
γZ = Z2α

π

∫ ∞

4µ2

dW 2

W 2
f

(
W 2

2ω


)
σγγ (W 2). (A6)

The main contribution to this integral is given by the region
near the lower limit, where the argument of the function f

is small and therefore f can be replaced by its approximate
expression (29):

f

(
W 2

2ω


)
= 2 ln

ω


2µ2
− 2 − 2 ln

W 2

4µ2
. (A7)

After that the cross section can be calculated without difficul-
ties as

σ EPA
γZ = 2

Z2α

π

[(
ln

ω


2µ2
− 1

)
I − I1

]
= 28

9

Z2α3

µ2
l, (A8)
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where I is given by Eq. (15) and

I1 =
∫ ∞

4µ2

dW 2

W 2
σγγ (W 2) ln

W 2

4µ2
= (43 − 28 ln 2)πα2

9µ2
.

(A9)

Comparing this expression with the one of Eq. (A2), we find
that those terms, which are omitted in the EPA, have a relative
magnitude of the order of

η1 = C1

l
, (A10)

this expression confirms the estimate [Eq. (34)].
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