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Transition from participant to spectator fragmentation in Au+Au reactions between
60A and 150A MeV
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Using the quantum molecular dynamics approach, we analyzed the results of the recent INDRA Collaboration
Au+Au experiments at GSI in the energy range between 60A and 150A MeV. It turns out that in this energy
region, the transition toward a participant-spectator scenario takes place. The large Au+Au system displays, in the
simulations as in the experiment, simultaneously dynamical and statistical behavior, which we analyze in detail.
The composition of fragments close to midrapidity follows statistical laws, and the system shows bimodality, i.e.,
a sudden transition between different fragmentation patterns, as a function of centrality, as expected for a phase
transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics, and
the system as a whole does not come to equilibrium—an observation that is confirmed by FOPI Collaboration
experiments for the same system.
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I. INTRODUCTION

Two decades after its discovery, the rich phenomenology of
multifragmentation has been widely explored (for recent work
see, e.g., Refs. [1,2]). It has been experimentally shown that
in one single heavy ion collision, many intermediate mass
fragments (IMF’s) are produced, where IMF’s are defined
as fragments with 3 � Z � 25. The upper limit is chosen to
eliminate fission fragments. Nevertheless, some of the key
questions are still not answered. One of these, perhaps the most
central one needed to come to a better understanding, is the
question of how fragments are formed. There are two reasons
for this. First of all, under the keyword “multifragmentation”
two different processes are discussed which may be widely
different in their physical origin. At low beam energies, the
highest multiplicity of IMF’s is observed in central collisions.
Fragments are formed from the matter in the geometrical
overlap between projectile and target (participant matter). With
increasing beam energy, the multiplicity of IMF’s in central
collisions decreases. At high beam energies, above several

hundreds of MeV/nucleon, central collisions are so violent
that only small nuclei, mainly up to mass A = 4, survive
and, therefore, the multiplicity of IMF’s is low. Here, the
largest IMF multiplicity is found in semiperipheral reactions,
and the fragments originate from those nucleons that are
not in the geometrical overlap zone of projectile and target,
the so-called spectator matter. In this case, particles from the
interaction zone penetrate into the spectator matter and cause
its disintegration into IMF’s. The mean kinetic energy per
nucleon of the fragments is lower than in central collisions
at low beam energy [3]. It is not clear whether the two
processes—the one forming fragments from hot (energy per
particle well above the binding energy of fragment nucleons
[3]) and dense matter and the other forming fragments from
rather cold matter (energy per fragment below the binding
energy [3]) and at around normal nuclear matter density—have
the same physical origin.

Second, although completely different in their origins,
statistical and dynamical models predict very similar results
for several key observables. In the statistical or equilibrated
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source scenario [4–7], it is assumed that at a density which is
a fraction of the normal nuclear matter density the interaction
among the constituents suddenly stops (freezes out) and that
the relative fragment abundances at that moment are given
by the phase space at the freeze-out volume. Thus, this
model assumes that at the latest at freeze-out the system
is in thermal or statistical equilibrium. The phase space is
calculated either in a microcanonical or in a grand canonical
approach. In either case, it is assumed that at the end, the
average thermal energy of the fragments is independent of
the fragment size and, neglecting Coulomb interaction and
an eventual collective flow, equals 3/2T in a grand-canonical
formulation. For energies larger than 50A MeV, the mass yield
of IMF’s follows a power law or an exponential function which
can hardly be distinguished due to the small range of IMF
masses.

The dynamical approach presented in Ref. [8] considers
multifragmentation to be a fast process in which the nucleons
do not have the time to come to equilibrium, similar to the
shattering of glass. There, the distribution of splinters also
follows a power law although it is certainly not thermal. In the
fragmentation process, the nucleons forming a fragment keep
their initial momentum which they have because of Fermi
motion. As shown by Goldhaber [9], this fast fragmentation
yields as well a mass-independent average energy of the
fragments of the order of 15 MeV and a spectrum similar to
a thermal one. This means that single-particle spectra cannot
qualitatively distinguish between an already initially present
(Fermi motion) momentum distribution and a momentum
distribution created by collisions in the expanding system.
One can argue that the average energy should differ by a factor
of 2 [the average energy of 15 MeV due to Fermi motion as
compared with a maximal thermal energy (3/2T ) of 7.5 MeV
because beyond a temperature of 5 MeV, fragments are no
longer stable]. If a transverse flow builds up during the
expansion and in view of the additional Coulomb energy, a
distinction of the two slopes is only possible at high fragment
kinetic energies. There, the statistical error of the present
experiments is too large to make the distinction.

The scenario of a fast multifragmentation is also predicted
by transport theories which describe the time evolution of
the reaction starting from the initially separated projectile
and target nuclei until the formation of the finally observed
fragments. These models are based on either true n-body
approaches [10–15] or the Boltzmann-Uehling-Uhlenbeck
approach with fluctuating forces [16]. In the former approach,
fragments are to a large extent initial correlations which have
survived the heavy ion reaction. It is a challenge to understand
why these initial-final state correlations seemingly produce
the same results as the statistical models. The systems which
have been investigated in these simulations so far are of
moderate size. The recent Au+Au experiments of the INDRA
Collaboration at GSI in the beam energy range between 60A

and 150A MeV investigated really heavy systems (which may
come closer to equilibrium than lighter systems) with one
of the most advanced 4π detectors in the most interesting
energy regime. In addition, the results can be compared with
older experiments from the FOPI Collaboration which cover
a partially different phase space. Therefore, it is possible to

cross-check the results and to control the filters. By putting
both experiments together, a very detailed picture of the
interaction should emerge. This triggered a renewed effort to
identify the origin of multifragmentation. For the experimental
details of the INDRA experiment see Ref. [1].

We start out in Sec. II with an introduction to the quantum
molecular dynamics (QMD) approach which we use to
simulate the heavy ion reactions. Section III is devoted to
the challenge to compare simulations with selected events. We
will discuss in detail how the detector acceptance changes the
4π particle distributions obtained in the simulation programs.
There we discuss as well the importance of selecting the
events in the same way as the experiments do. The much
easier way of classifying the theoretical simulation events
according to the impact parameter picks events which can
hardly be compared with an experimentally accessible event
selection. In Section IV, we discuss the global event structure
and demonstrate that QMD produces well the experimental
centrality classes. Sections V and VI are devoted to central
collisions. Section V presents a comparison of the theory
with details of the reaction, such as particle multiplicities.
Section VI presents the new features obtained in the simula-
tion: (a) midrapidity fragments are formed most probably in
equal parts from projectile and target nucleons in contradiction
to smaller systems [13], and (b) the dynamical properties of
the fragment source are strongly dependent on the fragment
mass. Hence, mixing of the nucleons in some regions of phase
space occurs but a kinetic equilibrium is not established. This
is confirmed by the experiment. Section VII is devoted to a
study of the bimodality in the QMD model. Sections VIII and
IX discuss in detail the reaction mechanism as seen in the
simulation. This study allows us to identify the mechanism
of the fragment production while observing how fragments
survive the hot central zone of the reaction. We see that in
QMD, fragments are surviving initial state correlations which
have not been destroyed by binary collisions. This mode of
multifragmentation is similar to percolation with a percolation
parameter above the critical value. Finally, we will draw our
conclusions.

II. THE QMD MODEL

The QMD model is a time-dependent A-body theory to
simulate the time evolution of heavy ion reactions on an
event-by-event basis. It is based on a generalized variational
principle. As with every variational approach, it requires the
choice of a test wave function �. In the QMD approach, this is
an A-body wave function with 6A time-dependent parameters
if the nuclear system contains A nucleons.

To calculate the time evolution of the system, we start out
from the action

S =
∫ t2

t1

L[�,�∗] dt,

with the Lagrange functional

L = 〈�|ih̄ d

dt
− H |�〉.

The total time derivative includes the derivation with respect
to the parameters. The time evolution of the parameters is
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obtained by the requirement that the action is stationary
under the allowed variation of the wave function. This
leads to a Euler-Lagrange equation for each time-dependent
parameter.

The basic assumption of the QMD model is that a test wave
function of the form

� =
Ac+Ap∏

i=1

φi,

with

φi(�r, t)

=
(

2

Lπ

)3/4

e−(�r−�ri (t))2/4Lei(�r−�ri (t)) �pi (t) eip2
i (t)t/2m,

is a good approximation to the nuclear wave function. This
means that antisymmetrization of the wave function [14] is
not essential at the energies considered. The time-dependent
parameters are �ri(t), �pi(t), while L is fixed and equals about
1.08 fm2.

Variation yields

�̇ri = �pi

m
+ ∇�pi

∑
j

〈Vij 〉 = ∇�pi
〈H 〉,

�̇pi = −∇�ri

∑
j �=i

〈Vij 〉 = −∇�ri
〈H 〉,

with

〈Vij 〉 =
∫

d3rd3r ′φ∗
i (�r ′)φ∗

j (�r)V (�r ′, �r)φi(�r ′)φj (�r).

These are the (i = 1, . . . N ; N = AP + AT ) time evolution
equations which are solved numerically. Thus, the varia-
tional principle reduces the time evolution of the n-body
Schrödinger equation to the time evolution equations of
6(AP + AT ) parameters to which a physical meaning can be
attributed.

The nuclear dynamics of the QMD can also be trans-
lated into a semiclassical scheme. The Wigner distribu-
tion function fi of nucleon i can be easily derived from
the test wave functions (note that antisymmetrization is
neglected),

fi(�r, �p, t) = 1

π3h̄3 e−(�r−�ri (t))2/2Le( �p− �pi (t))2(2L/h̄2),

and the total one-body Wigner density is the sum of those of
all nucleons. The expectation value of the potential can be
calculated with the help of the wave function or the Wigner
density. Hence, the expectation value of the total Hamiltonian
reads

〈H 〉 = 〈T 〉 + 〈V 〉,
where 〈T 〉 = ∑

i

p2
i

2mi
and 〈V 〉 = ∑

i

∑
j>i

∫
fi(�r, �p, t)

V ij (�r ′, �r)fj (�r ′, �p′, t) d�r d�r ′ d �p d �p′. The baryon-baryon
potential Vij consists of Skyrme parametrization of the real
part of the Brueckner G matrix which is supplemented
by an effective Coulomb interaction V

ij

Coul, that is,
V ij = Gij + V

ij

Coul. The former can be further subdivided

into a part containing the contact Skyrme interaction and a
contribution from a finite-range Yukawa potential V

ij

Yuk (in
infinite matter, the latter reduces to a contact interaction as
well but in finite nuclei it acts differently):

V ij (�r ′, �r) = V
ij

Skyrme + V
ij

Yuk + V
ij

Coul

= Vij = t1δ(�r ′ − �r)

+ t2δ(�r ′ − �r)ργ−1

( �r ′ + �r
2

)

+ t3
e{−|�r ′−�r|/µ}
|�r ′ − �r|/µ + ZiZje

2

|�r ′ − �r|.
The range of the Yukawa potential is chosen as µ = 1.5 fm.
Zi, Zj are the effective charges ( Zproj

Aproj
for projectile nucleons,

Ztarg

Atarg
for target nucleons) of the baryons i and j . The real part

of the Brueckner G matrix is density dependent, which is
reflected in the expression for Gij . The expectation value of G

for nucleon i is a function of the interaction density ρi
int,

ρi
int(�ri) =

∑
j �=i

∫
d3r d3r ′φ∗

i (�r ′)φ∗
j (�r)

× δ(�r ′ − �r)φi(�r ′)φj (�r).

Note that the interaction density has twice the width of the
single-particle density.

The imaginary part of the G matrix acts like a collision
term. In the QMD simulations, we restrict ourselves to binary
collisions (two-body level). The collisions are performed in a
point-particle sense in a similar way as in VUU or in cascade
calculations: Two particles may collide if they come closer
than r = √

σ/π, where σ is a parametrization of the free NN

cross section. A collision does not take place if the final state
phase space of the scattered particles is already occupied by
particles of the same kind (Pauli blocking).

The initial values of the parameters are chosen in such a
way that the nucleons give proper densities and momentum
distributions of the projectile and target nuclei. Fragments are
determined here by a minimum spanning tree procedure. At
the end of the reaction, all those nucleons are part of a fragment
which has a neighbor at a distance rfrag � 2.5 fm. rfrag is a free
parameter, but it should not be smaller than the force range
so that bound particles are counted as part of the fragment.
This radius is independent of the beam energy because in an
expanding system, two particles separate in coordinate space
if they are not bound. Thus, for each value of rfrag, one finds a
time t after which the minimum spanning tree procedure gives
the same fragment pattern as long as the system is expanding.
This time t depends on energy. For the simulations at 100A

and 150A MeV, the fragment multiplicity has stabilized before
200 fm/c. At 60A MeV, the relative velocities are small for
this heavy system and it does not really expand. Therefore, at
200 fm/c, the fragments are not clearly separated in coordinate
space. In this case, the cluster distribution depends on the value
of rfrag. We have kept the standard value which gives a good
overall description, but the results have to be treated with more
caution. The fragments have at 200 fm/c still some excitation
energy.
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For further details of the QMD model, refer to Refs. [11,
12]. To compare the QMD simulations with experimental data
as realistically as possible, we built up a data base of about
100 000 QMD events over a large impact parameter range.
We have chosen a soft equation of state.

III. IMPORTANCE OF THE EXPERIMENTAL FILTER FOR
THE COMPARISON OF EXPERIMENTAL RESULTS

AND QMD SIMULATIONS

To compare the results of programs that simulate heavy
ion reactions and the experimental data is not easy. On the
computer, the positions and momenta of all particles are known
at the end of the reaction. In experiments, this is not the
case, even for the most advanced 4π detectors. In peripheral
reactions, the heavy residues disappear in the beam pipe or
do not escape from the target, but even in the most central
collisions, the total charge of all the measured fragments and
light charged particles in a single event is not equal to the
system charge but has instead a wide distribution. Particles hit
the detector structure or their energy is below the detection
threshold. In addition, the counters suffer from multiple hits
which modify the particle identification. Therefore, theory
and experiment can only be compared if one knows how the
detector would see a theoretical event. The software replica of
the detector which provides this information is called a filter. Its
importance in the physical interpretation of the experimental
results can hardly be overestimated. For the experiments which
we investigate here, the filter which takes into account the
effects discussed above has been provided by the INDRA
Collaboration [17].

If one is only interested in inclusive events, the filter serves
only to remove those particles which are not observed and

to disentangle double hits in a given detector segment. For
many physics questions, and including multifragmentation,
peripheral reactions are of very limited interest. If one is
interested in central events, it is difficult to underestimate the
importance of a filter because it not only corrects the theoretical
4π simulation data for acceptance but also determines the
experimental centrality class to which the event belongs. The
influence of the filter on fragment yield is usually much larger
than on the yield of light charged particles. How the filter
modifies the raw simulation data on fragments is shown in
Fig. 1, which displays the yield of central Au+Au reactions
at 60A MeV, the most critical energy, in the transverse
velocity/longitudinal velocity plane in the center of mass for
particles with Z = 3. Only those events in which the total
observed charge Ztot is larger than 78% of the total charge of
projectile and target are considered here. The top left (middle)
figure shows the simulation events before (after) we applied
the INDRA filter. Top right, one sees the experimental results.
The suppressed particles are displayed in the bottom left part
of the plot. We see that the filter suppresses particles in the
entire vlong-vtrans plane. On the first view, this is astonishing
because usually one expects that in the forward direction
the large majority of the particles are seen in the detectors.
The suppression is strongest at small transverse momenta. The
difference between filtered events and data is displayed in the
figure bottom right. Although the filtered QMD events give
a fragment distribution which comes closer to the INDRA
data than the unfiltered events (compare the middle and
right figures in the bottom row), the agreement is not at
all perfect. We see that in the simulations, there are too
many fragments. The excess is concentrated along an ellipse
around midrapidity. This surplus appears at relatively high
center-of-mass energies. This effect is especially pronounced

FIG. 1. (Color online) Comparison of nonfiltered (top left) and filtered (top middle) QMD distributions for Z = 3 particles for the two most
central bins with experimental results (top right) for the reaction Au+Au at 60A MeV. To show how the filter modifies the events, we display
the difference between unfiltered and filtered QMD events (bottom left), between unfiltered simulations and experiment (bottom middle), as
well as between filtered simulations and experiment (bottom right).
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FIG. 2. Correlation between impact parameter and Etrans12 for
Au+Au reactions at 60A MeV (top) and 150A MeV (bottom)
according to the QMD. Events above the cut in Etrans12 correspond to
a geometrical cross section of σ = π (1 fm)2.

for heavy fragments. There, the filter creates fragments close
to the beam velocity. Therefore, if one averages over all events,
the filtered simulation events show less stopping than the true
events. In view of the above discussion, this is due to too little
stopping in the simulations in this heavy system subsequently
amplified by the filter. This lack of stopping has not been
observed for the smaller Xe+Sn system at 50A MeV [13].
The filter suppresses many more fragments with negative
center-of-mass velocity (vc.m.) than with positive vc.m.. Hence,
the filtered QMD events are no longer symmetric. Because, as
we will see later, the simulation events produce very well the
Etrans12 distribution (Etrans12 is the total transverse energy of
all particles with charge Z = 1, 2) and, hence, the number of
hard NN scatterings, this lack of stopping is due to the mean
field. Therefore, the fragment pattern will not be influenced
substantially.

In the past, theoretical results for a given impact param-
eter have often been directly compared with data selected
according to their multiplicity or transverse energy [15].
This may yield, as we show now, erroneous results. In the
experiment, the most central events are selected by requiring
that Etrans12 > 1246(3313) MeV at 60A(150A) MeV, which
corresponds to a cross section of σ = π (1fm)2. Because of
the finite resolution in impact parameter, the so-defined event
class is different from the truly most central events with b � 1
fm which give the same cross section (Fig. 2). Therefore, it is
not astonishing that physical quantities for the two different
choices of centrality differ as well. As an example, we present
in Fig. 3 the fragment distributions for the reaction Au+Au
at 60A and 150A MeV. With decreasing Etrans12 a smaller
number of violent nucleon-nucleon collisions taken place, and
therefore heavier fragments can survive. We see therefore a
less steep fragment yield for the Etrans12 selection than for the
impact parameter selection, especially for the large fragments.
The number of binary collisions is inversely correlated with
the impact parameter and therefore also the probability that
the initial-final state correlations, which will be discussed in

10-3

10-2

10-1

1

10

10 2

(d
N

/d
Z

)/
ev

en
t

60A MeV 150A MeV

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40

60A MeV

0 10 20 30 40
Z

150A MeV

FIG. 3. (Color online) Fragment yield of simulated events with
b � 1 fm (top) and Etrans12 � 1246(3313) MeV (bottom) for Au+Au
reactions as compared with the experimental data selected by Etrans12.
Full (dashed) lines correspond to unfiltered (filtered) QMD events.

Sec. IX, become destroyed. The figure shows that quantitative
comparisons require a cut in a variable which is experimentally
accessible. As we will see later, in the reaction at 60A MeV,
the projectile and target form almost a compound system,
although in momentum space the equilibration is not perfect.
Consequently, at the end of the calculation, the nucleons
remain very close in coordinate space. This makes it very
difficult to determine the fragments in the simulation events,
and the systematical error is much larger than at higher energies
where the fragments are clearly separated in coordinate space
at the end.

IV. GLOBAL EVENT STRUCTURE

In the analysis of the Au+Au reaction, the energy of light
particles (Z = 1, 2) (Etrans12) has been used for the event
selection [18]. This differs from the event selection criteria
applied by the FOPI Collaborations for the same reactions. We
have, therefore, first of all, to check whether we can reproduce
that quantity. If not, it will not be meaningful to compare the
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FIG. 4. Transverse energy distribution dN/Etrans12 for Au+Au
reactions at 60A MeV (left) and 150A MeV (right). Unfiltered (solid
lines) and filtered (dashed lines) QMD results are compared with the
data. Vertical lines show the experimental centrality cuts for central
events.
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FIG. 5. (Color online) Multiplicity distribution of intermediate
mass fragments. We compare for all events unfiltered (full line) and
filtered (dashed line) QMD simulations with Au+Au data (60A MeV
left and 150A MeV right).

simulations with the INDRA data for selected centrality bins.
In Fig. 4, we display the (Etrans12) distributions for unfiltered
(full line) and filtered (dashed line) QMD events as well as
for the INDRA data. The normalization is arbitrary because
in our simulation the maximal impact parameter is bmax =
12 fm. The transverse energy distribution of semiperipheral
and central collisions are well reproduced. Please note that
the Etrans12 distribution is also modified by the filter: the filter
reduces 〈Etrans12〉 by 13 (23)% at 60A(150A) MeV.

V. FRAGMENT DISTRIBUTIONS, MULTIPLICITIES, AND
SPECTRA

After having seen that the transverse energy distribution of
the light charged particles in the filtered simulations agrees
well with that of the INDRA data, we ask next whether
fragments are also reasonably reproduced. In Figs. 5 and 6,
we display the multiplicity distribution of intermediate mass
fragments (3 � Z � 25). Figure 5 displays the distribution for
all impact parameters; Fig. 6 shows the distribution for central
events selected according to the experimental cut in Etrans12.
These central events correspond to a geometrical cross section
of 3.14 fm2. We see, first of all, that the filter reduces the
fragment multiplicity considerably and brings the distribution
close to the experimental one. In Fig. 5, one sees the lack
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FIG. 6. (Color online) Same as Fig. 5, but for central events.
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FIG. 7. (Color online) Fragment distribution. We compare central
events unfiltered (full line) and filtered QMD (dashed) simulations
with data.

of events with a low multiplicity, a consequence of the fact
that we stopped the simulations at b = 12 fm. For central
Au+Au reactions at 60A MeV, the filtered QMD events give
the right form of the distribution but overpredict slightly the
multiplicity. At 150A MeV, the form as well as the absolute
value is well reproduced. Figure 7 shows the fragment yield
and Fig. 8 the charge of the heaviest fragment for central
reactions in Au+Au at 60A, 100A, and 150A MeV. Again
we see that these distributions are well described at 100A
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FIG. 8. (Color online) Same as Fig. 7, but for distribution of the
heaviest fragments.
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FIG. 9. (Color online) Energy distribution of Z = 3 and Z = 5
fragments from central events.

and 150A MeV despite the considerable changes in this
distribution between these two energies. At 60A MeV, we
see that we overpredict the fragment yield above Z = 25. This
points once more to the difficulty in identifying the medium
mass fragments in the simulations at this energy because of
their very small relative momentum. The energy distribution
for the Z = 3 and Z = 5 fragments is shown in Fig. 9 for 60A

and 150A MeV. The slope is well reproduced by the QMD
simulation in all cases, but deviations occur at small Ec.m.

energies for Z = 5 at 150A MeV. Experimentally, the peak is
close to the Coulomb barrier, whereas in the simulations the
fragments are less stopped. This transparency is also seen for
larger fragments.

VI. IS THERE AN EQUILIBRATED SOURCE IN
CENTRAL COLLISIONS?

As we said in the Introduction, there are two different
approaches to describing multifragmentation. If the statistical
picture were correct, we would expect that in central collisions
the nucleons in a fragment come in almost equal parts from
projectile and target. For the system 50A MeV Xe+Sn, the
dynamical calculations showed that fragments are dominated
either by projectile or by target nucleons, and only in rare cases
fragments are formed in which both are present with about the
same weight [19]. This situation is different for the heavier
Au+Au system. Figure 10 shows that in central collisions,
fragments of every mixture of projectile and target nucleons
can be observed. Thus, there exist fragments with the same
number of projectile and target nucleons. This is true for both
energies and for different fragment sizes. If we concentrate
on fragments which are finally observed at midrapidity
(60◦ � θc.m. � 120◦), we see this effect to be enhanced (Fig. 11).
Here, fragments composed of a similar number of projectile
and target nucleons dominate. Thus, central Au+Au collisions
show complete mixing, and therefore statistical models can
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FIG. 10. (Color online) QMD prediction of fragment composition
in terms of nucleons initially in the target for A = 6 (left) and and
A = 16 (right) in central Au+Au collisions (b � 3 fm). Full(dashed)
line shows the distribution for 60A (150A) MeV.

be employed to study the fragment yields or fragment
multiplicities. Does this mean that the system has also reached
equilibrium in the dynamical variables? To study this question,
we investigated the correlation between the composition of
a fragment and its velocity in the center-of-mass system. If
equilibrium had been obtained, we would see a flat distribution,
because in equilibrium all nucleons have the same distribution
independent of their origin. As displayed in Fig. 12, the result
of the QMD calculations shows, on the contrary, a strong
correlation even at midrapidity where complete mixing has
been observed. Thus, the dynamical degrees of freedom have
not attained equilibrium.

To look further into this question, we calculated the mean
squared rapidity variances in the impact parameter direction
〈y2

x 〉 and in the longitudinal direction 〈y2
z 〉 for Au+Au at 150A

MeV. In a system in which the dynamical degrees of freedom
are equilibrated, we expect the ratio R = 〈y2

x 〉/〈y2
z 〉 = 1. QMD

as well as both experiments, FOPI and INDRA, show that
global thermalization is not achieved; Fig. 13 displays the
results. We see that protons are close to an equilibrium in
the dynamical variables (R ≈ 0.9) but for fragments the value
of R is well below 1. Moreover, the ratio is a function of
the fragment charge and decreases rapidly. In QMD this is
understandable: as we will see, the majority of fragments
are surviving initial state correlations and the fragments are
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FIG. 11. (Color online) Same as Fig. 10, but for midrapidity
fragments.
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FIG. 12. (Color online) QMD predictions of the correlation
between the fraction of entrained target nucleons and the longitudinal
fragment velocity in the center of mass for fragments with 6 � Z � 10
in central Au+Au reactions.

not decelerated substantially in the longitudinal direction.
Therefore, their kinetic energy is, in first approximation, pro-
portional to their atomic number A. In terms of purely thermal
models, this means that the source properties depend on the
fragment mass. To make two independent 4π experiments
comparable [20], both the ALADIN/INDRA and the FOPI
group have made substantial efforts to determine the most
central events. To determine central events, one plots all events
as a function of a certain centrality definition (Erat, Etrans12, . . .)
and takes then those events that correspond to a cross section
σ < π (4 fm2) assuming that the total reaction cross section
is known. It is impossible to model this criterion precisely in
QMD. Therefore, we have taken in the QMD events an impact
parameter cut of b = 2 fm (see Fig. 3).

VII. BIMODALITY

If a finite system undergoes a first order phase transition,
bimodality [21] is observed. It may even exist if a sizable
fraction of the initial momentum is not relaxed [22], as is
the case in heavy ion reactions. Bimodality in systems with a
phase transition means that for the same value of the control
parameter, the two phases—the ordered (liquid) and disordered
(gas)—are present. Experimentally, the control parameter of
the phase transition is very difficult to access, if at all, and
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FIG. 13. (Color online) R = 〈y2x〉
〈y2z〉 as a function of fragment

charge for central events in Au+Au reactions at 150A MeV measured
by INDRA and FOPI collaborations [20]. Data are compared with
the results of the QMD calculation.

so one has to connect it to some experimentally observable
quantity.

To study whether a liquid-gas phase transition can be
observed in heavy ion reactions, it has been suggested in
Ref. [23] to study quasiprojectile decay sorted by quasitarget
temperature, estimated from the total transverse energy of light
particles emitted at backward angles in the c.m. frame. If a
system is bimodal in the same event class, a liquidlike phase
(events with one large fragment) and a gaslike phase (events
with no large fragment) coexist.

To quantify the bimodality, one may define as in Ref. [23]

a2 = (Zmax − Zmax−1)/(Zmax + Zmax−1) (1)

where Zmax is the charge of the largest fragment, while Zmax−1

is the charge of the second largest fragment, both observed in
the same event in the forward hemisphere. If the system shows
bimodality, we will observe in the same event class two types
of events: one with a large a2 (one big fragment with some
very light ones), the other with small a2 (two similarly sized
fragments). Events with intermediate values of a2 should be
rare.

In the INDRA Au+Au experiments, bimodality has indeed
been observed. In the same Etrans12 bin, the distribution of
the largest fragment shows two well-separated maxima,and
a2 as a function of Etrans12 varies very rapidly [23]. The
question is whether this observation can only be explained by
a phase transition in a finite size system or whether alternative
explanations can be advanced.

As will be discussed in a separate paper, simulation pro-
grams such as QMD also show bimodality [24]. As an example,
we display in Fig. 14 Zmax for filtered events at 150A MeV. We
also made sure that the unfiltered events had qualitatively the

FIG. 14. (Color online) Zmax as a function of asymmetry parame-
ter for different experimental centrality bins for filtered QMD events
at 150A MeV.
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FIG. 15. (Color online) Most probable a2

in unfiltered QMD simulations as a function
of Etrans12/Ec.m. (left) and as a function of the
impact parameter (right). As in experiment, we
see in both cases a fast transition.

same structure. The bin 1419 � Etrans12 < 1892 MeV shows
the presence of two types of events with quite different Zmax, as
may be inferred from the right figure in the bottom row. If one
studies the origin of the bimodality in QMD simulations, one
realizes that at large impact parameters the momentum transfer
between projectile and target is not sufficient to decelerate
the nuclei substantially. At the end of the reaction, we find
two excited heavy remnants. At small impact parameters,
the stopping is not complete, but the decelerated projectile
and target remnants do not separate anymore. They remain
connected by a bridge of matter from nucleons originating
from the overlap zone, as will be discussed in Sec. VIII. At
the end of the reaction, this connected matter fragments. The
break points are given by local instabilities. Therefore, small
fragments of quite different sizes are formed. This general
behavior—that a bridge of matter is formed between projectile
and target in heavy ion collisions at intermediate impact
parameters—has already been found in BUU calculations [25].

The transition between the two reaction scenarios is rather
sharp. Therefore, we see a sudden increase of the a2 value
if we increase the impact parameter (Fig. 15, right). Because
the stopping and the impact parameter are strongly correlated
we observe a similar increase if we plot a2 as a function of
Etrans12 as shown in Fig. 15 left. Due to the increase of the
nucleon-nucleon cross section with energy for a given impact
parameter the momentum transfer depends on the beam energy.
Therefore the value of b for which this transition takes place
varies with the beam energy. On the contrary, the value of
Etrans12, which measures directly the energy transfer, remains
constant as observed also in the INDRA experiments.

VIII. THE DYNAMICS OF THE REACTION

A. Transition between participant and spectator fragmentation

To study the evolution of the reaction mechanism from
participant to spectator dominated multifragmentation, we
use semicentral reactions 6 � b � 8 fm and medium mass

fragments (10 � A � 20). For this purpose, we use now the
fact that in the QMD simulations one knows the position and
momentum of all particles at any given point in time, and
therefore it is possible to study the history of those nucleons
which are finally part of the different fragments. In Figs. 16
and 17, the color coding shows where the nucleons are,
independent of whether these nucleons will finally be part
of a fragment. The size of the squares gives the percentage
of the nucleons (as compared to all nucleons) that end up
finally in fragments of the selected class (here, 10 � A � 20).
We plot both these distributions for different time steps, on
the right-hand side for the reaction at 60A MeV and on
the left-hand side for 150A MeV in Fig. 16. This figure is
supplemented by Fig. 17 which shows the initial and final
momentum distribution using the same coding. We see, first
of all, that at both energies, the initial distribution of those
nucleons which finally end up in fragments is different from
that of all nucleons. This means that strong initial-final state
correlations are present, which we will study now in detail.
In coordinate space, the nucleons that finally form fragments
10 � A � 20 are located toward the reaction partner. At
150A MeV, one sees clearly that they come from the spectator
matter. The time evolution for both energies is rather different
and best seen if one compares the positions at 80 fm/c of
60A MeV with those at 40 fm/c of 150A MeV. At 60A MeV,
we observe neck formation as at lower energies, and the future
fragment nucleons are concentrated in the neck, i.e., in the
center of the reaction. At 150A MeV, the nucleons show a
completely different behavior. The future fragment nucleons
are those which are not in the geometrical overlap of projectile
and target. This is a clear indication that between 60A and
150A MeV, the transition between participant and spectator
fragmentation takes place, a transition which was believed
to take place at considerably higher energies and has been
observed at energies above 400A MeV [26].

In addition to the initial-final state correlations in coordinate
space, there are similar correlations in momentum space.
At 150A MeV, future fragment nucleons have a transverse
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FIG. 16. (Color online) QMD predictions of the distribution of
all nucleons (colors) and those nucleons which belong finally to a
fragment 10 � A � 20 (boxes) for collisions 6 � b � 8 fm for Au+Au
at 150A MeV (left) and 60A MeV (right) from t = 0 (top) to
t = 200 fm/c (bottom)

momentum away from the reaction zone (and thus the
observed transverse fragment velocity is partially due to
the selection of the fragment nucleons [27]). At 60A MeV,
the correlations are less important, but nucleons with a
smaller longitudinal momentum have a higher chance of
being part of a IMF than do those with a larger longitudinal
momentum.

Central collisions are rather similar to the semicentral
ones at both energies. Again, the fragment nucleons come
predominantly from the overlap zone at 60A MeV and from
the spectator matter at 150A MeV. Therefore, we show
only the momentum space distributions, which are displayed
in Fig. 18. The average deceleration is of course much
stronger as compared to the semicentral reactions, but the

FIG. 17. (Color online) Same as Fig. 16, but for the momentum
space distribution.

fragments at 150A MeV, coming from the spectator matter,
are less influenced by this. They still have a quite large
momentum. However, the matter at midrapidity is now so
dense that some fragments are created, forming the midrapidity
source discussed above. The in-plane flow seen in semicentral
collisions has almost disappeared, as expected. This transition
between participant and spectator fragmentation is also visible

FIG. 18. (Color online) Momentum space distribution of all
nucleons (colors) and those nucleons which belong finally to a
fragment 10 � A� 20 (boxes) for central collisions 0 � b � 4 fm for
Au+Au at 150A MeV (left) and 60A MeV (right) at t = 0 (top) and
t = 200 fm/c (bottom).
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FIG. 19. Multiplicity of intermediate mass fragments as a func-
tion of the impact parameter for Au+Au reactions at 60A, 100A,
and 150A MeV. Full (dashed) line shows unfiltered (filtered) QMD
events.

if one plots the multiplicity of IMF’s as a function of the
impact parameter, as done in Fig. 19. Whereas at 60A MeV,
the multiplicity peaks at b = 0, and at 150A MeV, semicen-
tral events show a higher multiplicity. The filter modifies
this observation which agrees with the data [28,29] only
slightly.

B. Small IMF’s come from many sources

For semicentral collisions, the initial-final correlations of
those nucleons ending up in 10 � A � 20 fragments are almost
identical to that of 6 � A � 10 fragments. Therefore, we do
not display them. A difference can be observed in central
collisions. The time evolution in coordinate space is presented
in Fig. 20 whereas that in momentum space is presented in
Fig. 21. Here, at 150A MeV , in addition to the fragments
from the spectator matter, a midrapidity source develops (seen
clearly in the second row of Fig. 20) which finally creates
a bridge between target and projectile spectator fragments,
seen in the bottom row, similar to what we have seen for
large fragments at 60A MeV. This is reflected, of course, in
momentum space (Fig. 21) where we see—in contradistinction
to the 10 � A � 20 data—a midrapidity source. It has never
been observed before in simulations of smaller systems
that this midrapidity source, which reminds us of the neck
formation at lower energies, emits fragments of this size. Also,
the initial-final state correlations in coordinate space are much
weaker than those for the larger fragment class, 10 � A � 20.
We see that quite a few of these fragments come from the
participant matter.

FIG. 20. (Color online) Distribution of all nucleons (colors) and
those nucleons which belong finally to a fragment 6 � A� 10 (boxes)
for central collisions 0 � b � 4 fm for Au+Au at 150A (left) and
60A MeV (right) from t = 0 (top) to t = 200 fm/c (bottom)

IX. HOW FRAGMENTS CAN SURVIVE THE HIGH
DENSITY ZONE

In Sec. VI, we saw that part of the fragments are made
of nucleons which have traversed the reaction zone. We have
shown in Ref. [19] how this can happen for the system Xe+Sn.
There, we found that fragments are made of nucleons which
have passed the reaction zone without having had collisions
with a large transverse momentum transfer. Nucleons with
similar momenta which are close in coordinate space suffer
the potential interaction in the same way and therefore are
collectively deviated by potential gradients. Therefore, they
leave collectively the interaction zone without the initial
correlation among them being destroyed. Therefore, in QMD
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FIG. 21. (Color online) Same as Fig. 21, but for the momentum
space distribution.

calculations, fragments at forward and backward rapidity
present those initial state correlations which have not been
destroyed by hard binary collisions. If these collisions become
more frequent, for example, by increasing the beam energy
and thereby reducing the influence of the Pauli blocking,
less fragments are observed, because more of the initial state
correlations have been destroyed.

Here, we explore whether this mechanism remains valid
even for the large Au+Au system. To study this question, we
make use of the fact that we know the position and momentum
of all nucleons during the whole reaction. This allows us to
trace back the history of all nucleons and especially those
which are finally part of a fragment i which contains A

nucleons. For these nucleons, we define three quantities, the
average momentum

�P i(t) = 1

A

A∑
j=1

�pj (t), (2)

the position of the center of mass of the fragment

�Ri(t) = 1

A

A∑
j=1

�rj (t), (3)

and the average transverse (with respect to the beam momen-
tum) kinetic energy of the fragment nucleons in the fragment
rest system

	i(t) =
A∑

j=1

(p⊥
j (t) − P i⊥(t))2

2mA
. (4)

	i(t) is sometimes sloppily called “fragment temperature.”
The finite value at t = 0 is due to the Fermi motion. We
compare now this fragment temperature with the environment.
The environment is defined by those nucleons which at the

FIG. 22. (Color online) Time evolution of central density, 	, and
binding energy Ep of Z = 3 fragments during the reaction.

same time are closer than 2.5 fm to the center of the fragment
�Ri(t) and do not belong to the fragment i. For those nucleons,

we define as well the average kinetic energy

	env
i (t) =

B∑
j=1

(p⊥
j (t) − P i⊥

env(t))2

2mB
. (5)

P i⊥
env(t) is the mean transverse momentum of the B nucleons of

the environment. The number of nucleons in the environment
changes during the reaction. At the very end of the reaction,
there is usually no nucleon left in the environment because all
fragments and single nucleons are well separated in coordinate
space. 	env

i (t) can sloppily be called the “temperature of the
environment.” If the fragments are only created at freeze-out
when the system is in thermal equilibrium, we would expect
that before freeze-out there is no difference between the
fragment temperature and the temperature of the environment.
This is because of the very fundamental fact that if a system
is in thermal equilibrium, all two or more body correlations
are lost, and therefore eventually correlations existing before
freeze-out cannot play a role in the production of the fragments
at freeze-out. In other words, every nucleon has the same
chance to be finally part of the fragment i, and therefore the
nucleons of the environment and the fragment nucleons should
have the same properties.

The result of the simulations, averaged over all M fragments
i of the size Z = 3, is displayed in Fig. 22. We see a
quite different time evolution of 	 and 	env. When passing
the reaction zone, where the density is high, 	env increases
strongly, whereas 	 remains almost constant. The fragment
nucleons do not take part in the heating of the system. At the
end of the reaction, 	env becomes smaller because the high
relative momentum particles have already left the environment.
Only at the end of the reaction does 	 increase, because
the fragments leave the interaction zone with a deformed
shape, as can be directly seen in the simulations. By regaining
their spherical shape, the (negative) binding energy increases
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and—because of energy conservation—the (positive) kinetic
energy of nucleons in fragments has to increase as well in order
to conserve the total energy. At this late stage, the fragments
are separated, and there are no environment nucleons around;
therefore, the temperature of the environment is 0. Thus, we
see that the mechanism we have found for the smaller Xe+Sn
system [19] is still valid for the large Au+Au system. The
mean free path of the Pauli-blocked cross section for large
transverse momentum transfer is still well below the diameter
of the system, and therefore initial-final state correlations can
survive.

X. CONCLUSION

Using the QMD model, we have investigated multi-
fragmentation data in Au+Au reactions between 60A and
150A MeV obtained by the INDRA Collaboration. We observe
that in this energy range, the transition between fragmentation
of participant matter and fragmentation of spectator matter
takes place. We see for the first time that midrapidity fragments
are dominantly formed of an equal number of projectile
and target nucleons, as required if the system comes to
equilibrium. This explains the success of statistical approaches
in reproducing particle multiplicities in this phase space region.
This mixing appears, although the particle momentum does not

equilibrate. Nucleons coming from the projectile (target) carry
still a fraction of their initial collective momentum, especially
if they end up in fragments. In fragments at midrapidity,
which on average contain the same number of nucleons from
projectile and target, these “memory effects” compensate and
do not influence the fragment momentum. Free nucleons come
closest to equilibrium because in order to be free they have
usually suffered collisions with a large momentum transfer.
A common source of all fragments cannot be identified;
the source properties depend on the fragment size. This
observation has been confirmed now independently from the
data of the INDRA and the FOPI collaborations. Without
passing the results through a filter, theory and experiment
cannot be compared. After filtering, the QMD simulations
describe well the energy-dependent event centrality, the mul-
tiplicity distribution of fragments, the fragment yield, and the
distribution of the largest fragment. They describe as well the
energy distribution of the smaller fragments. Even for this large
system, forward emitted fragments are initial state correlations
in coordinate and/or momentum space which are not destroyed
during the reaction by collisions with a large momentum
transfer, similar to the observations for much smaller systems.
Thus, for the largest system explored so far, the system comes
close to equilibrium, but nonequilibrium effects still dominate
outside a small midrapidity zone.
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