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Limitations of the distorted-wave impulse approximation in describing the energy dependence of
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We report differential cross section measurements for the stretched transition from the 10B ground state
(J π = 3+) to the 10Be ground state (J π = 0+) in the 10B(n, p)10Be (g.s.) reaction. These data were obtained
over the energy range from 70 to 240 MeV, covering momentum transfer values from 0.6 to 2.5 fm−1. In this
momentum transfer range, the isovector tensor effective interaction dominates the transition. Cross sections are
compared to zero- and finite-range distorted wave impulse approximation calculations using modern free and
density-dependent effective interactions and a transition density consistent with (e, e′) data. Good agreement is
observed at energies above 120 MeV, but below this energy the cross sections are larger than the calculated values
by more than 40%. The implications for DWIA calculations are discussed.
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I. INTRODUCTION

The major tool for describing the reaction mechanism of
nucleon-induced inelastic scattering and charge exchange at
intermediate energies (above 50 MeV) is the distorted wave
impulse approximation (DWIA). The DWIA is a single-step
calculation where the transition potential is replaced by
an effective interaction fitted to the nucleon-nucleon (NN )
scattering amplitudes. This is well known to reduce the size of
the perturbation and improve the accuracy in the single-step
calculation [1]. In addition, there are many cases where the
nuclear structure of the transition is also well known, often
from a combination of shell model considerations and inelastic
electron scattering data. This makes possible tests that explore
the limits of the DWIA and point toward ways that it can
be improved. Here we will present measurements of the
energy dependence of the 10B(n, p)10Be(g.s.) differential cross
section between 70 and 240 MeV and show how this allows
us to explore the transition from a regime of good agreement

at the higher energies to much poorer agreement at the lower
energies.

It is crucial to such an endeavor that the underlying NN

interaction reproduces NN data to high precision [2–5],
especially in recent experiments in this energy range ( [6–8],
which supersede [9]). An effective NN interaction for DWIA
calculations can now be constructed that includes the medium
effects of Pauli blocking, nuclear binding, and relativity
[10–12]. (The addition of meson spectral properties [13] or
�-isobars [14] would also seem to be well motivated, but is
not needed to match nuclear matter properties [15].)

At the same time, there are many nuclear transitions whose
structure is particularly simple and well understood. This
structure is often described within DWIA as a summation over
the contributing particle-hole pairs that represent the transition
to the excited state of the target nucleus. In the case described
in this paper, we will be considering a “stretched” transition
in which the particle and hole spins are maximally aligned
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(Jtr = jp + jh = �p + �h + 1). If the hole state comes from
a valence orbital that is also the highest angular momentum
orbital in the nucleus, and if the transition goes to another
orbital of that angular momentum or higher, then there
is essentially only one particle-hole configuration that can
contribute. This eliminates the difficulty of obtaining the
relative strengths of different particle-hole terms, and it allows
the amplitude and shape of the wave functions that make up
the transition density to be determined from electron scattering
measurements.

In the case of the 10B(n, p)10Be(g.s.) transition there are
additional restrictions on the parts of the effective NN inter-
action that are allowed to participate. The charge-exchange
nature of the reaction plus the isospin of the target (T = 0)
requires that only isovector amplitudes appear in the effective
NN interaction. The unnatural parity (Jπ = 3+) of the tran-
sition also eliminates any participation by spin-independent
amplitudes. What is left comes mainly from the tensor force,
mediated mostly by the pion and reduced at short range by
the ρ-meson. Spin-spin contributions, which appear at lower
energies and lower momentum transfers, are relatively minor,
and spin-orbit contributions are almost inconsequential. The
resulting tensor effective NN interaction is well constrained,
particularly by polarization observables in the NN system, and
roughly independent of energy [16]. This part of the effective
NN interaction is also relatively unaffected (compared to
isoscalar central and spin-orbit terms) by modifications arising
from the nuclear medium [17]. This provides an interaction
that is very well known. Because the spin operators for the
direct and exchange parts of the tensor interaction are different,
finite-range DWIA calculations are usually necessary for a
faithful reproduction of the effects of the exchange amplitude.
However, the zero-range approximation becomes better as the
angular momentum transfer increases and gives a quantita-
tively useful prediction even at Jtr = 3. In Sec. III we will
compare zero- and finite-range DWIA calculations.

The analog 10B(e, e′)10B (1.74 MeV) transition has been
measured to particularly high momentum transfers in trans-
verse electron scattering [18]. The momentum transfer depen-
dence constrains the radius and diffuseness of a Woods-Saxon
potential used to provide the nuclear p3/2 wave functions for
the particle and hole involved in this 3+ transfer. The size
of the (e, e′) cross section also gives the normalization of
the transition density. Assuming isospin is a good quantum
number, we can take the shape and magnitude of the transition
density from the (e, e′) measurements and use them to set
the scale of the (n, p) cross section that is the crucial focus
of this paper. Once this scale has been established, we will
find good agreement with the measurements at the upper end
of the energy scale and progressive divergence as the energy
goes down.

The experiment that we describe in the next section
utilized the white neutron source at the Los Alamos National
Laboratory. Unique to this facility is the ability to make cross
section measurements simultaneously over a broad energy
span, thus eliminating relative normalization issues when
looking at the energy dependence of the tensor force. The
fact that the stretched transition in the 10B(n, p)10Be reaction

goes to the ground state of 10Be and our energy resolution is
sufficient to separate the ground state transition from other
nuclear states means that the background in the detection
of the outgoing protons is small. Angular distributions were
separated into six energy bins with centers between 70 and
240 MeV. These data covered the momentum transfer range
from 0.6 to 2.5 fm−1.

Originally, the measurements of the (n, p) cross section
were compared to zero-range DWIA calculations based on
the Franey-Love interaction [19]. This showed that between
70 and 240 MeV the ratio of the measured cross section to
the calculation fell by over 40% when it was expected to
remain unchanged. The Franey-Love interaction was based on
an earlier energy-dependent phase shift analysis by Arndt [20]
that resulted in a particularly low value of the J = 1 mixing
parameter, ε1 (see Table IV of Ref. [20]), at the lower energies.
This raised the question of whether the disagreement was a
result of this feature of the description of the tensor interaction.
So the analysis was repeated with a more modern interaction
[11] that is an improved version of the Bonn-B potential [15]
with excellent reproduction of the NN observables below
the pion production threshold. In addition, the zero-range
calculations made earlier were repeated with full finite range
in order to properly include the effects of particle exchange,
an important feature in the description of the tensor force.
Lastly, Pauli blocking and dispersion effects were added. The
last change made some improvement in the description of
the energy dependence compared to the use of a modern free
interaction. But inconsistencies in the normalization as large
as 45% still remain across the low energy range.

The implications of the above result are considered by
making consistency checks with the constraints on the tensor
interaction provided by the NN data. It is shown that leeway to
accommodate a 45% effect does not exist. Thus the problem
must represent a limit on the applicability of the DWIA to
handle nucleon-induced reactions at the lower energies studied
here. To further explore this limit, we compare the energy
dependence of the 10B(n, p)10Be reaction with the results for
unnatural-parity isovector transitions measured with (p, p′)
and (p, n) reactions on neighboring nuclei. We find a range
above mass 20 where good agreement with the DWIA energy
dependence is obtained. This allows us to set bounds in
energy and mass on the validity of DWIA calculations of
isovector tensor transition strength and leads us to suggest
possible improvements of DWIA reaction models. The paper
is organized as follows: The details of the experiment and cross
section measurements for the 10B(n, p)10Be(g.s.) reaction are
given in Sec. II. Comparisons of the DWIA calculations using
various model parameters are compared to the data in Sec. III.
The conclusions of the paper are given in Sec. IV.

II. EXPERIMENTAL RESULTS

The experiment was conducted at the Weapons Neutron
Research Facility [21] located at Los Alamos National Lab-
oratory. This facility makes use of the Clinton P. Anderson
Accelerator Facility 800-MeV proton beam. The pulsed and
bunched proton beam was focused onto a 7.5-cm thick tungsten
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FIG. 1. Top view of experimental geometry. See text for a detailed
description.

target producing a pulsed white neutron flux with energies
up to 800 MeV. The experiment was located 90 m from the
production target where time-of-flight techniques could be
used to determine the neutron energy.

The detection system used to obtain the data has been used
for other experiments [22,23] but was modified in this case as
described below. Figure 1 shows the view looking down on the
experimental arrangement. The solid angle varies depending
on the target being analyzed. In the figure a trajectory is shown
from the 10B target (fourth target position) with a horizontal
scattering angle of 30◦. The total solid angle given by the CsI
detector array and the 10B target position is approximately
240 msr (vertical angle acceptance ranges from −12◦ to +12◦
and the horizontal angle acceptance ranges from 15◦ to 50◦).
The neutron beam is shown going from left to right and has
been collimated to a square beam with an area of 10 × 10 cm2.
For this setup, up to four targets can be studied simultaneously
using the neutron beam. Each target has an associated wire
chamber (15 × 15 cm2) located directly downstream which
was used to identify the target in which any charged particle
producing reaction occurred. An additional wire chamber (veto
chamber) was used upstream to tag any charged particles
that remained in the neutron beam. In addition to the veto
chamber, permanent magnets located along the flight path were
used to sweep charged particles out the beam as well. The
180 mg/cm2 10B enriched target was 91.5% 10B by weight
and was located in the fourth target position as shown in
the figure. Charged particles originating from the target pass
through two large area drift chambers (58 × 32 cm2), a thin
(0.50 cm) NE102 scintillator and finally deposit energy in
one of the 15 CsI(Tl) (8.9 × 8.9 × 15.2 cm3) detectors. The
CsI detectors are stacked into an array of three tall by five
wide as shown in Fig. 1. The thickness of the CsI can stop
a proton with a maximum energy of 260 MeV. The higher
energy protons pass through the CsI depositing less energy.
The drift chambers shown allow the two dimensional position
of the charged particle to be determined to a precision of
125 micron (FWHM) in the plane of the drift chambers. From
the two positions given by the drift chambers, the angle can
be determined by extending a line through the two points and

FIG. 2. Scatter plot of Delta E from the NE102 scintillator versus
energy from the CsI detector. Loci for deuterons and protons are
shown.

calculating the angle between the beam axis and the charged
particle trajectory.

Particle identification is determined by measuring the
energy deposited in the thin NE102 scintillator and the total
energy deposited in the CsI detector. By plotting these two
variables the proton and deuteron particles can be easily
discriminated as shown in Fig. 2. Protons with energies
larger than 260 MeV are not observed in this plot because
a neutron energy cut has been placed on the incoming neutron
energy, which is independently measured through time of
flight techniques. The intrinsic resolution of the CsI crystal,
the neutron time of flight, target thickness and straggling all
contribute to the proton energy resolution. The neutron beam
energy resolution (FWHM) varies from 0.2 MeV for 40 MeV
neutrons to 1.8 MeV for 260 MeV neutrons.

Typical proton energy spectra near the peak of the (n, p)
cross section (laboratory angle of 24◦) are shown in Fig. 3 for
the six neutron energy bins used in this experiment. The data
show peaks corresponding to transitions to the 10Be ground
state and to the first excited 2+ state at 3.4 MeV. The curves
for the peak shapes are guides to the eye, not fits for peak
sums. Cross sections were based on sums of the spectra over
the region representing the ground state peak. The incident
neutron energies were binned in intervals of 20 MeV from
60 to 100 MeV and in intervals of 40 MeV from 100 to
260 MeV. Proton emission angles were binned in 4◦ intervals.
The energy binning is acceptable for this particular reaction
because the differential cross section varies slowly over this
energy range.

The 10B target has a few contaminants. The first is 11B which
contributes 8.5% by weight to the target. The protons from the
11B(n, p)11Be(g.s.) reaction (Q-value of −10.727 MeV) are
well separated in energy from the protons that result from
the 10B(n, p)10Be(g.s.) reaction (Q-value = 0.226 MeV) and
therefore do not fall into the peak of interest. In addition, there
is a small percentage (≈5%) of H and C due to the binder. For
these contaminants, the kinematics are such that the protons
from C(n, p) and H(n, p) reactions do not interfere with the
energy peak of interest for most of the energies and angles
in this analysis. Corrections were required for the averages
energies of 70, 90, and 120 MeV and average laboratory
angles of 20.4, 24.1, and 27.9 degrees. These corrections were
typically around 5% except for the cases at 70 and 90 MeV at
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FIG. 3. The 10B(n, p)10B excitation energy spectra at a laboratory
angle of 24◦ and at average neutron energies from 70 to 240 MeV.
The ground state and 3.4 MeV transitions are easily resolved. The
scales have been increased for the two largest energies.

20.4◦ in which a 20% and 10% correction respectively were
determined.

Since the incident neutron flux is not measured in the
experiment, the 10B(n, p)10Be(g.s.) cross sections are deter-
mined by normalizing to the H(n, p)n cross sections. For the
data presented here, the n + p cross sections given by the
SM99 phase shift solution of Arndt and Roper [24] were used
for normalization. The (n, p) differential cross sections were
calculated using

dσ

d�
(En,Ep, θ,) = N (10B)

N (H )
· σn−p(En, θ )

(
ρt

A

)
CH2(

ρt

A

)
10B

· d�T 2
n−p(θ )

d�T 4
10B(θ )

· NIn−p(Ep′)

NI10B(Ep)
, (1)

where the N (A) are the number of events in the
10B(n, p)10Be(g.s.) and the H(n, p)n peaks, ρt is the areal
density of the target, d� is the solid angle, and NI is
the nuclear interaction correction for CsI [25–27]. En and
Ep are the neutron and proton energies in the (n, p) reaction

while Ep′ is the energy of the proton from H(n, p)n scattering.
The ratio of the solid angles in Eq. (1) is typically close to
one and accounts for the fact that the 10B and CH2 targets are
in different positions along the neutron beam line. The ratio
of the nuclear interaction corrections were within 10% of one
for most of the angle and energy bins. The final data will be
shown in the next section.

III. DWIA CALCULATIONS

In this section we will present a variety of DWIA cal-
culations as they were developed historically. We start with
a detailed discussion of the original zero-range calculations
that incorporated the Franey-Love effective NN interaction
[19]. These made use of the programs ALLWRLD [28] and
TAMURA [29]. These calculations failed to reproduce the
energy dependence of the 10B(n, p)10Be(g.s.) cross section.
Subsequently, the question was raised whether this failure
arose because of some inadequacy in either the reaction
model or the isovector tensor part of the interaction. In order
to address the importance of finite-range calculations for
an adequate description of the exchange part of the tensor
interaction, we switched to the program DWBA86 [30]. The
older Franey-Love effective NN interaction was replaced with
a more modern one, a variation on the Bonn-B potential that
reproduced the modern NN database [11]. Lastly, medium
modifications were included. We will review all of these efforts
in this section and end with a summary of the DWIA situation
in calculating the cross section for this transition.

A. Zero-range DWIA calculations

The zero-range calculations are similar to those presented
by Baghaei [31] where the analog 10B(p, p′)10B reaction to
the 0+ state at 1.74 MeV was studied with 200 MeV polarized
protons. Up to effects caused by differences in the particle
and hole binding energies, the nuclear transition densities are
the same. The calculation follows the approach of Carpenter
and collaborators [31–35]. The program ALLWRLD was used to
calculate the optical potentials for the incoming neutron and
outgoing proton channels by folding the transition densities
with the NN effective interaction. Finally, these results were
used as input into the DWIA program TAMURA where the
differential cross sections were calculated.

The optical potentials were constructed by folding the
Hamburg G-matrix [36,37] with Cohen and Kurath [38] shell
model densities adjusted to reproduce the available weak and
electromagnetic data and employing an approximate treatment
of exchange. Baghaei [31] used these potentials to calculate
proton elastic scattering from 10B at 200 MeV and found
reasonable agreement with the elastic scattering cross section
data. A significant J = 2 multipole contribution was needed
at angles past 30◦. This J = 2 piece was not included in
the calculation of the optical model wave functions as the
critical parts for a DWIA calculation lie at smaller angles
where the usual J = 0 piece dominates. The central real and
imaginary optical potentials for the energies between 70 and
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FIG. 4. Central real and imaginary optical potentials for the
n+10B channel folded from the Hamburg G-matrix.

240 MeV are shown in Fig. 4; the spin-orbit real and imaginary
potentials are shown in Fig. 5. The real central potential curves
show the progression from an attractive well at 70 MeV
to a double peaked and small potential at 240 MeV as the
1S0 NN phase shift moves toward its zero crossing near
250 MeV [2].

For the second part of the zero-range calculation, ALLWRLD

was used to construct a scattering potential by folding the
Franey-Love effective interaction [39] with the transition den-
sity. This density was described by a Woods-Saxon radial wave
function [40,41] and Cohen and Kurath (p3/2)2 shell model
amplitudes [38]. The radius (r0 = 0.875 fm) and diffuseness
(a0 = 0.707 fm) of the Woods-Saxon potential well were
adjusted to reproduce the transverse electron scattering for
the analog (e, e′) transition in 10B measured by Hicks [18].
For stretched transitions, the transition density ρs⊥ is related
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FIG. 5. Spin-orbit real and imaginary optical potentials for the
n+10B channel folded from the Hamburg G-matrix.
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FIG. 6. Transition densities for p(3/2) → p(3/2) in coordinate
and momentum spaces based on wavefunctions calculated for a
Woods-Saxon potential.

to the transverse electron form factor FT through [42–46]:

|FT |2 = 4π

Z2

(
2Jf + 1

2Ji + 1

) (
qh̄

2Mc

)2 (
gs

α

2

)2

|fsρ
s⊥|2, (2)

where gs
α is the spin g factor and fs is the proton charge form

factor given by

fs =
(

1

1 + 0.76·q2

12

)2

. (3)

The transition density is shown in Fig. 6 in both Cartesian
and momentum spaces. Figure 7 shows the high quality of the
agreement between the transverse form factor calculated using
Eq. (2) and the data from the 10B(e, e′)10B reaction to the state
at 1.74 MeV, the analog to the state being considered here [18].
The normalization (spectroscopic amplitude of 0.257) of the
calculated transverse form factor set the spectroscopic factor
for the DWIA calculation. Small MEC corrections were not
included in this fit to the data nor made to the data as they were
in the previous work [2].

10-7
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FIG. 7. Data for |FT |2 from the 10B(e, e′)10B and a fit using Eq. (2).
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FIG. 8. Angular distributions of the 10B(n, p)10Be (g.s.) reaction.
The cross sections have been binned into six energy bins ranging
from 70 to 240 MeV. The zero-range DWIA calculations using the
Franey-Love interaction (solid curve) and a modern free interaction
(dashed curve) are shown with the data. Each successive energy is
scaled up by a factor of 10.

Using the input provided by ALLWRLD, the program TAMVAX

(a revised version of TAMURA) calculated the reaction cross
sections in a zero-range approximation. The results for the
isovector 10B(n, p)10Be reaction to the 0+ final state are shown
by the solid curves in Fig. 8. The interaction was taken from the
closest of the preset energies of 100, 140, 175, and 210 MeV at
which the published Franey-Love interaction is tabulated [19].
The quality of agreement shown in Fig. 8 required that the
cross sections be renormalized by the factors plotted in the
top panel of Fig. 9. The errors in these normalizations were
estimated from a propagation of the errors in the cross sections
themselves as they influence the choice of the normalization
factor.

The shape of each cross section angular distribution is well
reproduced. The changes to the normalization vary smoothly
from a 30% increase at the lowest energies to a 20% decrease
at the highest. If all other aspects of the DWIA calculations
are correct, then one interpretation is that the strength of the
NN tensor interaction should be renormalized as a function
of energy to accommodate the differences shown in Fig. 9.
Before we conclude that this is the only interpretation, we will
investigate in the next subsection the quality of some of the
approximations that go into the zero-range DWIA, and then
consider the consistency of this result with what we know from
analyses of NN data.

B. Improved DWIA calculations

The first question that we wish to address is whether the
failure to obtain a uniform normalization as a function of
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FIG. 9. Normalization factors used to scale the calculated cross
section to the 10B(n, p)10Be reaction data. The calculations reflect
the Franey-Love interaction and zero-range DWIA (top), a modern
free interaction and finite-range DWIA (middle) and a BHF density-
dependent interaction and finite-range DWIA (bottom).

energy is the fault of the Franey-Love interaction. For com-
parison, we switched to a more modern interaction [11] that
reproduced the phase shift solution adopted by the Nijmegen
group for NN energies below 325 MeV [47]. This interaction,
an improvement of the Bonn-B potential [15], provided a
reproduction of NN data that is comparable to CD-Bonn [4] or
AV-18 [2]. The results, calculated with zero range, are shown
as the dashed curves in Fig. 8. These curves have the same
normalization as the zero-range Franey-Love calculations
(solid curves). There is no significant difference between the
quality of fit for the two sets of angular distributions that
would allow us to choose one or the other on the basis of
shape alone. Large differences between them are seen for the
largest momentum transfers and the lowest energies, but there
is no data with which to check these predictions. The general
increase in the cross sections at higher momentum transfer
may reflect the larger short-range tensor strength in the more
modern interaction.

Next we checked the zero-range approximation by replac-
ing it with a finite range treatment of the exchange parts of
the DWIA integral. For this, we used a different program,
DWBA86 [30]. As in the case with the zero-range calculation,
the optical potential was generated by folding the effective
interaction over the ground state density of 10B. Because we
finally wished to use density-dependent effective interactions,
this folding was made with the zero-range program LEA [48].
The point nuclear density for 10B was obtained from the charge
density [49] by unfolding the contribution from the proton
charge form factor [see Eq. (3)]. Both zero- and finite-range
DWIA calculations (TAMURA and DWBA86) employed the same
transition density adjusted in strength to match the transverse
(e, e′) data.
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FIG. 10. Angular distributions displayed as in Fig. 8, but in
comparison to finite-range DWIA calculations. The solid (dashed)
lines make use of density-dependent (free) modern interactions.

Figure 10 shows the same data as Fig. 8, this time with
calculations made using full finite range DWIA. The dashed
curves make use of the same modern free interaction [11] that
we just tested in zero range. Using finite range procedures
reduced the large momentum transfer cross section, causing
it to fall below even the zero-range Franey-Love treatment
beyond the range of the data. The normalizations as a function
of energy are shown in the middle panel of Fig. 9. For the
finite range cases, the angular distribution shapes did not
produce as small a value of chi square as we found for the zero-
range case. So instead the curves were matched at a particular
value of the momentum transfer. This was 1.0 fm−1 for 70, 90,
and 120 MeV (down-pointing triangles in Fig. 9) and 1.2 fm−1

for 90 through 240 MeV (up-pointing triangles). The cross
section for matching was obtained by extrapolating a Gaussian
best-fit function that reproduced the angular distribution at
each energy to the chosen momentum transfer. The overlaps
between matching at the two values of momentum transfers at
90 and 120 MeV agree within errors. This procedure results in
considerably larger errors for the normalization at the highest
energies because the matching point is near the edge of the
measured angular distribution. In spite of these larger errors,
it is clear that the normalization no longer varies linearly with
energy but now appears to approach a value of one as the
energy rises (see Fig. 9 middle panel). Excellent agreement
would be a value of one at all energies. The difference
between the normalizations for 70 and 240 MeV remained
the same. This shifts the concern to the lowest energies as the
main source of the discrepancies with the tensor force that
is provided by the effective NN interaction. So far, neither
finite-range calculations nor a modern interaction have made

any change in the size of the normalization problem across
energy.

The solid curves in Fig. 10 include density dependence in
the form of Pauli blocking and nuclear binding corrections
(Brueckner-Hartree-Fock, or BHF) to the effective interaction
[50]. Now the high-momentum parts of the angular distri-
butions are noticeably larger than the measurements. Again
because of the lack of a match to the angular distribution
shape, the curves were normalized using the point matching
scheme just described. These normalizations are shown in the
bottom panel of Fig. 9. The curved shape of the normalizations
noted before for the free interaction also is present here, but the
factors at the lower energies are now somewhat smaller. While
this improves the situation marginally, it does not represent
an explanation of the change in normalization with neutron
bombarding energy.

One curious feature of the density-dependent calculations
is the flatter angular distribution at lower energies and
momentum transfers. In order to learn the source of this at
an incident energy of 70 MeV we separated in Fig. 11 the
partial cross sections from each of the major components of
the calculation alone: tensor (long dash), spin-orbit (dot-dash),
and central (short dash). The original full calculation is shown
again with a solid line. The top panel shows the free interaction
while the lower panel the density-dependent one. First, the top
calculation in particular confirms the original contention that
this transition is dominated by the tensor part of the effective
NN interaction. The next largest component, the central, is
important only for the most forward angles. This component
enters an unnatural parity transition only through the spin-spin
operator. When density dependence is included, this central
part increases in size, raising the forward angle cross section
and tending to fill the valley in the forward angular distribution
left by the tensor. It is this effect that causes the major change
in the shape of the 70 MeV calculation. In neither case does
the spin-orbit contribution become large enough to matter.
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FIG. 11. Decomposition of the calculated 70-MeV free and BHF
cross sections showing the total calculation (solid) and a cross section
calculated from the amplitudes for just the tensor (long dash), central
(short dash), and spin-orbit (dot-dash).
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C. Further interpretations

The question raised by these apparently robust changes with
bombarding energy in the renormalizations of the effective
tensor interaction is whether they are compatible with the
constraints from the NN scattering database. If so, it should
be possible to reliably infer the size of the isovector NN tensor
interaction strength from the charge exchange measurements.
The effective interaction used in DWIA programs is usually
expressed in either coordinate or momentum space as an
expansion in Yukawa functions with different ranges [51].
The strength of each spin operator [1, σ1 · σ2, σ1 + σ2, S12 and
S12(Q)] is described with a separate expansion. In the case of
the free interaction, these functions describe NN scattering
and can be used to calculate NN observables or phase shifts.
In the Yukawa form, it would be simple enough to increase
the size of the tensor interaction alone to account for the rise
in the normalization as the energy goes down. (Increasing the
whole interaction would raise the NN cross section, creating
a clear variance with NN data.) Unfortunately, the Yukawa
expansion does not necessarily obey the constraints inherent in
NN scattering (except insofar as its coefficients are adjusted to
reproduce NN scattering amplitudes). For example, after such
an increase, the phase shifts affected by the tensor force will no
longer remain unitary (have an inelasticity parameter η = 1)
and observables in the proton-proton channel will no longer
be completely symmetric or anti-symmetric about θc.m. = 90◦.
This means that other changes to central and spin-orbit terms
in the effective interaction would be required in order to
maintain these basic properties. Such an investigation, perhaps
through the use of a one-boson exchange model, is beyond the
scope of this paper.

Nevertheless, we note that the NN mixing parameters vary
almost linearly with the strength of the tensor force. So, despite
the concerns already discussed, a simpler way to make a test for
consistency is to ask whether the required changes are within
the bounds that would be considered reasonable for the mixing
parameters as determined from the fit to NN data. Whatever
set of Yukawa functions is used to describe the effective NN

interaction can be reexpressed as (complex) phase shifts by
using the transformation in Appendix A of Ref. [11]. (When
this is applied to a free interaction, one gets back the NN phase
shifts on which the Yukawa expansion was based.) So the
test would consist of changing the tensor Yukawa coefficients
to produce agreement with the (n, p) cross section data and
calculating the revised phase shifts from the altered effective
interaction.

We chose the 70 MeV data and the modern free interaction
for the test case, as the agreement here was the worst. Since a
larger uncertainty is associated with the ε1 parameter (which
reflects the strength of the short-range tensor force) in the phase
shift analysis, we increased the contribution from the shortest
range Yukawa (r = 0.15 fm) term first. Then all tensor Yukawa
coefficients were increased until the calculation matched the
70 MeV cross section data. The initial and final values of
the first four mixing parameters are given in Table I along with
the percentage increase. The initial increase in the shortest-
range Yukawa contribution has clearly moved much of the load
for reproducing the stronger tensor force onto the lowest partial

TABLE I. Nucleon-nucleon mixing parameters.

J Starting values Fit to (n, p) % increase

1 1.75◦ 5.02◦ 187
2 −2.22◦ −2.81◦ 26
3 2.44◦ 3.01◦ 23
4 −0.34◦ −0.41◦ 20

waves. The changes fall to 20% only at J = 4. A comparison
with the phase shift solutions reported by Stoks et al. [2] shows
that these values are outside reasonable boundaries. Whereas
results from single-energy analyses can oscillate rather widely
and even reach values of ε1 as high as 5◦, such behavior is very
different from the smooth one displayed by energy-dependent
analyses. If only the shortest range Yukawa tensor term were
to be adjusted, fitting the present data would require a value
of ε1 of 8.66◦. To convey a more concrete idea of just how
unacceptable this value is, we recall a phase shift analysis from
the Basel group [52] which a number of years ago reported a
value of nearly 3◦ for the J = 1 mixing parameter at 50 MeV.
The question of whether this large value could be realistic was
investigated [53] from various standpoints with the conclusion
that the Basel result is most likely incorrect. In particular, it was
argued that only a meson-exchange potential which includes
no rho-meson contribution and uses an unrealistically small
πNN cutoff mass (corresponding to a practically pointlike
vertex), would be able to predict the Basel value. In conclusion,
it is safe to say that the change in the tensor force apparently
required by these measurements is inconsistent with NN data
no matter how it is distributed among the NN partial waves.
The small improvement obtained with the density-dependent
case does not affect this conclusion.

We have found that the energy-dependent renormal-
ization of the tensor force that is needed to match the
10B(n, p)10Be(g.s.) cross sections at the lower energies is
largely unaffected by changing to a finite-range DWIA
calculation, applying the best modern interactions, or using
the best available density-dependent DWIA model. On the
other hand, if we assumed that the changes required could be
accommodated by rescaling the NN tensor force, we would
produce an interaction that would be inconsistent with the
constraints from NN data.

Before we dismiss this as an isolated case found only
in 10B, it is important to consider whether there are other
instances of such an anomalous energy dependence. We will
restrict this search to only isovector, stretched transitions where
the sensitivity to the effective NN interaction is essentially
the same as it is in the 10B(n, p)10Be case that we have
presented here. Figure 12 shows the cross section at the peak
of the angular distribution for a number of isovector, stretched
transitions. In the upper left panel, the 10B(n, p)10Be data as a
function of energy from 70 to 200 MeV are shown with solid
points connected by a dashed line to guide the eye. The highest
energy point at 240 MeV was not included since the value at the
peak was not measured and an estimate would have involved
a long extrapolation using one of the DWIA calculations. The
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FIG. 12. Measurements of the peak cross section for a variety
of nucleon-induced isovector, stretched transitions as a function of
the nucleon bombarding energy. The left column shows data with
a flat or falling energy dependence; the right column data with a
rising energy dependence. The dotted lines are guides to the eye; the
solid curves smoothly connect DWIA calculations for each set of data
(if available). Further details about the data are given in the text.

solid line is the calculated energy dependence from DWIA
using the modern free interaction. The failure of the upward
trend in the calculation to match the almost energy independent
10B(n, p)10Be data was shown already by the ratios in
Fig. 9.

To this comparison, we have added in the left-side column
below the boron data two similarly energy-independent cases.
In both cases, the cross section values are given at the peak of
the angular distribution. There are two experiments that allow
us to estimate what happens with the 13C( p, p′)13C,1/2− →
9/2+ transition [54–57]. These values, shown in the second
panel, describe a flat or slightly declining cross section with
increasing energy, the same as the trend for 10B. A similar
study of the 16O(p, n)16F, 4− transition to the state at 6.37 MeV
is shown in the third panel at 99 and 134 MeV [58]. (There are
also measurements from Anderson [59] on the 48Ca(p, n)48Sc,
7+ transition to the state at 1.10 MeV, but the values of the cross
section at the peak for two energies are sufficiently close in
value and beam energy that it is not possible to know whether
the trend with energy it rising or falling.)

For nuclei heavier than these three cases, there are examples
of an energy dependence in which the cross sections rise
with increasing bombarding energy in accordance with the
theoretical predictions. Among these are the studies of the
6− isovector transition in 28Si. Olmer reported 28Si(p, p′)28Si
cross section data at four energies between 80 and 180 MeV
[60]. These are shown in the upper right panel along with the
DWIA calculations (solid line). These data rise with rising
energy, a trend that the DWIA predicts correctly. These DWIA
calculations are very similar in energy dependence to those of
the 10B(n, p)10Be reaction and reflect the energy dependence

of this part of the effective NN interaction inside the DWIA
mechanism. Pourang has reported 28Si(p, n)28P measurements
that are shown in the second right-side panel along with
DWIA calculations (solid line) [61]. Like the 28Si(p, p′)28Si
results, these cross sections also rise with energy. Pourang also
reports similar results on the 88Sr(p, n)88Y, 9+ transition to
the state at 1.48 MeV (shown in the third right-side panel).
Again, these cross sections rise with energy, as does the
theory.

The phenomenon that we report for 10B(n, p)10Be appears
to be a feature that is shared by other light mass nuclei.
Thus there may be two kinds of isovector, tensor transi-
tions. On medium mass nuclei, the cross section rises with
increasing bombarding energy, but for nuclei with a mass less
than about 20 the energy dependence is nearly flat. DWIA
calculations predict a rising cross section in all cases, thus
reproducing only the energy dependence of the medium mass
cases.

There are a number of reaction mechanism issues that may
become more important at lower mass and bombarding energy.
The medium effects shown in Fig. 11 are large, and it may be
the case that the nucleons involved as projectile and ejectile
are more likely to penetrate deeply into the nucleus and still
survive to contribute to this direct reaction when the target
mass is light. This raises the possibility that relativistic effects,
which were not explored here, might also be important. In
this lighter mass region, the level density tends to be much
smaller, and channel-coupling, which extends the impulse
approximation beyond first order, may be more of a contributor
at the lower energies. A study of the elastic scattering and
natural parity excitations on 10B(p, p′)10B found that coupling
to the deformation of the target and the 4+ state at 6.02 MeV
was an important consideration [62]. (Unfortunately, we
do not have computer programs that include both channel-
coupling and full finite range capabilities within the same
calculation.)

By using our energy dependent data, we now have a record
of the onset of this failure of the DWIA as a function of the
projectile energy. By looking to other similar cases, we also
have defined the region in lighter target mass where this effect
seems to appear consistently. This provides a boundary beyond
which the standard DWIA calculation is no longer capable
of producing an adequate description of the reaction (below
100 MeV and mass about 20). Additional theoretical investi-
gations are needed to map out the extent of the problem more
fully and to appreciate whether other effects not included in
the present DWIA treatment are large enough and have the
features needed to address this issue.

IV. CONCLUSIONS

We have presented the differential cross sections for the
10B(n, p)10Be(g.s.) reaction over the energy range from 70
to 240 MeV and at scattering angles from 20◦ to 44◦. Initial
zero-range calculations using the Franey-Love free interaction
were not able to track the energy dependence of the measured
cross sections. These cross sections were high relative to the
calculations at 70 MeV and low at 240 MeV. Subsequent
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calculations that addressed some questions about these initial
results did not change this overall conclusion. Full finite range
calculations reduced the discrepancy at the higher energies
at the expense of making things worse at the lowest energy.
The problem was reduced marginally with the incorporation
of density dependence from Pauli blocking into the effective
interaction. A separate inquiry into the consistency of such
a large change to the tensor force led to the conclusion that
the change was inconsistent with the constraints on the tensor
force from NN scattering data. An examination of the energy
dependence of other isovector stretched transitions in this mass
and energy region has revealed that the flat energy dependence
seen in this set of (n, p) cross section measurements is not
unique to 10B. Similar behavior is seen for the transitions
in 13C and 16O. There are no other available cases until we
reach the closed shell at 28Si. But here the story changes: the
measured cross sections rise with energy as does the theory.
There is no problem with the DWIA here.

We conclude from these systematic comparisons with other
experiments that there is no problem with the measurements
reported here, rather the difficulty lies with theory. Since the

limits of applicability for the DWIA seem to appear for lighter
masses and lower energies, it is important to inquire what other
physical processes might come into play. It is possible that a
more complicated medium dependence is needed, but perhaps
more likely that the reduced level density for the lighter mass
targets leads to a greater role for channel-coupling effects
in the cross section. Calculations with a theory that handles
both coupling and finite range are needed to investigate this
situation.
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