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human space radiation protection
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We present a semianalytical method to determine which partial cross sections of nuclear fragmentations most
affect the shielded dose equivalent due to exposure to galactic cosmic rays. The cross sections thus determined
will require more theoretical and/or experimental studies for us to better predict, reduce, and mitigate the radiation
exposure in human space explorations.
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I. INTRODUCTION

Space radiation poses a serious risk to the health of
astronauts in space explorations [1]. Space radiation particles
mainly consist of galactic cosmic rays (GCR) and solar
energetic particles (SEP). SEPs can have a very large flux
in solar particle events such as coronal mass ejections but
their kinetic energies are typically below a few hundred
MeV. GCR particles are fully ionized nuclei at much higher
average energies; thus they can penetrate thick materials and
pose serious health hazards, especially for long-term human
space explorations. Physical and biological effects of space
radiation are currently being studied [2] to provide astronauts
enough protection against space radiation.

Reliable space radiation transport codes are essential for
the prediction of radiation environments behind shielding and
effective reductions of the radiation risk. A key input to these
transport codes is the physics of the interactions between
radiation particles and different materials. Atomic interactions
that cause ionization energy loss are well known. However,
significant uncertainties exist in our understanding of the
nuclear fragmentation processes of different ions. To improve
the accuracy of the space radiation transport, laboratory
experiments have been performed to measure fragments from
the fragmentation of different elemental projectiles, e.g., at
the NASA Space Radiation Laboratory at the Brookhaven
National Laboratory. Because space radiation particles involve
many different ions and they fragment inside materials, an
important question is what partial cross sections affect the
space radiation risk more and thus need to be better studied.

Here we present a semianalytical method to understand the
qualitative features of the effects of nuclear fragmentations on
space radiation risks from GCR. In Sec. II we describe the
semianalytical method and the theoretical results obtained in
the thin-shielding limit, including a list of the top 30 most
important partial cross sections for both water and aluminum
shielding for the 1977 solar minimum GCR environment.
Section III shows our results for thick shielding. In Sec. IV
we discuss the important effect of the unitarity relation due
to the baryon number conservation and provide two simple
examples on alternate implementation of the unitarity relation.
The section also shows the difference in the sensitivities
between solar maximum and minimum GCR environments.
We summarize and present our conclusions in Sec. V.

II. THIN-SHIELDING RESULTS FROM THE
SEMIANALYTICAL METHOD

In the straight-ahead approximation, where fragmentation
products are assumed to keep the same velocity as the
projectile, the propagation equation is given by [3]

∂Jk(E, x)

∂x
= −Jk(E, x)

�k(E)
+

∑
j

Jj (E, x)

�kj (E)

+ ∂ [ωk(E)Jk(E, x)]

∂E
, (1)

where Jk(E, x) represents the flux of particle species k with
energy E per nucleon at depth x in a material, and ωk(E)
represents the ionization energy loss. The term

�k(E) = 1

nσk(E)
(2)

represents the mean-free-path of particle species k in the
shielding material with n being the number density of nuclei
in the material and σk(E) the total inelastic cross section of
particle species k. In the term

�kj (E) = 1

nσkj (E)
, (3)

σkj (E) represents the partial cross section for projectile j to
produce fragment k. In the thin-shielding limit, i.e., x → 0,
we obtain the following results to first order in x:

Jk(E, x) ≈ Jk(E, 0)

[
1 + ω′

k(E)x + J ′
k(E, 0)

Jk(E, 0)
ωk(E)x

− x

�k(E)

]
+

∑
j

Jj (E, 0)

�kj (E)
x, (4)

where ω′
k(E) and J ′

k(E, 0) represent the first derivative with
respect to energy E. Only the last two terms on the right-
hand side of Eq. (4) involve the fragmentation cross sections
and they do not involve the ionization energy loss ωk(E).
Therefore, to first order in x, the energy loss in materials does
not affect the sensitivity of the shielded radiation fluxes to
fragmentation cross sections.
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Dose equivalent H is used in this study to relate the energy
spectra of radiation particles to the radiation risk:

H ≡
∫

Q(L)DL dL, (5)

where DL represents the distribution of absorbed dose as a
function of L, the unrestricted Linear-Energy-Transfer (LET).
The International Council on Radiation Protection (ICRP) has
defined a quality factor, Q(L), which roughly summarizes the
data on relative biological effectiveness (RBE) of different
types of radiation relative to x-ray or γ -ray radiation. Because
RBE depends on the biological endpoints, and certain types of
radiation may have qualitatively different effects than x-ray or
γ -ray radiation, there are significant uncertainties associated
with the quality factor. In this study we use the quality factor
defined in the most recent ICRP60 [4]. The dose equivalent
inside soft tissue, which is simulated by water, behind depth x

of a shielding material is then given by

H (x) = 1

ρT

∑
k

∫
Jk(E, x)Lk(E)Q (Lk(E)) dE, (6)

where ρT represents the density of water and Lk(E) represents
the LET value in water for particle k at energy E per nucleon.

Equations (4) and (6) lead to

δH (x)

= nx

ρT

∑
j

∫
Jj

[
−LjQ(Lj )δσj +

∑
k

LkQ(Lk)δσkj

]
dE,

(7)

which relates the uncertainty in the dose equivalent to the
uncertainty in each partial fragmentation cross section.

The baryon number conservation relates the total inelastic
cross section to the partial fragmentation cross sections.
When the energy of the projectile is below the threshold
for baryon-antibaryon productions, about 6 GeV per nucleon
in the laboratory frame, the baryon number conservation is
expressed as the following unitarity relation:

Ajσj (E) =
∑

k

Akσkj (E), (8)

assuming the straight-ahead approximation, where fragments
of the projectile can be separated from fragments of the target
material. The uncertainties in the total inelastic cross section
and the partial fragmentation cross sections are then related
via the unitarity relation as

Ajδσj (E) =
∑

k

Akδσkj (E). (9)

Therefore not all uncertainties in Eq. (7) are independent.
Because GCR particles with kinetic energies from about
0.2 GeV to a few GeV per nucleon, i.e., mostly below
the threshold for baryon-antibaryon productions, affect the
shielded radiation exposure the most [5–7], Eq. (9) is a good
approximation.

To study the sensitivity of the shielded dose equivalent
to fragmentation cross sections, we need first to evaluate the
change in the dose equivalent caused by the change in a partial

cross section while keeping all other partial cross sections
fixed. Therefore, the unitarity constraint of Eq. (9) requires
us to change the total inelastic cross section accordingly, and
Eq. (7) becomes

δH (x) = nx

ρT

∑
j,k

∫
Jj

[
−LjQ(Lj )

Ak

Aj

+ LkQ(Lk)

]
δσkj dE.

(10)

For energy-independent changes in the partial cross sections,
δσkj , Eq. (10) reduces to

δH (x) ≡ ρx
∑
j,k

Ujkδσkj , (11)

Ujk = n

ρT ρ

∫
Jj

[
−Z2

jQ(Z2
jL1)

Ak

Aj

+Z2
kQ

(
Z2

kL1
)]

L1dE, (12)

where ρ represents the density of the shielding material,
and the relation Lk(E) � Z2

kL1(E) has been used for the
LET spectra with Zk being the charge of particle species
k. The above matrix element Ujk represents the sensitivity
of the dose equivalent behind a material of areal density ρx

to the uncertainty in the partial fragmentation cross section
σkj . Note that water shielding and the 1977 solar minimum
GCR environment for elements from protons to nickel in the
energy range between 0.1 MeV per nucleon and 1000 GeV per
nucleon are used in the calculations unless specified otherwise,
and the GCR environments in this study are taken from
Ref. [8].

Figure 1 shows the matrix elements Ujk as a function of
projectile and fragment charges. It is evident from Fig. 1
that Fe, Si, Mg, and O projectiles contribute to the highest
peaks. For a given projectile, the matrix element almost
vanishes for either light or heavy (i.e., with charges near that
of the projectile) fragments while peaking for medium-sized
fragments. Indeed Eq. (10) shows that the contribution from
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FIG. 1. (Color online) Matrix elements for the sensitivity of dose
equivalent in water shielding to a given change in each partial cross
section σkj for the 1977 solar minimum GCR environment in the
thin-shielding limit.
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projectile j to δH (x) vanishes at both the light-fragment limit
(Ak → 0 and Zk → 0) and the heavy-fragment limit (k → j ).
In a simplified case where fragments have the same quality
factor and A/Z ratio as the projectile, we have

Ujk ∝ −Z2
j

Ak

Aj

+ Z2
k � Zk(−Zj + Zk); (13)

therefore the matrix elements for a given projectile j would
peak in the middle (at Zk � Zj/2). We can clearly see this
feature in the shapes of the fragment distributions shown in
Fig. 1.

It is often more useful to evaluate the sensitivity to relative
changes in the partial cross sections. Considering energy-
independent relative changes in the partial cross sections,
δσkj /σkj , Eq. (12) reduces to

δH (x) ≡ ρx
∑
j,k

Sjk

δσkj

σkj

, (14)

Sjk = n

ρT ρ

∫
Jj

[
−Z2

jQ
(
Z2

jL1
)Ak

Aj

+ Z2
kQ

(
Z2

kL1
)]

×L1σkjdE. (15)

These results are semianalytical because they require the
input of the quality factors and fragmentation cross sections.
Unlike Ujk of Eq. (12), the shapes of Sjk depend on the
material due to the σkj term that represents fragmentations
in the material. Figure 2 shows the sensitivity matrix elements
Sjk with water as the shielding material, where values of the
partial cross sections σkj (E) are taken from Ref. [9]. We see
that fragments with Z = 1 (protons) have the largest effect
on the uncertainty of the dose equivalent behind shielding,
followed by fragments with Z = 2 (α particles). In the same
simplified case as for Eq. (13), where fragments have the same
quality factor and A/Z ratio as the projectile, we have

Sjk ∝
(

−Z2
j

Ak

Aj

+ Z2
k

)
σkj � Zk(−Zj + Zk) σkj . (16)
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FIG. 2. (Color online) Matrix elements for the sensitivity of dose
equivalent in water shielding to a given relative change in each
partial cross section (δσkj /σkj ) for the 1977 solar minimum GCR
environment in the thin-shielding limit.

Considering Fe projectiles, for example, the factor Zk(−Zj +
Zk) above is the same for fragments with Zk = 1 (protons)
or fragments with Zk = 25 (Mn), but σpFe � σMnFe. For an Fe
projectile at 1.2 GeV per nucleon in water shielding, the partial
contribution to the total inelastic cross section, represented by
Akσkj /(Ajσj ), is about 13.9, 10.8, 8.5, 0.3, 0.3, 1.1, 8.8, and
11.9% for neutrons, protons, α particles, and Li, O, Si, Cr, and
Mn fragments, respectively [9]. Thus the cross section used to
produce a proton fragment, σpFe, is about 50 times the value
of σMnFe. Therefore, light fragments contribute to the highest
peaks in Fig. 2 partly because of the large partial cross sections
used to produce them.

Table I lists the top 30 most important cross sections for
both water and aluminum shielding, ranked according to the
absolute values of the corresponding matrix elements as given
by Eq. (15). We see that the most important partial cross
sections are for proton and α particle productions [10] from
heavy projectiles such as Fe and Si. We also find that in
aluminum, another typical benchmark material for radiation
evaluations, the most important cross sections are very similar
to those in water shielding. The absolute values of the matrix

TABLE I. The top 30 matrix elements in the unit of
[(cSv/yr)/(g/cm2)] ranked according to their absolute values
for the 1977 solar minimum GCR environment.

For water shielding For aluminum shielding

j k −Sjk j k −Sjk

26 1 0.2800 26 1 0.2204
26 2 0.2488 26 2 0.1691
14 1 0.1639 14 1 0.1173
8 1 0.1495 8 1 0.1019

12 1 0.1280 12 1 0.0883
14 2 0.0982 14 2 0.0634
12 2 0.0647 16 1 0.0395
8 2 0.0627 12 2 0.0388

10 1 0.0545 10 1 0.0380
16 1 0.0507 20 1 0.0375
6 1 0.0490 6 1 0.0348

20 1 0.0483 22 1 0.0319
8 7 0.0447 24 1 0.0315

22 1 0.0422 8 2 0.0277
8 6 0.0420 25 1 0.0239

24 1 0.0405 24 2 0.0235
14 12 0.0373 22 2 0.0226
16 2 0.0348 20 2 0.0201
24 2 0.0345 8 7 0.0200
20 2 0.0342 13 1 0.0199
14 10 0.0331 18 1 0.0193
22 2 0.0325 25 2 0.0185
14 11 0.0320 16 2 0.0180
8 5 0.0314 8 6 0.0172

25 1 0.0306 8 5 0.0166
12 11 0.0296 19 1 0.0156
13 1 0.0287 23 1 0.0155
14 9 0.0272 7 1 0.0155
12 10 0.0271 14 11 0.0146
25 2 0.0269 14 10 0.0136
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FIG. 3. Fragment (a) and projectile (b) distributions for the
sensitivity of dose equivalent to a given relative change in the partial
cross sections.

elements in aluminum are smaller in general than those in
water shielding, consistent with the fact that aluminum is less
effective than water as a radiation shielding material against
GCR.

Figure 3 shows one-dimensional reductions of the above
two-dimensional matrix Sjk to both the projectile and the
fragment charges. A straightforward summation of Sjk over
the fragment or the projectile charge would not be appropriate
because the matrix elements, as well as the uncertainties in
the partial cross sections, have different signs in general. In
a simplified case where the uncertainties in the partial cross
sections have the same magnitude (|δσkj |/σkj ≡ ε) but random
signs, Eq. (14) reduces to

δH (x) ≈ ρxε

√∑
j,k

S2
jk. (17)

Therefore we show
√∑

j S2
jk as a function of the fragment

charge Zk in Fig. 3(a) and
√∑

k S2
jk as a function of the

projectile charge Zj in Fig. 3(b). Figure 3(a) clearly shows
the dominance of fragments with Z = 1 (protons) and Z = 2
(α particles) while Fig. 3(b) shows that fragmentations of
projectiles such as Fe, Si, Mg, and O have the largest
effects on the uncertainty of the dose equivalent behind
shielding.

III. BEYOND THE THIN-SHIELDING LIMIT

Equations (14) and (15) derived in the thin-shielding limit
can be written as

dδH (x)

dx
≡ ρ

∑
j,k

Sjk(x)
δσkj

σkj

, (18)
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FIG. 4. (Color online) Matrix elements for the sensitivity of dose
equivalent at 20 g/cm2 in water shielding to a given relative change
in each partial cross section.

Sjk(x) = n

ρT ρ

∫
Jj (E, x)

[
−Z2

jQ
(
Z2

jL1
)Ak

Aj

+Z2
kQ

(
Z2

kL1
)]

L1σkjdE, (19)

where Sjk(x) represents the sensitivity matrix element at any
given depth x in a shielding material. Note that Eq. (18) gives
the rate of the dose equivalent change, i.e., the dose equivalent
change per unit depth, at depth x from energy-independent
relative changes in the partial cross sections.

As an example, using the deterministic radiation transport
code HZETRN [8] we have calculated the particle spectra at
20 g/cm2 in water shielding, which were then used as the input
Jj to evaluate the sensitivity matrix elements according to
Eq. (19). Figure 4 shows the sensitivity matrix Sjk at 20 g/cm2

of water shielding, and Fig. 5 shows the one-dimensional
reductions of that sensitivity matrix. First of all, compared
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FIG. 5. Fragment (a) and projectile (b) distributions for the
sensitivity of dose equivalent at 20 g/cm2 in water shielding to a
given relative change in the partial cross sections.
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with the results in the thin-shielding limit (i.e, at x ∼ 0 g/cm2

of water shielding), we see that at 20 g/cm2 of water shielding
projectiles such as O and Mg are relatively more important
while the Fe projectile is relatively less important. This
is mainly because heavier projectiles have larger inelastic
cross sections, and thus their fluences tend to decrease more
inside materials. Second, Fig. 5(a) shows that the fragment
distribution at this depth has almost the same shape as that in
Fig. 3(a); therefore cross sections of light fragment productions
are still the dominant source of uncertainty. Also, we see that
the sensitivity matrix elements at 20 g/cm2 of water shielding
are much smaller in magnitudes, which reflects the overall
decrease of the dose equivalent behind shielding as well as
the decreased efficiency of fragmentations after a significant
amount of shielding.

The total sensitivity of the dose equivalent behind a
shielding material of thickness L to cross sections can be
evaluated according to Eq. (18) as∫ L

0

dδH (x)

dx
dx = ρ

∑
j,k

[∫ L

0
Sjk(x)dx

]
δσkj

σkj

. (20)

In a simplified case where the errors in the partial cross
sections have the same magnitude as well as the same
sign (δσkj /σkj ≡ ε′), Eq. (20) gives ρε′ ∑

j,k

∫ L

0 Sjk(x)dx.
Conversely, in the same simplified case as for Eq. (17),
where the uncertainties in the partial cross sections have
the same magnitude (|δσkj |/σkj ≡ ε) but random signs,
Eq. (20) reduces to

∫ L

0

dδH (x)

dx
dx ≈ ρε

√√√√∑
j,k

[∫ L

0
Sjk(x)dx

]2

. (21)

In any case, the sensitivity for a thick shielding is dominated
by the depths at which the sensitivity matrix elements have
the largest values. Figure 6 shows the projectile distributions,

represented by
√∑

k S2
jk , at four different depths in water

shielding, and it shows that the sensitivity matrix elements
for charged fragments have larger values at smaller depths for
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FIG. 6. (Color online) Projectile distributions for the sensitivity
of dose equivalent at 0, 5, 10, and 20 g/cm2 in water shielding to a
given relative change in the partial cross sections.

Projectile Zj

Fragment Z
k

S
N

jk
   

[(
cS

v/
yr

)/
(g

/c
m

2 )]

0 5 10 15 20 25 30

0
5

10
15

20
25

30
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

FIG. 7. (Color online) Matrix elements, without imposing the
unitarity constraint, for the sensitivity of dose equivalent to a given
relative change in each partial cross section.

GCR environments [10]. This suggests that the semianalytical
results in the thin-shielding limit are representative of the total
sensitivity for GCR propagation through a relatively thick
material.

IV. DISCUSSIONS

To illustrate the effects of the unitarity constraint of Eq. (9),
we show in Figure 7 the matrix elements without imposing
the unitarity relation. In this case the terms with a negative
sign in Eqs. (7), (10), (12), (15), and (19) have been neglected,
leading to the following matrix elements:

SN
jk = n

ρT ρ

∫
JjZ

2
kQ

(
Z2

kL1
)
L1σkjdE. (22)

In Fig. 7 we find that heavy fragments with charges near that
of the projectile are the most important for a given projectile;
an expected feature due to the strong Zk dependence in SN

jk .
On the other hand, results with the unitarity constraint shown
in Fig. 2 show totally different fragment distributions. We also
see that the matrix elements without the unitarity constraint
in Fig. 7 are positive, while those in Fig. 2 with the unitarity
constraint are mostly negative, indicating that in most cases an
independent increase of a partial cross section decreases the
dose equivalent behind shielding.

The semianalytical method provides the theoretical under-
standing of the sensitivity of the shielded dose equivalent
to uncertainties in the partial cross sections. The next step
is to apply the semianalytical method in combination with
our knowledge of fragmentation cross sections and of their
uncertainties, where other implementations of the unitarity
constraint may be needed. After a particular σkj is changed,
instead of changing the total inelastic cross section σj to satisfy
Eq. (9) a combination of the total inelastic cross section and
one or more other partial cross sections may be changed.
In this case, however, there is no unique definition for the
sensitivity to a single partial cross section because the effect
will always correspond to changes in multiple partial cross
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sections [11]. As our goal is to establish the priorities for
partial cross sections to be further studied, how to implement
the unitarity constraint should depend on our knowledge of
these cross sections, especially the sizes of their errors and the
correlations among them. Correlations in experimental data
are certainly possible among partial cross sections, as well
as between partial cross sections and the total inelastic cross
section.

To explore other ways of implementing the unitarity
constraint, we consider two examples where total inelastic
cross sections σj are kept the same. The first example
assumes that the total inelastic cross sections are known
exactly but uncertainties in the partial cross sections are mostly
uncorrelated. Thus, a change in σkj can be accompanied by
changes in all other partial cross sections, σij (i 	= k), by the
same fraction to satisfy the unitarity constraint of Eq. (9).
The resulting sensitivity matrix elements are shown in Fig. 8,
and we see that both heavy and light fragments are important
in this case. The second example also assumes that the
total inelastic cross sections are known exactly but there are
misidentifications of particles with charge Zk as particles with
charge Zk−1 (for all k), where undermeasured σkj data would
be correlated with correspondingly overmeasured σk−1,j data.
In this case a change in σkj is accompanied by a corresponding
change in σk−1,j to satisfy Eq. (9). The resulting sensitivity
matrix elements are shown in Fig. 9, and we see that fragments
with charges near that of the projectile for certain medium-
sized projectiles are the most important. This feature can be
understood using the matrix elements

SII
jk = n

ρT ρ

∫
Jj

[
Z2

kQ
(
Z2

kL1
) − Z2

k−1Q
(
Z2

k−1L1
) Ak

Ak−1

]
×L1σkjdE, (23)

which, in the simplified case where fragments have the same
quality factor and A/Z ratio as those of the projectile, result
in SII

jk ∝ SN
jk/Zk .
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FIG. 8. (Color online) Correlated matrix elements for the sensi-
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section σkj , with the unitarity constraint of Eq. (9) being satisfied by
fixing σj and changing all other partial cross sections by the same
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We emphasize that a relative uncertainty in the total inelastic
cross section smaller than that in the partial cross sections
does not necessarily mean that one has to keep the total
inelastic cross section σj fixed, because the smaller uncertainty
may simply result from the fact that the total inelastic cross
section is the sum of the partial cross sections [5,7]. Consider
the simplified case where there are Nj partial cross sections
for projectile j with similar values of Akσkj and similar
magnitudes of uncertainty (|δσkj |/σkj ≡ ε) with random signs,
while the other partial cross sections have negligible values of
Akσkj , Eq. (9) then gives

δσj

σj

� ε√
Nj

; (24)

therefore the uncertainty in the total inelastic cross section is
much smaller.

To see the extent to which the sensitivity matrix depends
on solar cycle variations of the GCR environments, Fig. 10
shows the one-dimensional reductions of the sensitivity matrix
Sjk in water shielding for the 1989 solar maximum GCR
environment. Compared with results for the 1977 solar
minimum GCR environment as shown in Fig. 3, we find
that the sensitivity matrix has similar features but the overall
normalization is lower mainly because of the smaller fluences
of GCR particles during solar maximum.

This study addresses the important cross sections for
protection against exposure to galactic cosmic rays. Such a
study on protection against solar particle events will be useful
because these events also pose a serious radiation hazard.
However, we note that the straight-ahead approximation
assumed in this semianalytical method does not apply well to
SEPs because of their dominant low-energy part of the spectra,
and charge conservation may impose an important constraint
as the majority of the nuclear fragmentation processes will
occur below the pion production threshold.
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FIG. 10. Fragment (a) and projectile (b) distributions for the
sensitivity of dose equivalent to a given relative change in the partial
cross sections for the 1989 solar maximum GCR environment.

V. CONCLUSION

In this study we developed a semianalytical method to
calculate the contribution to the uncertainties of the dose
equivalent after shielding from each partial cross section of
nuclear fragmentation in the shielding materials. This method
is able to point to the most important partial cross sections of
nuclear fragmentations for radiation protection of astronauts
against galactic cosmic rays in long-term space missions.
By varying each partial cross section independently while

satisfying the unitarity relation due to the baryon number
conservation, we find that light fragment productions from
heavy ions such as Fe, Si, Mg, and O appear to be the
most important. Thus, better theoretical and experimental
understanding of these cross sections will help reduce the
uncertainty in the radiation health risk predictions in long-term
space missions. The unitarity relation required by baryon
number conservation is shown to have significant effects on
the sensitivity matrix as it correlates the uncertainties in the
cross sections. At a finite depth in the shielding material,
projectiles such as O and Mg become relatively more important
while the Fe projectile becomes relatively less important, and
the matrix elements have much lower magnitudes. Therefore,
the thin-shielding results should be representative of the total
sensitivity for thick shielding.

The next step is to apply the semianalytical method in
combination with our knowledge on fragmentation cross
sections and their uncertainties. We have provided two simple
examples where different implementations of the unitarity
relation may be used depending on current uncertainties in
our knowledge of the fragmentation cross sections. We have
also shown that the sensitivity matrix for a solar maximum
GCR environment is similar to that for a solar minimum GCR
environment except that the overall magnitude is much smaller.
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