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Signature of shallow potentials in deep sub-barrier fusion reactions
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We extend a recent study that explained the steep falloff in the fusion cross section at energies far below the
Coulomb barrier for the symmetric dinuclear system 64Ni+64Ni to another symmetric system, 58Ni+58Ni, and the
asymmetric system 64Ni+100Mo. In this scheme, the very sensitive dependence of the internal part of the nuclear
potential on the nuclear equation of state determines a reduction of the classically allowed region for overlapping
configurations and consequently a decrease in the fusion cross sections at bombarding energies far below the
barrier. Within the coupled-channels method, including couplings to the low-lying 2+ and 3− states in both target
and projectile as well as mutual and two-phonon excitations of these states, we calculate and compare with
the experimental data the fusion cross sections, S factors, and logarithmic derivatives for the above-mentioned
systems and find good agreement with the data even at the lowest energies. We predict, in particular, a distinct
double peaking in the S factor for the far sub-barrier fusion of 58Ni+58Ni, which should be tested experimentally.
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I. INTRODUCTION

Very recently we proposed a mechanism that explains the
unexpected hindrance or steep falloff of fusion cross sections
which has been observed at bombarding energies far below
the Coulomb barrier [1]. Although measurements of several
medium-heavy nuclei performed in the past two decades
already provided some indications of a steep decrease of the
excitation functions at the lowest bombarding energies, the
credit for disclosing and confirming this unexpected trend for
new fusing systems has to be given to Jiang et al. [2–6].
Among the most conspicuous cases reported in the past are
58Ni+58Ni [7], where the departure from the expected behavior
takes places already at cross sections ∼0.1 mb, and 90Zr+89Y
and 90Zr+92Zr as reported in Ref. [8].

The new fusion data reported by Jiang et al. are even more
spectacular because the reported cross sections are measured
down to 10 nb: 60Ni+89Y [2] (σf � 100 nb), 64Ni+ 64Ni [4]
(σf � 10 nb), and 64Ni+100Mo [5] (σf > 10 nb). The
hindrance of fusion was first reported as a suppression of
the measured low-energy fusion cross sections with respect
to model calculations [2]. It was later characterized by the
energy Es where the S factor for fusion develops a maximum
at low energy [3]. Following the publication of these findings,
a challenge was launched, especially on the theoretical side
of the heavy-ion fusion community. At the end of 2005, the
underlying physical cause of this apparently new phenomenon
was still unknown according to the authors of Ref. [6].
Some authors have even advocated the hypothesis that the
standard theoretical approach to treat capture reactions, i.e.,
the coupled-channels (CC) method is unable to explain the
steep falloff of the cross sections. We shall try to convince
the reader throughout this paper that the CC method is
the right tool for investigating capture, even at very low
energy.

*On leave of absence from National Institute for Nuclear Physics,
P.O. Box MG6, Bucharest, Romania.

The nuclear potentials that are employed in CC calculations
are commonly parametrized as a Woods-Saxon well. Among
the issues related to the deep sub-barrier fusion was the large
diffuseness a of the ion-ion potential that was needed to fit
high-precision fusion data. Hagino et al. [9] hinted that a phe-
nomenological nuclear potential with a larger diffuseness leads
to a better agreement with the data. Values up to a = 1.3 fm
were conjectured instead of the usual a = 0.65 fm for
the system 58Ni+58Ni. In Ref. [3], it was remarked that
since the low-energy fusion becomes sensitive to the nuclear
potential inside the barrier, this part of the interaction may
not be accurately modeled by the conventional Woods-Saxon
parametrization. It was pointed out that by doubling the
diffuseness of the inner part of the potential, the agreement
with the data improves for the colliding system 60Ni+89Y [3].

Following the same idea, the systematic failure of the
Woods-Saxon nuclear potential to describe fusion was ana-
lyzed [10], and it was concluded that the origin of it should be
sought in the diffuseness parameter a. In order to fit the data at
energies above the Coulomb barrier, the diffuseness must be
increased with increasing Z1Z2. The fusion data compiled by
these authors indicate a correlation with the neutron richness of
the projectile and target nuclei in the sense that the neutron-rich
nuclei tend to require larger values of a.

The authors of Ref. [11] pointed out that potentials such
as the Akyüz-Winther (AW) [12,13] provide reliable barriers,
but they cannot reproduce the data far below the barrier, a fact
which made them suggest that the ion-ion potential should
have another form in the inner part of the barrier. Following a
sequence of simple but clear arguments, they pointed out that
the exponential falloff in the tunneling probability is related
to the disappearance of the classically allowed region below
a certain energy. If this is true, then we are confronted with
the existence of a shallow pocket of the potential inside the
barrier.

In Ref. [14], a surprisingly good description of the data for
58Ni+58Ni, 64Ni+64Ni, and 60Ni+89Y was claimed. However,
it is difficult to judge the significance of the results because
of the limited number of excitations that were included in the
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CC calculations. For example, the only excitation considered
in the nickel isotopes is the one-phonon 2+ excitation, but it is
well known that couplings to the 3− state and higher-order
couplings to two-phonon states tremendously enhance the
heavy-ion fusion cross section [15,16]. Other works have
attempted to account for the complicated problem of channel
coupling by means of a polarization potential [17]. The
imaginary potential parametrizes in this case the excitation
of other degrees of freedom that influence the fusion process.
According to Ref. [17], the imaginary potential shows a rapid
cutoff at energies far below the Coulomb barrier for the cases
58Ni+ 58Ni, 58Ni+ 64Ni, and 64Ni+ 64Ni because of a threshold
below which the CC effects cease to exist.

Before ending the list of hypotheses advanced to explain the
fusion hindrance phenomenon, we mention the result reported
in Ref. [18], which overrules the possibility of explaining the
depletion of fusion rates at extreme sub-barrier energies from
dissipative tunneling, as do the results from other quantum
open system approaches, such as that of Caldeira and Leggett
[19].

Very recently [1], we proposed an explanation of the
hindrance observed in the sub-barrier fusion of 64Ni+64Ni,
which was based on the same standard coupled-channels
formalism as before [3] but with amendments that concern
the potential. Essential to obtaining a good description of the
data is to take into account the saturation of nuclear matter and
to use realistic neutron and proton distributions of the reacting
nuclei. These two ingredients are naturally incorporated in a
potential calculated via the double-folding method with tested
effective nucleon-nucleon forces and with realistic charge and
nuclear densities, a fact which is often overlooked or only
indirectly included in the Woods-Saxon parametrization. We
intend in this paper to show that by properly addressing these
issues, light can be shed on the extreme sub-barrier fusion data.
Before we do that, we summarize the methods that have been
used to analyze the low-energy behavior of heavy-ion fusion
cross sections.

II. REPRESENTATIONS OF LOW-ENERGY CROSS
SECTIONS

In an attempt to diagnose the various cases in which the
hindrance in sub-barrier fusion occurs, the authors of Ref. [3]
proposed the use of two representations. The first one is the
astrophysical S factor [20],

S = Eσ (E) exp(2πη), (1)

where E is the center-of-mass energy, η = Z1Z2e
2/(h̄vrel)

is the Sommerfeld parameter, and vrel is the relative velocity
of the fragments. The experimental value of S increases with
decreasing bombarding energy and has the tendency to develop
a maximum for the systems of interest. The necessity to
resort to this quantity comes from the fact that the reaction
cross section varies by many orders of magnitude below
the Coulomb barrier (seven orders of magnitude for 64Ni+
64Ni). The S factor has been used in the past to unravel
typical molecular resonant structures in the excitation function
of systems like 12C+12C since it removes the dominating
influence of the Coulomb and centrifugal barrier transmission

factors that mask these structures in the cross section [21]. The
series of narrow and prominent resonances was associated with
quasibound, long-lived states of the 24Mg nucleus.

Very recently, the fusion cross section for the 12C+12C
system has been measured down to very low energies [22].
The data show a rise in the S factor at the lowest energies,
which might indicate the existence of a broad resonance in the
entrance channel, possibly related to an intermediate state in
the compound nucleus [22]. Similar broad resonances in the
S factor at energies below the barrier have been also inferred
from the 12C+16O total cross sections [23]. Thus, the S factor
is a quantity that magnifies structures in the excitation function
at energies below the barrier, and it is also an instrument for
exploring the inner part of the barrier in low-energy, heavy-ion
fusion reactions.

A second representation proposed in Ref. [3] is the
logarithmic derivative,

L(E) = d[ln(Eσ )]

dE
= 1

Eσ

d

dE
(Eσ ). (2)

The point where the experimental L(E) intersects the logarith-
mic derivative obtained from an s-wave transmission across
a pure point-charge Coulomb potential (constant S factor),
given by L0(E) = πη/E, coincides with the maximum
in the S factor invoked earlier. Extracting the energy Es ,
where this intersection occurs, revealed that the corresponding
logarithmic derivative Ls is nearly the same for stiff heavy-ion
systems, with an average value of 2.34 MeV−1. This implies
that Es scales with the charge and mass numbers of the reacting
nuclei according to the empirical law [3]

Es = 0.355

[
Z1Z2

√
A1A2

A1 + A2

]2/3

. (3)

At this point, it is useful to recall that the inability of
previous calculations to reproduce the low-energy data points
of the measured fusion cross sections is most clearly seen
from the inspection of the logarithmic derivative L(E). Thus
for energies below a certain threshold, the experimental values
of L(E) increase steeply with decreasing energy, whereas the
theoretical curve increases with a much smaller slope on which
a resonant structure is superposed.

III. SIMULATIONS OF A REPULSIVE CORE

The resonant structures that occur in collisions of light
nuclei, the best known example being the sharp peaks in
the bombarding energy dependence of the γ radiation yields
emerging in the 12C+12C scattering found by Bromley et al.
[24], were found to resemble states in a molecular potential
well. Following the suggestion that these “quasimolecular”
states may represent doorway states to fusion, the resonant
behavior could be explained by introducing the concept of
the double-resonance mechanism [25]. In this scenario, the
indirect population of quasimolecular states can occur in light-
ion scattering according to the following sequence of events:
(a) surpassing the potential barrier at an initial energy Ei and
losing the energy E∗ by inelastic excitations of low-energy
levels of one or both of the ions, and (b) resonant decay into
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the potential pocket, where the colliding nuclei are trapped
and a quasimolecule is formed, if their relative energy Ei −E∗
coincides with the energy of a quasibound state.

Evidence that the resonant behavior observed in 12C+12C
is not an isolated phenomenon was made available for other
light systems such as 12C+16O, 12C+13C, 16O+16O, and
16O+24Mg. It persists even in heavier colliding systems, such
as the 24Mg+24Mg [26] and 28Si+28Si [27]. Manifestation
of clusterization in connection with quasimolecular pockets
is also known for heavy nuclear systems, such as the cluster
radioactivity [28] or hyperdeformation and clustering in the
actinide region [29,30].

To simulate the appearance of shallow pockets several
recipes have been proposed:

(i) A central soft repulsive core added to the conventional
Woods-Saxon potential was used in Refs. [31] and [32]
in order to fit the reaction cross sections observed in
12C+12C, 12C+16O, and 16O+16O. The effect of a
repulsive core was modeled by a positive Gaussian
potential, Vrepexp(−br2), the width b being constrained
by the requirement that the potential becomes repulsive
for r � R0, R0 being the radius of the Woods-Saxon
potential.

(ii) Double-folding potentials as introduced by Satchler
and Love [33] are accurate only in the tail region
of the nucleus-nucleus potential, where the density
distributions are only gently overlapping and thus the
assumption of “frozen density” is less questionable.
However, this assumption ignores any readjustment due
to the mutual interaction of the nuclei or the Pauli
exclusion principle for strong overlap. To cope with
this problem, the observation was made [34,35] that
whereas any theory of heavy-ion potentials is expected
to reduce to the double-folding model in the limit of
large ion-ion separations and vanishing density overlap,
the compound system resulting from fusing the two ions
is accurately described by the liquid-drop energy ELDM.
To interpolate between these two extremes, the nuclear
deformation energy was written as

Edef = ELDM + WM3Y+C(ρ) − αW̄M3Y(ρ̄), (4)

where WM3Y+C(ρ) is the double-folding self-interaction
energy with the original Michigan-3-Yukawa (M3Y)
parametrization for the nuclear and Coulomb forces
with realistic values of the proton and neutron matter
diffusivities and radii. The W̄M3Y(ρ̄) is a renormal-
ization introduced with the purpose of subtracting the
volume and surface energy contributions in W , and is
computed with sharp-edge densities. The parameter α

is adjusted so that W and W̄ cancel exactly in the limit
of complete overlap. This scheme was applied only
for collisions of two identical spherical nuclei, since
the evaluation becomes too cumbersome for deformed
nuclei approaching at different orientations.

(iii) Pockets in a double-folding potential arise naturally
if an effective Skyrme-like NN force is used [36].
However, this force was not tested systematically for
scattering reactions as was the case for the M3Y force.

(iv) Density-dependent interactions superposed on the orig-
inal M3Y form have been used in recent times to
simulate the saturation of nuclear matter for α+nucleus
scattering or elastic scattering of light nuclei [37,38].
An attempt to explain fusion data for a variety of
systems using these density-dependent interactions
was made recently by the Canberra group [39]; they
concluded that the double-folding model may not be
appropriate for fusion. The pockets resulting from the
density dependence of the effective NN force are still
too deep to improve the agreement of CC calculations
and the experimental data at extreme sub-barrier ener-
gies.

(v) Methods based on the energy density functional have
been known for a long time to be able to predict shallow
pockets in the interaction between two nuclei [40,41].
A typical feature of this class of potentials is the short-
ranged repulsion at distances where a strong overlap
of the nuclear densities takes place. In this approach,
the condition of nuclear matter saturation is achieved
by fitting the free parameters in the energy-density
functional using the properties of finite nuclei. As in the
case for the double-folding recipe, the sudden approxi-
mation, i.e., the summation of frozen nuclear densities,
is essential for the occurrence of the core. Recently,
this method was used in the framework of the extended
Thomas-Fermi approximation with h̄2 correction terms
in the kinetic energy density functional, and an analytic
potential with parameters that are fitted to data was
proposed [42]. However, this potential provides barriers
that are higher than the experimental ones; therefore,
they cannot provide a satisfactory description of the
data in the barrier region.

(vi) Proximity potentials are well-known examples of nu-
clear interactions producing pockets in the ion-ion
potential (see Ref. [43] for the 1977 and Ref. [44] for the
2000 versions). Unfortunately, these potentials provide
pockets that are too deep for the systems of interests
(see, for example, Fig. 1 of Ref. [1]).

(vii) Finally, we mention the semiempirical Akyüz-Winther
(AW) potential. It is parametrized as a Woods-Saxon
potential [12], so that the maximum nuclear force
is consistent with the proximity force for touching
spheres, and it has an exponential tail that is consistent
with the M3Y double folding calculated in Ref. [13].
The AW potential also produces pockets that are too
deep, as evidenced by its applications in Refs. [1–6].

In the present work, we are interested in the interaction be-
tween two intermediate mass nuclei. For these target-projectile
combinations, the above approach to the density-dependent
interaction does not necessarily apply, because, as we shall
see, the resulting pockets are still too deep. For this reason,
another approach will be adopted.

IV. THE M3Y+REPULSION, DOUBLE-FOLDING
POTENTIAL

As a manifestation of the Pauli principle, which prevents
the overlapping of the wave functions of two systems of
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fermions, we expect that the interaction potential between
two colliding nuclei will contain a repulsive core. The actual
form of the repulsive core and its strength depend strongly
on the extent to which the collision is adiabatic or sudden. A
further uncertainty with regard to the core parameters is the
influence of individual characteristics of the considered nuclei,
including binding energies, shapes, and nucleon distributions.
The models of ion-ion potentials which provide a repulsive
core, and which we enumerated in the preceding section, lead
to quantitatively different estimates of the height, radius, and
diffuseness of the core potential. Because of these conditions of
strong uncertainty, we use as in previous works on fusion [45]
a crude recipe to determine the properties of the repulsive core
potential.

A. Calibration of the repulsive core potential

As noticed earlier, an overlapping region with doubled
nucleon density is formed once the distance r between the
nuclei becomes less than R1 + R2, where R1 and R2 are the
nuclear radii of the target and projectile along the scattering
(fission) axis. Here and in the following we assume for
simplicity that the densities of the two nuclei are frozen when
estimating the nuclear interaction potential. When a complete
overlap of the two nuclei occurs, the total density is therefore
roughly twice that of normal matter, ρ ≈ 2ρ0, within the
volume of the smaller nucleus. Consequently, the nuclear
equation of state (EOS) dictates an increase �V in the energy
of the compound system. In the case of complete overlap (for
r = 0), �V is proportional to the increase of the energy per
particle of nuclear matter ε(ρ, δ) considered as a function of
the nuclear density, ρ = ρn + ρp, and the relative neutron
excess, δ = (ρn − ρp)/ρ,

�V ≈ 2Ap[ε(2ρ0, δ) − ε(ρ0, δ)]. (5)

Here the relative neutron excess δ is assumed to be approx-
imately constant, and Ap is the mass number of the smaller
nucleus in the case of an asymmetric system.

The EOS predicted by the Thomas-Fermi model for cold
nuclear matter is [46]

ε(ρ, δ) = εF


A(δ)

(
ρ

ρ0

)2/3

+ B(δ)

(
ρ

ρ0

)

+C(δ)

(
ρ

ρ0

)5/3

, (6)

where ρ0 = 0.161 fm−3 is the saturation density and εF is
the Fermi energy of normal nuclear matter. The expressions
for the δ dependence entering Eq. (6) are listed in Ref. [46].
The definition of the incompressibility of cold nuclear matter is
then related to the curvature of ε(ρ, δ) at the saturation density,

K = 9

(
ρ2 ∂2ε

∂ρ2

)
ρ=ρ0

. (7)

To calibrate the strength of the repulsive core potential,
we assume that �V in Eq. (5) must be identified with the

nuclear part of the heavy-ion potential, VN (r), evaluated at the
coordinate origin r = 0,

�V = VN (0). (8)

Approximating the EOS by a parabolic expansion around the
equilibrium density ρ0 [47],

ε(ρ, δ) = ε(ρ0, δ) + K

18ρ2
0

(ρ − ρ0)2, (9)

we obtain the following estimate of the nuclear potential at
r = 0,

VN (0) = �V ≈ Ap

9
K. (10)

Similar recipes for introducing a repulsive core can be found
in the literature [48]. They are based on the knowledge of the
equation of state and on the requirement that the nuclear matter
density is doubled for a total overlap of the two reacting nuclei.

B. Folding model potential

We consider two nuclei with one-body deformed densities
ρ1 and ρ2, subjected to vibrational fluctuations, and center of
masses separated by the distance r . Then the nuclear potential
between these two nuclei can be evaluated as the double-
folding integral

VN (r) =
∫

d r1

∫
d r2ρ1(r1)ρ2(r2)v(r12), (11)

where r12 = r + r2 − r1. The central part of the effective NN
interaction v(r12) contains no spin or spin-isospin terms, since
we analyze fusion reactions of spin 0 nuclei, where the spin
terms are relatively unimportant. We are then left with a direct
part,

vdir(r12) = v00(r12) + N1 − Z1

A1

N2 − Z2

A2
v01(r12), (12)

which depends on isospin since N �= Z in all the cases of
interest. The exchange part, which takes into account the effect
of antisymmetrization under the exchange of nucleons between
the two nuclei, is modeled by the contact interaction

vex(r12) =
(

Ĵ 00 + N1 − Z1

A1

N2 − Z2

A2
Ĵ 01

)
δ(r12). (13)

The density-independent part of the effective nucleon-
nucleon force that we use is the Reid parametrization of
M3Y interaction [49]. The explicit form of the expressions
for v00, v01, Ĵ 00 and Ĵ 01 are given, for example, in Ref. [50].
Moreover, we neglect the possible energy dependence of
these parameters. For example, a variation δE ≈ 25 MeV
between the minimum and maximum bombarding energies
considered in the fusion of 64Ni+64Ni gives a variation of
δĴ 00 ≈ 0.27 MeV fm3 in the Reid parametrization, a value
that is small compared to Ĵ 00 ≈ −276 MeV fm3.

As we noted earlier, a potential that is based on the
M3Y interaction predicts correctly the ion-ion potential for
peripheral collisions. However, reactions that are sensitive to
the potential at smaller distances are not reproduced [37]. To
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TABLE I. Parameters of the proton and neutron density
distributions (in fm), Eq. (15), which were used in calcu-
lating the direct and exchange double-folding potential.

Nucleus r0p ap r0n an

58Ni 1.107 0.4673 1.0836 0.5124
64Ni 1.0652 0.575 1.0852 0.532
100Mo 1.1025 0.535 1.105 0.575

cure this deficiency, the ion-ion potential is supplemented with
a short-ranged repulsive potential which, according to the
discussion in the previous subsection, is proportional to the
overlapping volume of the reacting nuclei. This is simulated
in Eq. (11) by using the effective contact interaction,

vrep(r12) = Vrep δ(r12). (14)

We follow the procedure proposed in Ref. [48] and use
a relatively sharp density profile, characterized by the dif-
fuseness arep, when calculating the repulsive potential from
the double-folding integral, Eq. (11). The strength Vrep of
the repulsive interaction is then obtained from the condition
Eq. (10), which relates the total nuclear potential at the
coordinate origin to the nuclear incompressibility.

C. Parametrization of densities

The densities that appear in Eq. (11) are parametrized with
Fermi-Dirac distribution functions, such that

ρi(r) = ρ0

1 + exp[(r − R0i)/a]
, (15)

where R0i = r0iA
1/3
i . The parameters of the proton and

neutron density distributions we used are listed in Table I.
The parameters for the proton density of 64Ni are taken
from a compilation of elastic electron scattering data [51].
For the neutron distribution, we choose the parameters such
that they are in the range of what one would expect for a
moderately neutron-rich nucleus, and such that the barrier of
the M3Y+repulsion potential is close to the one predicted by
the AW potential, since this potential gives a good description
of the data in the barrier and high-energy region [4]. The
parameters we used for the proton and neutron densities in
58Ni and 100Mo are identical or close to those predicted by
the Hartree-Fock-Bogoliubov (HFB) method using the BSk2
Skyrme force [52].

TABLE II. Parameters used in calculating the repulsive,
double-folding potential for three fusion reactions, and the
associated incompressibility and pocket energy.

Reaction arep (fm) Vrep

(MeV fm3)
K (MeV) Vpocket

(MeV)

58Ni+58Ni 0.341 510.1 234 89.31
64Ni+64Ni 0.405 511.0 228 84.98
64Ni+100Mo 0.375 488.7 226 117.8
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V
(r

)
(M
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)

8 9 10 11 12 13 14
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105

K=290 MeV
K=260 MeV
K 234 MeV
K=200 MeV
K=170 MeV

58
Ni+

58
Ni

FIG. 1. (Color online). Coulomb plus the nuclear M3Y+
repulsion, double-folding potential for 58Ni+58Ni. Results are shown
for different values of the nuclear incompressibility K .

D. Heavy-ion potential study cases

Applying the formalism described in Secs. IV A and
IV B, we vary the parameters arep and Vrep of the repulsive
potential so that Eq. (10) is approximately fulfilled for the
nuclear incompressibility K predicted by the Thomas-Fermi
model [46]. The parameters we obtain for the three heavy-ion
systems studied are listed in Table II, together with the
incompressibility of the compound nuclei obtained in the
Thomas-Fermi model and the energy of the resulting pocket
that appears in the Coulomb plus nuclear potential.

To illustrate the dependence of the total ion-ion potential
on the nuclear equation of state, we plot in Fig. 1 the Coulomb
plus nuclear potential for the dinuclear system 58Ni+58Ni
for different choices of the nuclear incompressibility K . The
solid black curve corresponds to the incompressibility K ≈
234 MeV as inferred from the Thomas-Fermi model for 116Ba.
The effect of K on the inner part of the barrier and the depth
of the pocket is essential. A soft EOS provides a deep pocket,
whereas a hard one results in a shallow pocket.

The effect of the repulsive core is displayed in Fig. 2. We
compare the total potentials obtained from the standard M3Y

6 7 8 9 10 11 12 13 14 15 16
r (fm)

70

75

80

85

90

95

100

V
(r

)
(M

eV
)

M3Y
Akyuz-Winther
M3Y+repulsion

64
Ni+

64
Ni

FIG. 2. (Color online). Comparison of the double-folding poten-
tials (with and without repulsion) and the AW potential for the system
64Ni+64Ni.

034606-5
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FIG. 3. (Color online). Ion-ion potentials for 58Ni+58Ni, 64Ni+64Ni, 64Ni+74Ge, 64Ni+100Mo based on the potentials employed in the
present work and on the AW potential, which was used in Refs. [2–6]. Dashed strips show for each system the experimental boundaries of the
threshold energy Es [6].

heavy-ion potential, the M3Y+repulsion potential, and the
AW potential for the system 64Ni+64Ni. Because of the lower
barrier and an abrupt decrease in the inner region, the M3Y
potential cannot accurately reproduce the data, a fact that has
already been pointed out in the literature [10,39].

In Fig. 3, we show the profiles of the Coulomb plus nuclear
potentials for four heavy-ion systems. The solid curves are
based on the M3Y+repulsion potentials we use in this work,
whereas the short-dashed curves are based on the AW potential.
It is seen that the pockets predicted for the M3Y+repulsion
potentials are much shallower than predicted by the AW
potential, in particular for the lighter systems. The dashed
region in each panel of Fig. 3 shows the energy Es at which
the experimental S factor develops a maximum, and the width
of that region illustrates the uncertainty in the extracted value
of Es [6].

V. COUPLED-CHANNELS APPROACH

We use the same approach as in previous publications (see
Ref. [53] and references therein), i.e., coupled-channels cal-
culations performed in the so-called isocentrifugal or rotating-
frame approximation, where it is assumed that the orbital
angular momentum L for the relative motion of the dinuclear
system is conserved. The rotating frame approximation allows
a drastic reduction of the number of channels used in the
calculations.

The only ingredient we are going to change in the formalism
is the ion-ion potential. As in the case of other nuclear
potentials, we resort to the “proximity” approximation [12]
which states that the heavy-ion potential is a function of the
shortest distance between the nuclear surfaces of the reacting
nuclei. Since for spherical nuclei, the relative orientation is not
coming into play, the fragments have the natural tendency to
be polarized along the collision axis, which is defined by the
radial separation vector r . Surface vibrations are then taking
place parallel (along) the direction r . In this case, the shortest
distance between the two surfaces is

s = r − R1 − R2 − δR, (16)

where

δR = R1

∑
λµ

α
(1)
λµY ∗

λµ(r̂) + R2

∑
λµ

α
(2)
λµY ∗

λµ( − r̂), (17)

and r̂ specifies the spatial orientation of the dinuclear system in
the laboratory system, and α

(i)
λµ are the deformation parameters.

In the rotating frame approximation, which we will use,
the direction of r defines the z axis. The only vibrational
excitations that can take place are therefore the µ = 0 com-
ponents, since Yλµ(ẑ) ∝ δµ,0.

The cases under study in this paper refer only to the genera-
tion of vibrational excitations of surface modes. Previous work
showed that the inclusion of linear and quadratic interactions
is necessary and often sufficient to fit the data at least in
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the intermediate energy region (see Ref. [53] and references
therein). It is then necessary to consider only the spherical part
of the double-folding potential and its first- and second-order
derivatives. The nuclear potential for the elastic channel is then
given by Eq. (11), which is most conveniently calculated by
the Fourier transform [54]

V (r) = 1

2π2

∫
dqq2ρ1(q)ρ2(q)v(q)j0(qr). (18)

Here ρi(q) is the Fourier transform of the spherical ground-
state density of ion i, v(q) the Fourier transform of the effective
NN interactions, and j0(qr) the spherical Bessel function. This
is actually the potential we have already shown in Figs. 1–3.

The nonspherical part of the nuclear potential that results
from the difference between the total interaction and the
potential in the elastic channel is expanded up to second order
in the surface distortion (17), that is,

δVN (r) = −∂V

∂r
δR + 1

2

∂2V

∂r2
[(δR)2 − 〈0|(δR)2|0〉]. (19)

It is seen that the ground-state expectation of this interaction,
〈0|δVN |0〉, is zero, but the second-order term will give a
nonzero contribution to the diagonal matrix element in an
excited state. One can show that this prescription is exact for
a harmonic oscillator up to second order in the deformation
amplitudes. We include a similar expansion of the Coulomb
field, δVC , but only to first order in the deformation amplitudes
[53]. These expressions are inserted into the CC formalism
in the rotating frame approximation which singles out only
axially symmetric distortions (αλµ=0), i.e.,[

h̄2

2M0

(
− d2

dr2
+ L(L + 1)

r2

)
+ Z1Z2e

2

r
+ V (r)

+
∑
n1,n2

εn1,n2 − E

]
un1n2 (r)

= −
∑
m1m2

〈n1n2|δVC + δVN |m1m2〉um1m2 (r), (20)

where E is the relative energy in the center-of-mass frame,
L the conserved orbital angular momentum, and M0 the
reduced mass of the dinuclear system. The CC equations (20)
are written for two coupled vibrators of eigenenergy εn1,n2 ,
and consequently the radial wave function u(r) is labeled by
the quantum numbers n1 and n2. Expressions for the matrix
elements of δV in the double-oscillator basis are given in [15].

The above CC equations are solved with the usual boundary
conditions at large distances and appropriate in-going-wave
boundary conditions imposed inside the barrier, more pre-
cisely, at the radial separation where the potential pocket
attains its minimum. The fusion cross section results then from
the total in-going flux. The calculations include one-phonon
excitations of the lowest 2+ and 3− states in target and
projectile, and all two-phonon and mutual excitations of
these states up to a 7.2 MeV excitation energy. This energy
cutoff was chosen so that all of the two-phonon states were
included in the calculations for 64Ni+64Ni and 64Ni+100Mo,
whereas the two-phonon octupole states were excluded in the
calculations for 58Ni+58Ni. The necessary structure input for

64Ni and 100Mo is given in Ref. [55]; the input for 58Ni is from
Ref. [15].

VI. CROSS-SECTIONS, S FACTORS, AND LOGARITHMIC
DERIVATIVES

In what follows we analyze the fusion data for three systems
for which there are strong indications of a hindrance or steep
falloff of the cross sections at energies well below the Coulomb
barrier. For completeness , we also show, in Sec. VI D, the
high-energy behavior of the cross sections. All calculations
are based on the coupled-channels formalism outlined in the
previous section, and further interpretations of the results are
presented in Sec. VII.

A. 58Ni+58Ni

The first case we consider is the fusion reaction of
58Ni+58Ni. For this system, data are available from an older
experiment, and the smallest cross sections are in the mb
range [7]. The data are compared in Fig. 4 to several CC
calculations that are based on the same structure input as in
Ref. [15] and on the M3Y+repulsion potential, but they differ
in the assumed value of the nuclear incompressibility. We see
that for a hard nuclear EOS (K = 290 MeV), the calculated
low-energy cross sections deviate strongly from the measured
values. Obviously in this case the origin of the mismatch is
primarily due to the existence of a very shallow pocket which
reduces the classically allowed region and drastically hinders
the fusion. For a soft nuclear EOS (K = 170 MeV), the
potential pocket is lowered and the calculated cross sections
approach the results calculated with the AW potential. The
best fit to the data is obtained for the nuclear incompressibility
K = 234 MeV, which is the value one obtains in the extended
Thomas-Fermi model.

Some of the results shown Fig. 4 are repeated in Fig. 5,
where they are compared with similar results for the fusion of
64Ni+64Ni and 64Ni+100Mo, which will be discussed in more
detail below. The CC calculations for the M3Y+repulsion
potential were all performed with the nuclear incompressibility
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FIG. 4. (Color online). Experimental fusion excitation function
for the system 58Ni+58Ni [7] compared with various CC calculations
based on the M3Y+repulsion potential (assuming different values of
the nuclear incompressibility K), and on the AW potential.
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Ş. MIŞICU AND H. ESBENSEN PHYSICAL REVIEW C 75, 034606 (2007)

90 95 100 105 110 115

E (MeV)

10
-2

10
-1

1

10

10
2

10
3

f
(m

b)

Experiment
NOC
CC (AW)
CC (M3Y+repulsion)

58
Ni+

58
Ni

85 90 95 100 105 110

E (MeV)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

64
Ni+

64
Ni

115 120 125 130 135 140 145 150 155

E (MeV)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

64
Ni+

100
Mo

FIG. 5. (Color online). Experimental fusion excitation functions for the systems 58Ni+58Ni [7], 64Ni+64Ni [4], and 64Ni+100Mo [5]
compared with various CC calculations described in the text, and with the no-coupling (NOC) limit for the AW potential.

derived from the extended Thomas-Fermi model. Also shown
are the no-coupling limits (NOC) obtained with the AW
potential.

In Fig. 6 (left panel), we compare the experimental S factors
for 58Ni+58Ni with those calculated with the M3Y+repulsion
and the AW potentials. In the last case, the mismatch with the
data is already evident starting at energies 4–5 MeV below
the barrier. The former case, on the other hand, provides a
good description of the available data and, most importantly,
reproduces the trend of the experimental S factor to produce a
maximum. The calculation also predicts a second maximum at

even lower energies where no data exist. It remains to be seen
whether future measurements will confirm the two predicted
maxima.

In Fig. 7 (lower panel), we plot the logarithmic derivative
of the energy-weighted cross section for the case 58Ni+58Ni.
We obtain a nice description of the available experimental
data when we use the M3Y+repulsion potential. As expected
from the behavior of the S factor, L(E) produces a maximum
( just above the constant S-factor limit) followed by a local
minimum, before it finally diverges at lower energies. To
ascertain this behavior, and also the predicted excitation
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FIG. 6. (Color online). Experimental S factors for the systems 58Ni+58Ni [7], 64Ni+64Ni [4], and 64Ni+100Mo [5] compared with CC
calculations performed with the M3Y+repulsion and AW potentials.
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FIG. 7. (Color online). Logarithmic derivatives of the energy-
weighted cross sections for 58Ni+58Ni, 64Ni+64Ni, and 64Ni+100Mo.
Experimental results derived from the cross sections shown in
Fig. 5 are compared with CC calculations performed with the
M3Y+repulsion and AK potentials. Prediction for a constant S factor
is also shown.

function and S factor for 58Ni+58Ni, high-precision fusion
data are necessary at very low bombarding energies.

B. 64Ni+64Ni

The system 64Ni+64Ni was already discussed in our
previous publication [1], but for the sake of completeness,
we find it necessary to recall it and add more features as, for
example, the logarithmic derivative.

The system 64Ni+64Ni was advocated to be a very good
choice for precise measurements, since there is no contam-
ination from reactions with heavier isotopes in the target or

from lower-Z isobaric components in the beam, which can
dominate the yield at extreme sub-barrier energies [4]. The
data measured at the Argonne tandem linear accelerator system
(ATLAS) for this case are in a good agreement with previous
results [56] at energies above the Coulomb barrier but not
around and below the barrier. However, the agreement is good
around and below the barrier with an older experiment [7].
Furthermore, the ATLAS data provide cross sections down
to 10 nb [3] compared with the 0.3 mb reached in the older
experiment [7].

To obtain the incompressibility of K ≈ 228 MeV for total
overlap of the reacting nuclei, as predicted by the Thomas-
Fermi model, we use a strength of Vrep = 511 MeV and a
diffuseness of the repulsive part of the density distribution of
arep ≈ 0.4 fm for both protons and neutrons.

In Fig. 5 (middle panel), we compare the experimental
excitation function for the fusion reaction 64Ni+64Ni →128Ba
with the CC results obtained using the AW potential as in
Ref. [2] and with the M3Y+repulsion potential. The same
recipe for the CC calculations was used in both cases. The
diffuseness of the AW potential is a = 0.676 fm. One should
also recall that calculations using a modified AW potential, for
which the diffuseness inside the barrier was set to ai = 5 fm,
were not able to explain the steep falloff of the measured cross
section [3]. This is not surprising because the modified AW
potential has a very deep pocket (see Fig. 4 of Ref. [53] for an
interior diffuseness of ai = 10 fm.)

We conclude from an inspection of Fig. 5 that the agreement
with data obtained when using the M3Y+repulsion potential
is sensitively better than the one provided by the AW
potential starting at 90 MeV, and not only for the four lowest
experimental data points. The excitation function obtained
with the M3Y+repulsion potential has the right slope, not
only because the potential attains a higher-lying pocket but
also because the curvature of the barrier is different, with a
thicker barrier in the overlapping region. Thus the best χ2 per
point is only χ2/N = 0.86. This value is obtained by applying
the energy shift �E = 0.16 MeV to the calculated excitation
function. The best fit obtained with AW potential, on the other
hand, gives a χ2/N = 10 and requires an energy shift of
�E = 0.9 MeV.

The S-factor representation of the 64Ni+64Ni fusion cross
sections is displayed in the middle panel of Fig. 6. The clear
maximum in the measured S factor is reproduced only by
the M3Y+repulsion potential. At this point, we recall the
experience gained in the past on molecular resonances. As
shown in Ref. [23], the S factor exhibits a sequence of
quasimolecular resonances, sandwiched between a limiting
interior threshold and the Coulomb barrier. In the present
case, we obtain a maximum that is too broad to be assigned
to a resonance, the curvature in the S factor being explained
by the shallow pocket in the potential. The maximum of the
theoretical curve corresponds approximately to the maximum
of the experimental data.

The logarithmic derivative of the energy-weighted cross
section is shown in the middle panel of Fig. 7, and
a nice agreement with the data is obtained in the
CC calculations that are based on the M3Y+repulsion
potential.
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C. 64Ni+100Mo

For the repulsive part of the potential, we choose arep =
0.375 fm and Vrep = 488.7 MeV, values that match the
incompressibility K = 226 MeV of the compound nucleus
164Yb. To improve the fit to the data, we included up to
three phonon excitations of the quadrupole mode in 100Mo
using the structure parameters given in Ref. [55]. However,
the agreement with the data seen in the right panel of Fig. 5
is clearly not as good as in the other two cases shown in
the same figure. The reason is that the CC effects are very
strong for this heavy-ion system and the calculations have not
fully converged with respect to multiphonon excitations, as
discussed in Ref. [55]. Another problem is that the nuclear
structure properties of multiphonon states are often poorly
known, so we will not try to improve the fit to the data here.

For the S factor, we reproduce roughly, as can be concluded
from an inspection of the right panel in Fig. 6, the trend to
develop a well-pronounced maximum at the lowest measured
energies and provide a reasonable estimation for this maxi-
mum. Also, the logarithmic derivative manifests the tendency
to develop a divergent behavior at low energies (Fig. 7, upper
panel). The appearance of a local maximum at 124 MeV, on
the other hand, is most likely caused by a poor convergence
with respect to multiphonon excitations.

D. High-energy behavior of fusion cross sections

The cross sections we obtain in coupled-channels calcula-
tions are suppressed when compared to the no-coupling limit.
This can be seen in Fig. 5, but the suppression looks small on a
logarithmic plot. We therefore show a linear plot in Fig. 8 of the
same cross sections for the two nickel isotopes. In both cases,
we see that the coupled-channels calculations that are based
on the AW potential are suppressed at high energies when
compared with the no-coupling limit. This is a well-known
CC effect, but the suppression is not always large enough to
explain the measurements, in particular for heavy systems [10].

We also see in Fig. 8 that the CC results we obtain with
the M3Y+repulsion potential are suppressed even further, and
the suppression increases with increasing energy. This is what
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FIG. 8. (Color online). Linear plot of fusion cross sections shown
in Fig. 5 for the two systems 64Ni+64Ni [4] and 58Ni+58Ni [7].

one would naively expect with shallower pockets at higher
angular momenta. It is unfortunate that the data considered
here do not reach very large cross sections, so it is difficult to
assess the significance of the suppression we obtain. However,
the trend is very encouraging because it helps explain why the
high-energy fusion data considered in Ref. [10] are suppressed
so much compared to CC calculations and why it was necessary
to use a large diffuseness of the ion-ion potential when fitting
the data in the no-coupling limit.

VII. INTERPRETATION OF THE RESULTS

In the previous section, we obtained an excellent fit to the
fusion data for the two nickel isotopes in the CC calculations
that were based on the M3Y+repulsion potential and in-going-
wave boundary conditions. Here we discuss the significance
of these results and the implications for other observables. We
have also tested other types of repulsive cores, such as the
Gaussian one of the type used in Ref. [32], but we concluded
that they inadequately reproduce the fusion data we have
investigated here. Thus there appears to be some limitations or
constraints in constructing the shape of the ion-ion potential
inside the barrier.

A. Models of fusion

The description of heavy-ion fusion is often based on
the assumption that fusion occurs as soon as the Coulomb
barrier has been penetrated. More precisely, it is expected
that the fusion cross section obtained from the absorption
in a short-range imaginary potential is essentially identical
to the cross section obtained with in-going-wave boundary
conditions (IWBC) [57]. Moreover, the calculated fusion cross
section is expected to be insensitive to small variations in the
radius where the absorption or IWBC are imposed.

In coupled-channels calculations, heavy-ion fusion is usu-
ally simulated by IWBC that are imposed at the minimum
of the potential pocket as, for example, in the computer code
CCFULL [58] and also in the present work. The assumptions
mentioned above have therefore rarely been challenged, and
in cases where they have been tested, at energies close to
the Coulomb barrier, they have usually passed the test. One
exception is discussed in Ref. [59], where it was noticed
that the calculated fusion cross section in one particular
case showed an unacceptable variation with respect to the
radius where the IWBC were imposed. This occurred in a
case with particularly strong couplings. Another example is
Ref. [55], which pointed out that certain unwanted oscillations
in the cross sections, obtained at extreme sub-barrier energies
using the IWBC, could be suppressed by including a weak,
short-range imaginary potential in the calculations.

In this work, we tried to demonstrate that the fusion
at extreme sub-barrier energies is sensitive not only to the
thickness and height of the Coulomb barrier but also to
the minimum of the potential pocket, where the IWBC are
imposed. It is noted that the calculated fusion cross section,
which is based on the IWBC, will vanish sharply as the energy
approaches the minimum of the pocket. This sharp behavior is
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FIG. 9. (Color online). Dependence of the calculated fusion cross
section on the diffuseness aW of the imaginary potential. Results are
compared with the data for 64Ni+64Ni [4] and the calculation based
on the IWBC without absorption. Triangular data point at the lowest
energy is an upper limit.

apparently what is needed to fit the data at extreme sub-barrier
energies, at least in the case of 64Ni+64Ni.

We have also calculated the fusion of 64Ni+64Ni using,
in addition to the M3Y+repulsion potential, a short-range
imaginary potential of the form proposed in Eq. (3) of Ref.
[55]. The results for different values of the diffuseness aW

are shown in Fig. 9 by the dashed curves. They all make
an excellent fit to the data above 10 µb but they deviate
significantly from the data at smaller cross sections. In contrast,
the calculation discussed earlier (solid curve), which is based
on the IWBC without any imaginary potential, is in perfect
agreement with the data.

There is a simple reason why the dashed curves are
enhanced compared with the solid curve (IWBC) in Fig. 9
at the lowest energies. First of all, the fusion obtained from
the IWBC without an imaginary potential can only occur
in the elastic channel at low energy, say below 87–88 MeV
in the case considered here, and the cross section goes sharply
to zero at the minimum of the pocket which is 85.4 MeV.
The inelastic channels are energetically closed to fusion at
these low energies, and the associated wave functions are
(exponentially) decaying at the boundary. When an imaginary
potential is turned on, the fusion/absorption becomes possible
through all channels. This explains qualitatively why the
dashed curves are above the solid curve at low energy and
why the conventional assumption about fusion described in the
beginning of this subsection is not correct at extreme subbarrier
energies.

B. Average spin for fusion

Another signature of a shallow pocket in the total ion-ion
potential is a narrowing of the spin distribution for fusion
as the center-of-mass energy decreases and approaches the
pocket energy. In the past it has always been believed that
the average angular momentum for fusion would approach
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FIG. 10. (Color online). Average angular momentum for the
fusion of 64Ni+64Ni obtained in CC calculations based on the
M3Y+repulsion potential (with and without the effect of couplings
to the two-phonon octupole states) and on the no-coupling limit using
the AW potential. Data are from Ref. [56].

a constant at low energy. This is the behavior that has been
predicted by model calculations, including the CC [53], but it
has not really been tested experimentally. An example is shown
in Fig. 10, where the measurements of the γ -ray multiplicity
from the compound nucleus formed in the fusion of 64Ni+64Ni
have been converted into an average angular momentum for
fusion [56]. The thin dashed curve shows the prediction based
on the AW potential in the no-coupling limit [NOC (AW)].
It approaches a constant value at low energy, but the data are
always above that limit. The solid curve in Fig. 10 shows
the results we obtain in the CC calculations we discussed
earlier, which were based on the M3Y+repulsion potential. It
is seen that these calculations predict a narrowing of the spin
distribution as the energy approaches the pocket energy.

After completing our studies, we realized that the low-
energy behavior of several observables can have a strong
sensitivity to the couplings to multiphonon states. Although
the fusion only occurs in the elastic channel at energies close
to the minimum of the pocket, the polarization of inelastic
channels can still have a large effect. We found, in particular,
that couplings to the two-phonon octupole states are very
important. This is illustrated in Fig. 10 by the dotted curve,
which was obtained without any couplings to the two-phonon
octupole states. The calculation in this case develops a rather
sharp peak at 87.7 MeV. The peak disappears when the
coupling to the two-phonon octupole states is included, as
illustrated by the solid curve. Unfortunately, the data cannot
tell us which of these two calculations is the most realistic.

C. Structures in calculated cross sections

The local maximum that appears in the thick dotted curve
in Fig. 10 at low energy is not a resonance. It is the result of
a vanishing wave function in the elastic channel at the radial
separation where the IWBC are imposed. When this condition
is fulfilled at low energy, where fusion is restricted to the elastic
channel, the fusion probability will vanish. When it occurs
for a range of low angular momenta, it will result in a large
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average angular momentum for fusion, and that explains the
appearance of the peak in Fig. 10. The suppression of the fusion
probability at low energy (which occurs when the two-phonon
octupole states are not included in the calculation) can also
produce a local minimum in the S factor. This is illustrated by
the dotted curve in Fig. 11. The solid curve, which includes the
effect of couplings to the two-phonon octupole states, shows a
single, broad maximum. In this particular case, there is a clear
preference for the solid curve which makes an excellent fit to
the data.

In the calculations we presented for 58Ni+58Ni, we did not
include the two-phonon octupole states in the CC calculations
because the excitation energy is very large, almost 9 MeV,
so we did not expect these states to be important. In view
of the above discussion, it is now understandable why the
calculated S factor for 58Ni+58Ni shown in the left panel
of Fig. 6 develops a double-peaked structure at low energy.
We therefore repeated the calculations and included the two-
phonon octupole states. The resulting S factor exhibits a single,
broad peak, just as we saw in the fusion of 64Ni+64Ni.

It is not clear why the couplings to the two-phonon octupole
states play such an important role as discussed above. However,
the analysis of the 64Ni+64Ni data shows a perfect agreement
with a single, broad S-factor peak, whereas the analysis of
the existing fusion data for 58Ni+58Ni fusion has a strong
preference for the double-peaked S-factor curve. In view
of these findings, it is of interest to continue the fusion
measurements for 58Ni+58Ni to even lower energies because
the existing data [7] shown in the left panel of Fig. 6 do not
verify explicitly the double-peaked structure.

D. Correlation between the pocket energy and Es

As we mentioned in the Introduction, Ref. [3] reported
a correlation between the energy Es where the S factor has a
maximum and the parameter Z1Z2

√
µ, with µ = A1A2/(A1+

A2). In view of the idea of a shallow pocket advocated in the
present paper, we considered it useful to study the dependence
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FIG. 12. (Color online). Vpocket (triangles) and Es (solid points)
vs Z1Z2

√
µ for three reactions.

of the minimum of the potential Vpocket, along with Es , on
the parameter Z1Z2

√
µ. This is illustrated in Fig. 12 for the

three cases we investigated in this work. We note the pocket
energy Vpocket follows closely the energy Es , where the S has a
maximum, the two results being separated by about 3–5 MeV.

VIII. CONCLUSIONS

We conclude that in order to explain the experimental
fusion data at extreme sub-barrier energies it is not necessary
to adopt the hypothesis of an abnormal diffuseness of the
internuclear potential as advocated in some publications.
Such an assumption would be equivalent, within the folding
model, to an unusual diffuseness of the target and projectile
nuclear matter distributions. Proton diffusivities, as inferred
from electron scattering measurements (64Ni) or from HFB
calculations (58Ni and 100Mo), are able to reproduce the
excitation functions. Using a diffuseness of the neutron matter
distribution in the range of 0.5–0.6 fm, which is a reasonable
assumption for the moderately neutron-rich nuclei considered
in this paper, is necessary not only to realize a shallow pocket
but also to obtain a good value for the height of the spherical
Coulomb barrier. With these remarks we do not want to discard
the appearance of a large diffuseness during the fusion process.
Physically we expect an increase in the nuclear skin to appear
in the neck (overlap) region but not over the entire surface of
the reacting nuclei.

We have tried to advocate in this work that the understand-
ing of the experimental data requires more than simply a
modification in the curvature of the barrier (as used in the
Hill-Wheeler approximation of the Wong formula), or the
introduction of a simple recipe for the repulsive potential such
as a Gaussian. We used the double-folding potential that is
based on the Reid parametrization of the M3Y interaction, and
realistic parameters of the proton and neutron distributions
of both target and projectile. We have supplemented this
potential with a repulsive potential that takes into account
the incompressibility of the nuclear matter.

We also conclude that it is necessary to define the fusion
in terms of in-going-wave boundary conditions. When these
conditions are imposed at the minimum of the potential pocket,
it is possible to reproduce the steep energy dependence of the
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fusion data at extreme sub-barrier energies. Simulating the
fusion by the absorption in an imaginary potential, on the
other hand, does not allow us to reproduce the steep falloff of
data at the lowest energies.

For the two cases that were recently measured at ATLAS,
namely, 64Ni+64Ni and 64Ni+100Mo, our calculations show a
single broad maximum in the S factor at the lowest measured
energies in agreement with the measurements. In contrast, our
calculations for 58Ni+58Ni show a double-peaked structure of
the S factor. We find that the predicted shape of the low-energy
S factor is very sensitive to the couplings to the two-phonon
octupole states. Thus if we ignore these couplings, the S factor
develops a double-peaked structure at low energy, whereas a
strong coupling to the these states (as in a harmonic vibration)
tends to produce a single, broad low-energy peak. It is therefore
important to test the predicted S factor experimentally at lower
energies, in particular in the case of 58Ni+58Ni.

For all three fusion reactions studied in this paper, we
noticed a nice correlation between the minimum of the
potential pocket Vmin and the experimentally extracted ref-
erence energy Es , where the S factor reaches a maximum.
A systematic study of fusion reactions over a wider range of
values of the parameter Z1Z2

√
µ is necessary to confirm this

apparent correlation and the conjecture of a repulsive core
for overlapping configurations. We also mentioned another
possible signature of a shallow pocket, which is the narrowing
of the spin distribution at energies below Es . This is what our
CC calculations predict and it can be tested by measurements
of the γ -ray multiplicity emitted from the compound nucleus.

Before submission of this paper, further evidence on
the hindrance in the sub-barrier fusion of 48Ca+96Zr was
reported [60]. This conclusion resulted from the analysis of
the logarithmic derivative which exhibits a steep increase at
the lowest measured cross sections.
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[1] Ş. Mişicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006).
[2] C. L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).
[3] C. L. Jiang, H. Esbensen, B. B. Back, R. V. F. Janssens, and

K. E. Rehm, Phys. Rev. C 69, 014604 (2004).
[4] C. L. Jiang et al., Phys. Rev. Lett. 93, 012701 (2004).
[5] C. L. Jiang et al., Phys. Rev. C 71, 044613 (2005).
[6] C. L. Jiang, B. B. Back, H. Esbensen, R. V. F. Janssens, and

K. E. Rehm, Phys. Rev. C 73, 014613 (2006).
[7] M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, and

A. Di Rienzo, Phys. Rev. C 25, 837 (1982).
[8] J. G. Keller et al., Nucl. Phys. A452, 173 (1986).
[9] K. Hagino, N. Rowley, and M. Dasgupta, Phys. Rev. C 67,

054603 (2003).
[10] J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I.

Gontchar, C. R. Morton, and K. Hagino, Phys. Rev. C 70, 024605
(2004).

[11] C. H. Dasso and G. Pollarolo, Phys. Rev. C 68, 054604
(2003); G. Pollarolo, Prog. Theor. Phys. Suppl. 154, 201
(2004).

[12] R. A. Broglia and A. Winther, Heavy Ion Reactions, Lecture
Notes, Vol. 1, The Elementary Processes (Addison-Wesley, MA,
1991), p. 114, Eqs. (40)–(41), (44), and (45).
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