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Superscaling in electroweak excitation of nuclei
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Superscaling properties of 12C, 16O, and 40Ca nuclear responses, induced by electron and neutrino scattering,
are studied for momentum transfer values between 300 and 700 MeV/c. We have defined two indexes to have
quantitative estimates of the scaling quality. We have analyzed experimental responses to get the empirical
values of the two indexes. We have then investigated the effects of finite dimensions, collective excitations,
meson exchange currents, short-range correlations, and final state interactions. These effects strongly modify the
relativistic Fermi gas scaling functions, but they conserve the scaling properties. We used the scaling functions
to predict electron and neutrino cross sections and we tested their validity by comparing them with the cross
sections obtained with a full calculation. For electron scattering we also made a comparison with data. We have
calculated the total charge-exchange neutrino cross sections for neutrino energies up to 300 MeV.
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I. INTRODUCTION

The properties of the relativistic Fermi gas (RFG) model
of the nucleus [1–3] have inspired the idea of superscaling.
In the RFG model, the responses of the system to an external
perturbation are related to a universal function of a properly
defined scaling variable, which depends on the energy and
the momentum transferred to the system. With the adjective
universal we want to indicate that the scaling function is
independent of the momentum transfer, and also of the number
of nucleons. These properties are called, respectively, scaling
of the first and second kind. Furthermore, the scaling function
can be defined in such a way to result in independence also of
the specific type of external one-body operator. This feature
is usually called scaling of the zeroth kind [4–6]. One has
superscaling when the three kinds of scaling we have described
are verified. This happens in the RFG model.

The theoretical hypothesis of superscaling can be em-
pirically tested by extracting response functions from the
experimental cross sections and by studying their scaling
behaviors. The responses of the nucleus to electroweak probes
can be extracted from the lepton-nucleus cross sections by
dividing them by the single-nucleon cross sections properly
weighted to account for the number of protons and neutrons.
In addition, one has to divide the obtained responses by the
appropriate electroweak form factors.

Inclusive electron scattering data in the quasi-elastic region
have been analyzed in this way [4,7,8]. The main result of these
studies is that the longitudinal responses show superscaling
behavior. To be more specific, scaling of the second kind,
independence of the nucleus, is better fulfilled than the scaling
of the first kind, independence of the momentum transfer.
The situation for the transverse responses is much more
complicated.

The presence of superscaling features in the data is relevant
not only by itself but mainly because this property can be
used to make predictions. In effect, from a specific set of

longitudinal response data [9], an empirical universal scaling
function has been extracted [4] and has been used to obtain
neutrino-nucleus cross sections in the quasi-elastic region [5].

We observed that this universal scaling function is quite
different from that predicted by the RFG model. This indicates
the presence of physical effects not included in the RFG
model, but still conserving the scaling properties. We have
investigated the superscaling behavior of some of the effects
not considered in the RFG model: the finite size of the system,
its collective excitations, short-range correlations (SRC),
meson exchange currents (MEC), and final state interactions
(FSI). The inclusion of these effects produces scaling functions
rather similar to the empirical ones.

Before presenting our results, we recall in Sec. II the basic
expressions of the superscaling formalism. We show how the
scaling functions are related to the electromagnetic and weak
response functions, and to the inclusive lepton scattering cross
sections.

In Sec. III we discuss the scaling properties of our nuclear
models. To quantify the quality of the scaling between the
various functions obtained with different calculations, we
define two indexes, R and D. From the data of Ref. [9] we
extract empirical reference values of these two indexes that
indicate whether scaling has occurred. From the same set of
data we also extract an empirical universal scaling function.
We analyze the scaling properties of all the effects beyond the
RFG model, by comparing the values of the two indexes R
and D of the theoretical scaling functions with the empirical
ones. We choose a theoretical scaling function obtained by
including all the effects considered as a theoretical universal
scaling function.

In Sec. IV we study the prediction power of the superscaling
hypothesis. Our universal empirical and theoretical scaling
functions are used to calculate electron and neutrino inclusive
cross sections. These results are compared with those obtained
by calculating the same cross sections with our nuclear
model. We discuss results for double differential electron
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scattering processes, and we compare our cross sections with
experimental data. We also calculate total neutrino cross
sections for neutrino energies up to 300 MeV. In Sec. V we
summarize our results and present our conclusions.

II. BASIC SCALING FORMALISM

Scaling variables and functions have been presented in a
number of papers [1,4–8,10–13]. The purpose of this section
is to recall the expression of the scaling variable used in our
study and the relations among scaling functions, responses,
and cross sections.

In this work we have considered only processes of inclusive
lepton scattering off nuclei. We have described these processes
in the plane wave Born approximation and we have neglected
the terms related to the rest masses of the leptons. In this
presentation we indicate, respectively, with ω and q the energy
and the momentum transferred to the nucleus.

In the RFG model the scaling variables and functions are
related to the two free parameters of the model: the Fermi
momentum kF and the energy shift Eshift. We define the
quantity

�0 = 2m

kF

[√(
ω − Eshift

2m

) (
1 + ω − Eshift

2m

)
− q

2m

]
, (1)

where q ≡ |q| and m = (mp + mn)/2 indicates the average
nucleon mass. The scaling variable is then defined as

� = �0

(
1 + �0

kF

2q

√
q2

m2
+ 1

)
. (2)

The RFG model provides a universal scaling function, which
can be expressed in terms of the scaling variable � as [5,6]

f RFG(�) = 3
4 (1 − �2)θ (1 − �2), (3)

where θ (x) indicates the step function. The RFG scaling
function (3) is normalized to unity.

In the electron scattering case, the inclusive double differ-
ential cross section can be written as [14]

d2σ

dθ dω
= σM

{
(ω2 − q2)2

q4
RL(ω, q)

+
[

tan2

(
θ

2

)
− ω2 − q2

2q2

]
RT(ω, q)

}
, (4)

where θ is the scattering angle, σM is the Mott cross section,
and we have indicated with RL and RT the longitudinal and
transverse responses, respectively, defined as

RL(ω, q) = 4π
∑
J=0

|〈Jf‖CJ ‖Ji〉|2 (5)

and

RT(ω, q) = 4π
∑
J=1

(|〈Jf‖EJ ‖Ji〉|2 + |〈Jf‖MJ ‖Ji〉|2). (6)

In these equations we have indicated with |Ji〉 and |Jf〉 the
initial and final states of the nucleus characterized by their
total angular momenta Ji and Jf . The double bars indicate that
the angular momentum matrix elements are evaluated in their

reduced expressions, as given by the Wigner-Eckart theorem
[15]. We have indicated with CJ , EJ , andMJ , respectively, the
Coulomb, electric, and magnetic multipole operators [14,16].

The scaling functions are obtained from the electromagnetic
responses as

fL(�) = kF
q2 − ω2

q m

RL(ω, q)

Z
(
G

p

E

)2 + N
(
Gn

E

)2 , (7)

fT(�) = 2 kF
q m

q2 − ω2

RT(ω, q)

Z
(
G

p

M

)2 + N
(
Gn

M

)2 , (8)

where Z and N indicate, respectively, the number of protons
and neutrons of the target nucleus, and we have indicated
with G

p,n

E,M the electric (E) and magnetic (M) form factors of
the proton (p) and the neutron (n). In our calculations we
used the electromagnetic nucleon form factors of Ref. [17]. In
Eq. (8) only the magnetic nucleon form factors are present.
This implies the hypothesis that in RT only the one-body
magnetization current is active. In the range of momentum
transfer values investigated, from 300 to 700 MeV/c, we
found that the contribution of the convection current is of
few percents that of the magnetization current.

Since our calculations are done in a nonrelativistic frame-
work, we have modified our responses by using the semi-
relativistic corrections proposed in [6,18]:

ε → ε
(

1 + ε

2m

)
, (9)

RL(q, ω) → q2

q2 − ω2
RL(q, ω), (10)

RT(q, ω) → q2 − ω2

q2
RT(q, ω), (11)

where ε indicates the energy of the emitted nucleon.
The discussion here can be extended to the case of the

inclusive neutrino scattering processes. For example, for the
(νe, e

−) reaction we express the differential cross section as
[19–21]

d2σ

d�dω
= G2 cos2 θC

(2π )2
|kf|εfF (Z′, εf)

×
{(

l0l
	
0 + ω2

q2
l3l

	
3 − ω

q
l3l

	
0

)
RV

CC(ω, q)

+ l0l
	
0R

A
CC(ω, q) + l3l

	
3R

A
LL(ω, q) + 2l3l

	
0R

A
CL(ω, q)

+ 1

2
(�l · �l	 − l3l

	
3)

[
RV

T (ω, q) + RA
T (ω, q)

]
− i

2
(�l × �l	)3R

V A
T′ (ω, q)

}
. (12)

In this equation we have indicated with G the Fermi constant,
with θC the Cabibbo angle, with εf and kf the energy and
the momentum of the scattered lepton, and with F (Z′, εf ) the
Fermi function taking into account the distortion of the electron
wave function owing to the Coulomb field of the daughter
nucleus of charge Z′. The expressions of the factors li l

	
i , related

only to the leptons variables, are given in Refs. [19–21].
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The nuclear response functions are expressed in terms of
multipole expansion of the operators describing the various
terms of the weak interaction. They are the Coulomb CJ , lon-
gitudinal LJ , transverse electric EJ , and transverse magnetic
MJ operators. The responses are defined as

RV
CC(ω, q) = 4π

∑
J=0

|〈Jf||CV
J ||Ji〉|2, (13)

RA
CC(ω, q) = 4π

∑
J=0

|〈Jf||CA
J ||Ji〉|2, (14)

RA
CL(ω, q) = 2π

∑
J=0

(〈Jf||CA
J ||Ji〉	〈Jf||LA

J ||Ji〉

+ 〈Jf||CA
J ||Ji〉〈Jf||LA

J ||Ji〉	
)
, (15)

RA
LL(ω, q) = 4π

∑
J=0

|〈Jf||LA
J ||Ji〉|2, (16)

RV
T (ω, q) = 4π

∑
J=1

(|〈Jf||EV
J ||Ji〉|2 + |〈Jf||MV

J ||Ji〉|2
)
,

(17)

RA
T (ω, q) = 4π

∑
J=1

(|〈Jf||EA
J ||Ji〉|2 + |〈Jf||MA

J ||Ji〉|2
)
,

(18)

and

RVA
T′ (ω, q) = 2π

∑
J=1

(〈Jf||EV
J ||Ji〉	〈Jf||MA

J ||Ji〉

+ 〈Jf ||EV
J ||Ji〉〈Jf||MA

J ||Ji〉	
+〈Jf ||EA

J ||Ji〉	〈Jf||MV
J ||Ji〉

+ 〈Jf ||EA
J ||Ji〉〈Jf||MV

J ||Ji〉	
)
, (19)

where we have separated the vector (V) and the axial-vector
(A) contributions.

We found that the terms related to the axial-Coulomb
operator CA

J give a very small contribution to the cross section,
and, in our study, we neglected them. This means that our
scaling analysis has been done for the RV

CC, RA
LL, RV

T , RA
T , and

RVA
T′ responses only. The corresponding scaling functions have

been defined as

f V
CC(�) = kF

q2 − ω2

q m

RV
CC(ω, q)

N
(
G

(1)
E

)2 , (20)

f A
LL(�) = 4 kF

q m

4m2 + q2 − ω2

RA
LL(ω, q)

N (GA)2
, (21)

f V
T (�) = 2 kF

q m

q2 − ω2

RV
T (ω, q)

N
(
G

(1)
M

)2 , (22)

f A
T (�) = 2 kF

q m

4m2 + q2 − ω2

RA
T (ω, q)

N (GA)2
, (23)

f VA
T′ (�) = 2 kF

q m√
q2 − ω2

√
4m2 + q2 − ω2

RVA
T′ (ω, q)

NG
(1)
M GA

,

(24)

where we have indicated with G
(1)
E,M the isovector electric (E)

and magnetic (M) nucleon form factors, and with GA the axial-
vector one. We have used the electromagnetic form factors of

Ref. [17] and the dipole form of the axial vector form factor
with an axial mass value of 1030 MeV.

The relativistic effects are taken into account by using semi-
relativistic corrections similar to those of Eqs. (9)–(11). In this
case the responses are obtained by doing the following changes
with respect to the pure nonrelativistic case:

RV
CC(q, ω) → q2

q2 − ω2
RV

CC(q, ω), (25)

RA
LL(q, ω) →

(
1 + q2 − ω2

4m2

)
RA

LL(q, ω), (26)

RV
T (q, ω) → q2 − ω2

q2
RV

T (q, ω), (27)

RA
T (q, ω) →

(
1 + q2 − ω2

4m2

)
RA

T (q, ω), (28)

RVA
T′ (q, ω) →

√
q2 − ω2

q2

√
1 + q2 − ω2

4m2
RVA

T′ (q, ω). (29)

The extension of these expressions to antineutrino charge
exchange scattering processes is straightforward. The treat-
ment of charge-conserving processes is slightly different.

III. SUPERSCALING BEYOND THE RFG MODEL

The basic quantities calculated in our work are the elec-
tromagnetic and the weak, nuclear response functions. We
obtain the scaling functions by using Eqs. (7) and (8) for the
electron scattering case and Eqs. (20)–(24) for the neutrino
scattering. The scaling properties of the scaling functions have
been studied by a direct numerical comparison. We thought it
necessary to define some numerical index able to quantify the
quality of the scaling.

Let us consider the problem of comparing a number M of
scaling functions {fα, α = 1, . . . ,M}, each of them known
for K values of the scaling variable {�i, i = 1, . . . , K}. For
each value of �i we found the maximum and minimum of the
various fα scaling functions:

f max
i = max

α=1,...,M
[fα(�i)] , (30)

f min
i = min

α=1,...,M
[fα(�i)] . (31)

We define the two indexes

D = max
i=1,...,K

[
f max

i − f min
i

]
(32)

and

R = 1

Kf max

∑
i=1,...,K

[
f max

i − f min
i

]
, (33)

where f max is

f max = max
i=1,...,K

[
f max

i

]
. (34)

The two indexes give complementary information. The D
index is related to a local property of the functions: the
maximum distance between the various curves. The value of
this index could be misleading if the responses have sharp
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resonances. For this reason we have also used the R index,
which is instead sensitive to global properties of the differences
between the functions. Since we know that the functions we
want to compare are roughly bell shaped, we have inserted the
factor 1/f max to more heavily weight the region of the maxima
of the functions than that of the tails.

The perfect scaling is obtained when bothD andR are zero.
This is achieved only in the RFG model. In our calculations
the perfect scaling is obviously violated, as it is violated
by the empirical scaling functions. To have reference values of
the two indexes we have determined the values of R and D for
experimental scaling functions extracted from the longitudinal
and transverse electromagnetic response data of 12C, 40Ca, and
56Fe given in Ref. [9]. This is the same set of data used in
Ref. [4] to extract a universal scaling function.

The definition of the scaling variable �, Eqs. (1) and
(2), requires one to fix the values of kF and Eshift for each
nucleus. We used values of kF obtained by doing an average
over the nuclear density and used values of Eshift that, in
a Fermi gas calculation, reproduce the peak position of
the experimental response functions [22]. We used Eshift =
15 MeV for all the nuclei and kF = 215 MeV/c for 12C and
16O and kF = 245 MeV/c for 40Ca and 56Fe.

The details of the procedures we have used to extract the
experimental scaling functions and to calculate the empirical
values of R and D are given in the Appendix. We present
in Fig. 1 the experimental longitudinal and transverse scaling
function data for 12C, 40Ca, and 56Fe for each value of the
momentum transfer given in Ref. [9]. In Table I we give the
values of D and R obtained by comparing the experimental
scaling functions shown in each panel.

We analyze the empirical scaling functions by studying
the three different kinds of scaling defined in Sec. I. The
presentation of the data of Fig. 1 and Table I gives direct
information on the scaling of the second kind. It is immediately
observed that, in this case, the fL functions scale better than
the fT ones. The fT scaling functions of 12C, especially for the
lower q values, are remarkably different from those of 40Ca
and 56Fe. This is confirmed by the values of R and D given in
Table I.

The other two kinds of scaling are not so well fulfilled by
the experimental functions. As is evident from the figure, the
scaling of the zeroth kind is of poor quality. Longitudinal
and transverse scaling functions are remarkably different,

FIG. 1. Empirical longitudinal, fL, and transverse, fT, scaling
functions obtained from the experimental electromagnetic responses
of Ref. [9] as explained in the Appendix. The numbers in the panels
indicate the values of the momentum transfer in MeV/c. The full
circles refer to 12C, the white squares to 40Ca, and the white triangles
to 56Fe. The thin black line in the fL panel at 570 MeV/c is the
empirical scaling function obtained by fitting the data. The thick
lines show the results of our calculations when all the effects beyond
the RFG model have been considered (see text). The full lines have
been calculated for 12C, the dotted lines for 16O, and the dashed lines
for 40Ca. The thin dashed lines show the RFG scaling functions.

not only in size, but even in their shapes. The excitation of
subnucleonic degrees of freedom, mainly the excitation of the
� resonance, strongly affects fT, whereas it is almost irrelevant
in fL. Also the quality of the scaling of the first kind is rather
poor. These observations are in agreement with those of Refs.
[4,7,8], where data measured at large q values have also been
used.

From the analysis of the scaling properties of the exper-
imental functions, we have extracted two benchmark values

TABLE I. Values of the D and R indexes, Eqs. (32) and (33), calculated by
comparing the empirical fL and fT scaling functions shown in Fig. 1 for each value
of the momentum transfer q. The values provide information about the scaling of
the second kind. The values of D and R for fL at q = 570 MeV/c, in boldface, are
taken as our reference values.

q (MeV/c) fL fT

D R D R

300 0.107 ± 0.002 0.152 ± 0.013 0.223 ± 0.004 0.165 ± 0.017
380 0.079 ± 0.003 0.075 ± 0.009 0.235 ± 0.005 0.155 ± 0.014
570 0.101 ± 0.009 0.079 ± 0.017 0.169 ± 0.003 0.082 ± 0.007
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of R and D that we have used to gauge the quality of the
scaling of our theoretical functions. The values we have chosen
are those related to the fL functions at q = 570 MeV/c (see
Table I), where the quasi-elastic scattering mechanism works
better. In the following, we shall consider that the scaling is
violated when R > 0.096 or D > 0.11. These numbers are
obtained by adding the uncertainty to the central benchmark
values. The nonscaling regions will be indicated by the gray
areas in the figures.

From the same set of data we extracted (see the
Appendix) an empirical universal scaling function represented
by the thin full line in the lowest left panel of Fig. 1. This
function, which we called f ex

U , is rather similar to the universal
empirical function given in Ref. [4].

We start now to consider the scaling of the theoretical
functions. The thick lines show the results of our calculations
when various effects beyond the RFG are introduced. These
scaling functions have been obtained by considering nuclear
finite size, collective excitations, short-range correlations, final
state interactions, and, in the case of the fT functions, meson
exchange currents.

The results presented by the thick lines have been obtained
for three different nuclei. The full lines represent the 12C
results; the dotted and dashed lines show, respectively, the
results obtained for 16O and 40Ca. The differences between
these curves become larger with decreasing q values. We
obtain R = 0.03 and D = 0.05 for fL at 570 MeV/c and
R = 0.05 and D = 0.15 at 300 MeV/c. The scaling of the
fT functions is not as good. In this case we obtain R = 0.03
and D = 0.06 at 570 MeV/c and R = 0.10 and D = 0.13 at
300 MeV/c. In any case, these numbers are smaller than our
empirical reference values, and we can state that the scaling of
the second kind is satisfied.

In contrast, the curves of Fig. 1 show a poor scaling of the
first kind. The comparison between the fL functions calculated
for the three q values indicated in the figure gives a minimum
R value of 0.13, found for the 12C nucleus, and a maximum
value of 0.15, found for the 40Ca nucleus. The minimum and
maximum values of the other index, D, are 0.18 and 0.30. We
found similar (even if a few percent larger) values also for the
fT functions.

The scaling of the zeroth kind is rather well satisfied. By
comparing fL and fT for each nucleus and each q value we
found 0.04 as a maximum value of R. We found 0.11 for D,
slightly large even if below our empirical limiting value. This
relatively large value of D is due to the presence of sharp
resonances in the longitudinal and transverse responses at q =
300 MeV/c, which appear at different excitation energies. We
have chosen the longitudinal scaling function obtained for 16O
at q = 570 MeV/c as the theoretical universal scaling function
that we called f th

U .
In Fig. 1 the thin dashed lines show the RFG scaling

functions. It is evident that the inclusion of the effects beyond
the RFG we have considered produce relevant modifications
of the RFG scaling functions. These modifications remarkably
improve the agreement with the experimental scaling func-
tions. However, the effects we have considered do not heavily
modify the scaling properties of the fL and fT functions. In the
remaining part of the section, we first discuss the consequences

of each effect beyond RFG, and then we analyze the scaling
properties for neutrino scattering processes.

A. Finite-size effects

The starting point of our calculations is the continuum shell
model. In this model, the scattering processes are described by
using some of the assumptions on the nuclear structure that
are also used in the Fermi gas model. We refer to the fact
that both nuclear models consider the nucleons free to move
in a mean-field potential. The continuum shell model takes
into account the finite dimensions of the system, the finite
number of nucleons, and the fact that protons and neutrons feel
different mean-field potentials. In our calculations, the mean
field is produced by a Woods-Saxon well. The parameters of
this potential are taken from Refs. [23] (for 12C) and [24] (for
16O and 40Ca) and have been fixed to reproduce the single
particle energies around the Fermi surface and the rms radii of
the charge distributions of each nucleus we have considered.

The scaling properties of this model have been verified in
Ref. [6] for q values larger than 700 MeV/c. We are interested
in the region of lower q values, and we have calculated
longitudinal and transverse responses for momentum transfer
values down to 300 MeV/c. Our results are summarized in
Fig. 2. In panels (a) and (b) of the figure the thick lines
show the fL scaling functions obtained, respectively, for
q = 300 MeV/c and q = 700 MeV/c, the extreme values
used in our calculations. The full, dotted and dashed lines
indicate the 12C, 16O, and 40Ca results, respectively, whereas
the thin dashed lines show the RFG model ones. As expected,
for q = 300 MeV/c, shell model and RFG produce rather
different scaling functions. The shell-model results present
sharp resonances, and the figure indicates that the scaling
of the second kind is poorly satisfied. The situation changes
with increasing momentum transfer. For q = 700 MeV/c the
fL values show excellent scaling of the second kind and the
agreement with the RFG results has largely improved. Our
scaling functions do not have their maxima exactly at � = 0
and present a small left-right asymmetry.

More concise information about the scaling properties of
these results is given in the other two panels of Fig. 2. In panel
(c) the values of R and D are calculated by comparing the
fL and fT scaling functions of the same nucleus, for a fixed
q value. The results shown in panel (c) give information on
how the scaling of the zeroth kind is verified at each q value.
In this panel, the black circles show the 12C results, the black
triangles the 16O results, and the white squares the 40Ca results.
The general trend is an increase of the index values at low q.
In any case, all the values of the indexes shown in this panel
are well below the empirical ones, indicating the good quality
of the scaling.

The results shown in panel (d) have been obtained by using
the following procedure. For each nucleus, we have calculated
the scaling functions from q = 300 MeV/c to q = 700 MeV/c,
in steps of 50 MeV/c. The curves show the values of the indexes
R and D obtained by considering in Eqs. (32) and (33) all the
fL values calculated from the q value indicated in the figure,
up to q = 700 MeV/c. Evidently, these curves are zero at
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FIG. 2. Continuum shell-model results. In panels (a) and (b), the
thick lines represent the fL scaling functions calculated for the various
nuclei: full lines, 12C; dotted lines, 16O; dashed lines, 40Ca. The thin
dashed lines represent the RFG scaling function. The numbers inside
the panels indicate the values of the momentum transfer in MeV/c
units. In panel (c) we show for each nucleus the values of the indexes
R and D obtained at a fixed q value by comparing the fL and fT

functions. The black circles indicate the 12C results, the black triangles
those of 16O, and the white squares those of 40Ca. In panel (d) we
show the value of the two indexes obtained by considering the fL

functions calculated for all the momentum transfer values ranging
from the indicated q value up to 700 MeV/c. Details of the procedure
are given in the text. As in panels (a) and (b), the full lines refer to
12C, the dotted ones to 16O, and the dashed ones to 40Ca. The gray
areas, drawn above the empirical values of R and D, indicate the
nonscaling region.

q = 700 MeV/c and increase continuously with decreasing q

values. Panel (d) shows the evolution of the scaling of the first
kind with decreasing q values. In panel (d) the full lines show
the 12C results, and the dotted and dashed lines show those of
16O and of 40Ca, respectively. If the scaling of the first kind is
verified, the values of R and D in this panel are constant. We
observe that all the curves lie below the empirical benchmark
limits until the scaling function obtained for q = 400 MeV/c
is included. This could be considered the lower q limit where
the scaling of the first kind is broken by nuclear finite size
effects.

B. Collective excitations

By definition, mean-field models, such as the RFG model
or the shell model, do not describe collective excitations of
the nucleus. We have considered the contribution of these
excitations within a continuum random phase approximation
(RPA) framework. Details of our RPA calculations are given in
Ref. [23]. In the present work, we used two effective nucleon-
nucleon interactions. They are a zero-range interaction of
Landau-Migdal type, called LM1 in [23], and the finite-range
polarization potential of Ref. [25], properly renormalized as
indicated in [23], and labeled PP.

Before discussing the results of the RPA calculations, we
want to point out a technical detail of our calculation. The
semi-relativistic prescription (9) cannot be coherently imple-
mented in the continuum RPA equations. We have calculated
the continuum RPA responses without the semi-relativistic
correction. The scaling functions have been obtained from
these responses by using the nonrelativistic definition of the
scaling variable [2]:

� = 1

kF

[
m(ω − Eshift)

q
− q

2

]
. (35)

With this scaling variable, the superscaling function of the
nonrelativistic Fermi gas model assumes again the expression
of Eq. (3) (see Ref. [2]).

The comparison between the Fermi gas scaling function
and fL and fT calculated with the RPA is presented in
Fig. 3. In this figure, we show the 12C scaling functions
obtained for the two extreme values of q considered in our
calculations. The thick full lines show the mean-field results,
the dotted lines the results obtained with the LM1 interaction,
and the dashed lines those obtained with the PP interaction.

The scaling functions at q = 300 MeV/c are strongly
affected by the RPA. This was expected, since for this value

FIG. 3. Scaling functions calculated for the 12C nucleus. The thin
dashed lines show the Fermi gas results. The full lines show the
mean-field results. The other lines have been obtained by using the
continuum RPA. The thick dotted lines show the results obtained with
the PP interaction, whereas the thick dashed lines have been obtained
by using the LM1 interaction. The numbers in the panels indicate the
values of the momentum transfer in MeV/c units.
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of the momentum transfer, the maxima of the electromagnetic
responses are very close to the giant resonance region. The
situation is rather different for the case of 700 MeV/c, where
the mean-field and RPA scaling functions are very similar.
Here, the RPA effects are larger for zero-range than for
finite-range interaction. The explanation of this fact becomes
evident if one considers the ring approximation of the RPA
propagator for an infinite system [26]:

�RPA(q, ω) = �0(q, ω)

1 − V (q)�0(q, ω)
, (36)

where �0 indicates the free Fermi gas polarization propagator
and V (q) is a purely scalar interaction. Finite-range interac-
tions vanish at large q values; therefore the RPA propagator
becomes equal to that of the Fermi gas. This does not happen
if contact interactions are used, since these interactions are
constant in momentum space. We found that, for q values
larger than 500 MeV/c, the RPA effects are negligible if
calculated with a finite-range interaction.

The scaling properties of continuum RPA fL and fT

calculated for 12C are summarized in Fig. 4. The lines in this
figure have been calculated with the same procedure used in
Fig. 2(d). The full lines represent the mean-field results, the
dotted lines show the results obtained with the finite-range
interaction, and the dashes lines have been obtained with
the zero-range interaction. The figure shows that scaling of

 

 

 

FIG. 4. The R and D indexes calculated as in panel (d) of
Fig. 2. In panels (a) and (b) the fL and fT scaling functions calculated
for the 12C nucleus are separately shown. In panel (c) the indexes
have been calculated by comparing the fL and fT scaling functions.
The full lines represent the mean-field results, whereas the dotted
and dashed lines have been obtained by doing continuum RPA
calculations, respectively, with the polarization potential and with
the Landau-Migdal interaction.

the first kind is well preserved by RPA calculations up to
q = 400 MeV/c. In panel (c) the fL and fT scaling functions
have been put together in the calculation of the two indexes.
We observe a worsening of the scaling, especially for the
polarization potential results. This indicates that scaling of
the zeroth kind is slightly ruined by the RPA. This is under-
standable, since the effective nucleon-nucleon interaction acts
in a different manner on the longitudinal and on the transverse
nuclear responses. Finally, scaling of the second kind is well
preserved also in the RPA calculations.

C. Meson exchange currents

We have seen that collective excitations are different in
longitudinal and transverse responses and this breaks the
scaling of the zeroth kind. However, our RPA results show
that these effects are too small to explain the large differences
between experimental fL and fT shown in Fig. 1. Another
possible source of the breaking of the zeroth-kind scaling is
provided by the MEC. Their role in the longitudinal responses
is negligible [27], whereas they can be relevant in the transverse
responses.

We have calculated the transverse response functions by
adding to the one-body convection and magnetization currents
the MEC arising from the exchange of a single pion. In Fig. 5
we show the Feynman diagrams of the MEC we have
considered. They are (a) the seagull, or contact, term, where
the virtual photon interacts at the pion-nucleon vertex, and
(b) the pionic, or pion in flight, term, where the virtual photon
interacts with the exchanged pion. In addition we also consider
the � current terms, where the photon excites, or de-excites, a
virtual � resonance, which interacts with another nucleon by
exchanging a pion. These � current terms are represented by
diagrams (c) and (d) of Fig. 5. A detailed description of our
MEC model is given in Refs. [28–30].

FIG. 5. Feynman diagrams of the MEC terms considered in our
calculations. Diagrams (a) and (b) represent, respectively, the seagull
and pionic currents; the other two diagrams show the � currents.
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(b)

(a)

(c)

(d)

FIG. 6. Transverse scaling functions for the 12C nucleus. In panels
(a) and (b), the thin dashed lines show the RFG model. The other,
thick, lines have been obtained by using the continuum shell model.
The full lines show the results obtained by using one-body currents
only. The dotted lines have been obtained by inserting the pionic
and seagull terms of the MEC, and the dashed lines show the results
obtained by including also the � currents. The numbers inside the
panels indicate the values of the momentum transfer in MeV/c. The
curves in panels (c) and (d) are calculated as in panel (d) of Fig. 2.
The curves in (c) compare the results obtained in 12C by using one-
body currents only (full line) with those obtained by adding seagull
and pionic MEC (dotted line) and by adding also the � currents
(dashed lines). In panel (d) we compare the results obtained with all
the MEC for the three nuclei considered. The full line shows the 12C
result, the dotted line the 16O result, and the dashed line the 40Ca
result.

We show in panels (a) and (b) of Fig. 6 the fT scaling
functions of the 12C nucleus calculated for the extreme q values
we have considered. The full lines have been obtained by using
one-body currents only, the dotted lines by including seagull
and pionic currents, and the dashed lines by adding the �

currents. As usual, the thin dashed lines show the RFG scaling
function.

The effects of the MEC on the scaling functions are
analogous to those found on the responses in Ref. [31]. The
seagull and pionic terms produce effects of opposite sign;
therefore, the changes with respect to the one-body responses
are rather small, and they almost vanish for the largest values of
q we have considered. The inclusion of the � currents slightly
decreases the values of the scaling functions. The presence of
these currents becomes more relevant with increasing q value.

Panel (c) of Fig. 6 shows the values of R and D, calculated
for fT as in panel (d) of Fig. 2, for 12C. The meaning of the
different curves is the same as in the two upper panels of the
figure. In panel (d) we show the behavior of the two indexes
calculated for the fT scaling functions when all the MEC are
included. The full lines show the 12C results, the dotted lines
the 16O results, and the dashed lines the 40Ca results.

Our MEC conserve rather well the scaling properties of fT.
The shapes of the fT, shown in the upper panels of Fig. 6, are
rather different from those of the empirical fT, given in Fig. 1.
Our MEC model considers only virtual excitations of the �

resonance, which become more important at large q values. All
these observations indicate that the origin of the high-energy
tail of the experimental transverse scaling functions is the real
excitation of the � resonance, with the consequent production
of pions.

D. Short-range correlations and final state interactions

As already mentioned, we have also investigated the
influence of SRC. Our results are summarized in Fig. 7, where,
in panel (a), we show, as an example, the fL scaling function
of 12C calculated for q = 700 MeV/c with (dashed lines) and
without (full curves) SRC. The same curves are plotted in both
linear and logarithmic scales, to show the eventual effects in
the tails of the distributions.

The calculation of the responses with the SRC is done as de-
scribed in [32], by considering all the cluster terms containing
a single correlation line. This implies the evaluation of two-
and three-point cluster terms, which produce contributions of
different sign. The calculations have been done with the scalar
correlation function labeled EU (Euler) in [24]. The effects
of the correlations on the momentum distribution of 12C are
shown in panel (b) of Fig. 7. Also this momentum distribution
has been calculated in a first-order approximation [33]. This
example shows that the scaling functions, in the kinematics of
our interest, are insensitive to the high-momentum tail of the
momentum distribution and, in general, to the SRC.

None of the results we have so far presented have included
FSI, which produce the largest modifications of the mean-
field responses [34]. We treat the FSI by using the model
developed in Refs. [35,36]. The mean-field responses are
folded with Lorentz functions whose parameters have been
extracted from optical potential volume integrals, and from
the empirical spreading widths of single-particle states. This
approach has been successfully used to describe quasi-elastic
electromagnetic responses [31,35], and, more recently, it has
been applied to calculate neutrino scattering cross sections
[23,37,38].
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(a)

(b)

FIG. 7. (a) The longitudinal scaling function of 12C calculated for
q = 700 MeV/c. The full lines show the mean-field result; the dashed
lines have been obtained by including the SRC. In the insert, the same
results are shown on a linear scale. (b) The momentum distribution
of 12C calculated with the mean-field model (full line) and with the
SRC (dashed line).

In the two upper panels of Fig. 8 we show the shell-model fL

scaling functions corrected for the presence of the FSI. Again,
we show here the results obtained for the two extreme values
of q considered in our calculations. The thin dashed lines show
the RFG results. It is evident that the FSI are responsible for
the largest modifications of the mean-field results. The values
of the maxima of the scaling functions in Fig. 2 are around
0.8. After the inclusion of the FSI, these maxima are of the
order of 0.6. The FSI lower the values of the maxima of the
responses and, since the total area is conserved, increase their
widths.

The presence of the FSI slightly worsens the almost perfect
scaling of the zeroth kind shown in Fig. 2. The FSI act
differently on the two responses. The longitudinal responses
are insensitive to the spin and spin-isospin terms of the nuclear
interaction. This fact is considered in our FSI model. Even
though in panel (c) of Fig. 8 the values of R, calculated for
each q value, are slightly larger than the analogous ones of
Fig. 2, they are below the empirical value. The case of the D
index is curious, since it shows almost constant values. This
is because D indicates the maximum difference between the
various curves considered. The FSI produce a smoothing of

 

 

(b)

(a)

(c)

(d)

FIG. 8. The same as Fig. 2 but showing the results of the mean-
field model with FSI.

these curves and cancel the sharp resonant peaks that appear
at low q values.

The curves in panel (d) are obtained in the same way as
those of the analogous panel in Fig. 2. The values shown in
Fig. 8 are clearly larger than those of panel (d) of Fig. 2. For
the R index, the nonscaling gray area is reached when the
q value is about 500 MeV/c. In conclusion, the FSI produce
large modifications of the mean-field responses, but they do
not strongly violate the scaling.

E. Neutrino scaling functions

Up to now, we have discussed the scaling properties of
the electromagnetic scaling functions. We present in Fig. 9
the scaling functions defined in Eqs. (20)–(24), for the
(νe, e

−) charge exchange reaction. The thick lines of the two
upper panels show the five scaling functions calculated, in a
continuum shell model, for the 16O nucleus, and for the two
extreme values of q considered in our work. The five curves
are rather well overlapped at q = 300 MeV/c, and they almost
exactly overlapped at q = 700 MeV/c. The agreement with
the RFG result, indicated as usual by the dashed thin lines, is
rather good at q = 700 MeV/c.

In panel (c) we show the R and D indexes calculated by
comparing the five scaling functions at each q value indicated
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(b)

(a)

(c)

FIG. 9. The same as Fig. 2 for the neutrino scaling functions.
In both panels (a) and (b) the five scaling functions defined in
Eqs. (20)–(24) and calculated for the 16O nucleus are shown
by the thick lines. These lines are almost exactly overlapped.
Again the dashed thin lines show the RFG scaling functions. In
panel (c) the indexes are calculated by comparing the five scaling
functions calculated at each q value indicated on the x axis. The
black dots show the 12C results, the triangles the 16O results, and the
white squares the 40Ca results. The values for the two indexes shown
in panel (d) have been calculated as in the analogous panel of Fig. 2.
The full line refers to 12C, the dotted one to 16O, and the dashed one
to 40Ca.

in the x axis. The black circles show the 12C results, the black
triangles those of 16O, and the white squares the 40Ca results.
These values are of the same order of magnitude as those of
(c) panel of Fig. 2. This confirms the observation that scaling
of the zeroth kind is well satisfied in continuum shell-model
calculations.

In panel (d) the values of the two indexes are evaluated
by doing a comparison of the scaling functions calculated
at q = 700 MeV/c with those obtained for lower q values.
This indicates the validity of scaling of the first kind. The
index R shows that there is a reasonable scaling down to
q = 400 MeV/c. This value is analogous to that found for
the electromagnetic functions. The index D shows much rapid
variations and, already at q = 500 MeV/c, its value is over the

empirical limiting value. This is due to the presence of sharp
resonances at low q values in some of the responses.

We studied the effects beyond the RFG for charge exchange
neutrino responses, by following the same steps used for the
electromagnetic responses. To be precise, we did not calculate
responses with SRC or with the MEC, since from the results
obtained for the electromagnetic responses, we do not expect
large changes of the mean-field results due to these effects.
We found effects of RPA and FSI analogous to those of the
electromagnetic case.

IV. SUPERSCALING PREDICTIONS

In the previous section we have studied how the effects
beyond the RFG model modify the scaling function. We
found that the main effects are produced by the FSI. Despite
the large modifications of the RFG scaling functions, the
scaling properties are not heavily destroyed. For momentum
transfer values above 500 MeV/c, our scaling functions present
values of the scaling indexes smaller than the empirical
benchmarks. After having established the range of validity
of the superscaling hypothesis, we investigate, in this section,
its prediction power. The strategy of our investigation consists
in comparing responses and cross sections, calculated by using
RPA, FSI, and eventually MEC and SRC, with those obtained
by using our universal scaling functions, both f ex

U and f th
U . All

the RPA calculations presented in this section have been made
by using the PP interaction.

The first test case of our study is done on the double
differential electron scattering cross section. We show in
Fig. 10 the inclusive electron scattering cross sections cal-
culated with our model including the MEC and the FSI effects
(full lines), those obtained with f th

U (dashed lines), and the
cross sections obtained with f ex

U (dotted lines). These results
are compared with the data of Refs. [39–41].

The first remark about Fig. 10 regards the excellent
agreement between the results of the full calculations with
those obtained by using f th

U . This clearly indicates the validity
of the scaling approach in this kinematic region. This result was
expected from the studies of the previous section, since in all
the cases shown in Fig. 10, the value of the momentum transfer
is larger than 500 MeV/c. The differences with the cross
sections obtained by using the empirical scaling functions
reflect the differences among the various scaling functions
shown in Fig. 1.

A second remark regarding Fig. 10 is that our results un-
derestimate the data. Probably this is because the excitation of
the � resonance is not considered in our calculations. The be-
havior of the data of the figure in the higher energy part shows
the presence of the � resonance. The low-energy tail of the
excitation of this resonance also affect the quasi-elastic peak.

The situation for the double differential cross sections is
well controlled, since all the kinematic variables, beam energy,
scattering angle, and energy of the detected lepton are precisely
defined and, consequently, energy and momentum are also
transferred to the nucleus. The situation changes for the total
cross sections, which are of major interest for the neutrino
physics. The total cross sections are only functions of the
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FIG. 10. Inclusive electron scattering cross sections. Here, the
numbers in the panels indicate, in MeV, the energy of the incoming
electron. The 12C data [39] have been measured at a scattering angle
of θ = 37.5◦, the 16O data [40] at θ = 32.0◦, and the 40Ca data [41]
at θ = 45.5◦. The full lines show the results of our complete calcu-
lations. The cross sections obtained by using f th

U are shown by the
dashed lines, and those obtained with f ex

U are given by the dotted lines.

energy of the incoming lepton; therefore they consider all the
scattering angles and the possible values of the energy and
momentum transferred to the nucleus, with only the limitation
of the global energy and momentum conservations. This means
that, in the total cross sections, kinematic situations where the
scaling is valid and also where it is not valid are both present.

To clarify this point with quantitative examples, we show
in Fig. 11 various differential charge-exchange cross sections
obtained for 300 MeV neutrinos on an 16O target. In panel
(a) we show the double differential cross sections calculated
for a scattering angle of 30◦, as a function of the nuclear
excitation energy. The full line shows the result of our complete
calculation, done with continuum RPA and FSI. We have
shown in the previous section that the effects of MEC and
SRC are negligible in this kinematic regime. The dashed
line shows the result obtained with f th

U and the dotted line
those with f ex

U . The values of the momentum transfer vary
from about 150 to 200 MeV/c. Evidently, this is not the
quasi-elastic regime where the scaling is supposed to hold,
and this evidently produces the large differences among the
various cross sections.

The cross sections integrated on the scattering angle are
shown as a function of the nuclear excitation energy in panel
(b) of the figure; the cross sections integrated on the excitation
energy as a function of the scattering angle are shown in
panel (c).

(a)

(b)

(c)

FIG. 11. Neutrino charge exchange cross sections on 16O. All the
results shown in the various panels have been obtained for a neutrino
energy of 300 MeV. In all the panels the full lines show the result of
our complete calculation; the other lines show the results obtained by
using the scaling functions. Specifically, the dashed and the dotted
lines have been obtained, respectively, with f th

U and f ex
U . In panel

(a) the double differential cross sections calculated for the scattering
angle of 30◦ as a function of the nuclear excitation energy are shown.
In panel (b) we show the cross sections integrated on the scattering
angle, always as a function of the nuclear excitation energy. In panel
(c) we show the cross sections integrated on the nuclear excitation
energy, as a function of the scattering angle.

The three panels of the figure illustrate in different manner
the same physics issue. The calculation with the scaling
functions fails to reproduce the results of the full calculation in
the region of low energy and low momentum transfer, where
surface and collective effects are important. This is shown in
panel (b) by the bad agreement among the three curves in
the lower energy region, and in panel (c) at low values of the
scattering angle, where the q values are minimal.

Total charge-exchange neutrino cross sections are shown in
Fig. 12 in both linear and logarithmic scale, as a function of the
energy of the incident neutrino εi . As in the previous figure,
the full lines show the result of the full calculation, whereas
the dashed and dotted lines have been obtained, respectively,
with f th

U and f ex
U . The scaling predictions for neutrino energies

up to 200 MeV are unreliable. These total cross sections
are obviously dominated by the giant resonances, and more
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(a)

(b)

FIG. 12. Total neutrino cross sections. Both panels show the same
results in linear (a) and logarithmic (b) scales. The full lines show
the result of the complete calculations. The dashed lines have been
obtained by using f th

U , and the dotted lines by using f ex
U .

generally by collective nuclear excitation. We have seen that
these effects strongly violate the scaling. At εi = 200 MeV the
cross section obtained with f th

U is about 20% larger than those
obtained with the full calculation. This difference becomes
smaller with increasing energy and is about 7% at εi =
300 MeV. This is an indication that the relative weight of the
nonscaling kinematic regions become smaller with increasing
neutrino energy.

V. SUMMARY AND CONCLUSIONS

We have investigated the scaling properties of the electron
and neutrino cross sections in a kinematic region involving
momentum transfer values smaller than 700 MeV/c. Since our
working methodology implies the numerical comparison of
different scaling functions, we defined two indexes, Eqs. (32)
and (33), to provide a quantitative indication of the scaling
quality.

We have first analyzed the scaling properties of the
experimental electromagnetic responses given in Ref. [9] for
the 12C, 40Ca, and 56Fe nuclei. We found the better scaling
situation for the longitudinal responses at 570 MeV/c. By
considering these data we obtained empirical values of the
two indexes that we consider the upper acceptable limit to
have scaling. From a fit to the same set of data we have also
obtained an empirical scaling function, f ex

U .
Our study of the role played by effects beyond the RFG

model on the scaling properties of the electroweak responses
consisted in comparing the values of the indexes obtained
in our calculations with the empirical values. We found that
finite-size effects conserve scaling of the first kind, the most
likely violated, down to 400 MeV/c. We have estimated
the effects of the collective excitations by doing continuum

RPA calculations with two different residual interactions.
RPA effects become smaller as the value of the momentum
transfer becomes larger. At momentum transfer values above
600 MeV/c RPA effects are negligible if calculated with
a finite-range interaction, whereas zero-range interactions
produce larger effects. Collective excitations break scaling
properties. We found that scaling of the first kind is satisfied
down to about 500 MeV/c.

The presence of the MEC violates the scaling of the
transverse responses. From the quantitative point of view,
MEC effects, at relatively low q values, are extremely small.
In our model, MEC start to be relevant from q ∼ 600 MeV/c,
especially these MEC related to the virtual excitation of the
� resonance. In our calculations the real excitation of the
� resonance, along with the consequent production of real
pions, is not considered. Our nuclear models deal with
purely nucleonic degrees of freedom. Experimental transverse
responses, such as those shown in Fig. 1, clearly show the
presence of the � resonance peak, with increasing value of
the momentum transfer. Our model indicates that MEC do not
destroy the scaling in the kinematic range of our interest.

We have also investigated the effects of the SRC, which
could also violate the scaling. However, the size of these effects
is so small as to be negligible. The main modifications of the
mean-field responses are due to the FSI. When we applied
the FSI we obtain, even for q = 700 MeV/c, scaling functions
very different from those predicted by the RFG model or by the
mean-field model and that are rather similar to the empirical
one. Moreover, in any case, the FSI do not heavily break the
scaling properties. We found that scaling of the first kind is
conserved down to q = 450 MeV/c.

We have presented in detail only the results obtained for the
electromagnetic transverse and longitudinal responses since,
for the weak responses, we found, related to the neutrino
scattering processes, analogous results. We can summarize
the main points of this first part of our investigation by saying
that the effects beyond the RFG model we have considered
strongly modify the scaling functions, but they do not destroy
their scaling. This explain the good scaling properties of the
experimental longitudinal electromagnetic responses, which
are not affected by the excitation of the � resonance, an effect
not included in our calculations.

After studying the scaling properties of the various re-
sponses we have investigated the reliability of the cross
sections predicted by using the scaling functions. The idea is
to assume that superscaling is verified (i.e., for all three kinds
of scaling we have considered) and then to use the scaling
functions to predict the cross sections. The cross sections
calculated with our complete model have been compared
with those obtained by using as superscaling functions the
empirical scaling function fitting the 570-MeV longitudinal
data of Ref. [9], f ex

U , and our longitudinal scaling function
f th

U . We have chosen this last scaling function as a theoretical
universal scaling function.

We have verified that, in the quasi-elastic peak, the electron
scattering cross sections obtained with the full calculation are
very close to those obtained with f th

U . Also the comparison with
the data is rather good. These calculations have been done for
momentum transfer values larger than 500 MeV/c; therefore
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these results confirm the validity of the superscaling in the
quasi-elastic regime. The problems arise in the evaluation
of the total neutrino cross sections. In these cross sections,
together with the contribution of the quasi-elastic kinematics,
where superscaling is satisfied, there is also the contribution
of kinematics regions where there is no scaling. We found that
the scaling predictions of the total neutrino cross sections are
unreliable up to neutrino energies of 200 MeV. At this point
the scaling cross sections are 20% larger than those obtained
by the full calculation. This difference becomes smaller with
increasing neutrino energy, and we found it to be reduced to
about 7% at 300 MeV. We stopped our calculations of the total
cross section here, since our model is not reliable for larger
neutrino energies. The comparison between double differential
cross sections calculated at excitation energies of 150 and
200 MeV, for neutrino energies up to 1 GeV, gives an indication
that the difference between the total cross sections becomes
smaller with increasing neutrino energy. It is worth pointing
out, however, that for neutrino energies larger than 300 MeV,
the contribution of the � resonance is no longer negligible, as
we have implicitly considered in our calculations.
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APPENDIX: THE EXPERIMENTAL SCALING FUNCTIONS

In this appendix we describe the procedure followed to
obtain the experimental scaling functions (SFs) and also
the empirical values of the indexes D and R from the
electromagnetic response data of Ref. [9].

The SF data have been obtained by inserting in Eqs. (7)
and (8) the values of the experimental responses. The uncer-
tainty on the SF data has been evaluated directly from the
same equations, by taking into account the uncertainties of the
original response data.

The evaluation of D and R, Eqs. (32) and (33), requires
knowledge of the various SFs at the same � points. Since the

SF data are given for different values of �, we fixed a grid of �

values, and we produced pseudo SF data by doing a quadratic
interpolation of the SF data previously obtained.

The uncertainties of these pseudo SF data have been
obtained by using a Monte Carlo strategy. Associated to
each experimental SF point we have generated a new point
compatible with the Gaussian distribution related to the
experimental uncertainty. These new data formed a set of SF
points used to obtain pseudo data on the grid by quadratic
interpolation. We repeated this procedure one thousand times,
obtaining, for each value of � of the grid, a distribution of
SF points that allowed us to determine the corresponding
uncertainty.

After having determined the uncertainties of the pseudo SF
data, we calculated the uncertainty of the D index as

σD =
√[

f max
i

(
ψimax

)]2 + [
f min

i

(
ψimax

)]2
,

where �imax is the value where the difference f max
i − f min

i

reaches the maximum value.
We have calculated the uncertainty on R in two steps. We

first evaluated the uncertainty of the sum

S =
∑

i=1,...,K

[
f max

i − f min
i

]
in the numerator of Eq. (33) by using a procedure analogous
to that used to obtain σD. That is,

σS =
√ ∑

i=1,...,K

([
f max

i

]2 + [
f min

i

]2)
.

To obtain the global uncertainty, we again used a Monte Carlo
strategy, and we calculated the ratio in Eq. (33) one thousand
times by sampling the values of S and of f max within the
corresponding Gaussian distributions.

The empirical SF, represented by the thin full line in the fL

panel at 570 MeV/c in Fig. 1, has been obtained as a best fit of
all the experimental points shown in the panel. The expression
of our fitting function is

f ex
U (�) = A exp(−�2) + B�2 + C� + D

(� + E)2 + F 2
, (A1)

with A = 0.971, B = −0.067, C = 0.385,D = 0.145, E =
0.366, and F = 1.378.
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