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Superscaling in a dilute Fermi gas and the nucleon momentum distribution in nuclei
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The superscaling observed in inclusive electron scattering is described within the dilute Fermi gas model with
interaction between the particles. The comparison with the relativistic Fermi gas (RFG) model without interaction
shows an improvement in the explanation of the scaling function f (ψ ′) in the region ψ ′< −1, where the RFG
result is f (ψ ′) = 0. It is found that the behavior of f (ψ ′) for ψ ′< −1 depends on the particular form of the
general power-law asymptotics of the momentum distribution n(k) ∼ 1/k4+m at large k. The best agreement with
the empirical scaling function is found for m � 4.5 in agreement with the asymptotics of n(k) in the coherent
density fluctuation model where m = 4. Thus, superscaling gives information about the asymptotics of n(k) and
the NN forces.
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I. INTRODUCTION

The concepts of y scaling [1–10] and superscaling (based on
the ψ ′-scaling variable) [10–18] have been used for extensive
analyses of the vast amount of inclusive electron scattering
world data (see also Ref. [19]). These analyses showed the
existence of high-momentum components in the nucleon
momentum distribution (MD) n(k) at momenta k > 2 fm−1 due
to the presence of nucleon-nucleon (NN) correlations. Scaling
of the first kind (i.e., no dependence on the momentum transfer)
can be observed at excitation energies below the quasielastic
(QE) peak. Scaling of second kind (i.e., no dependence on
the mass number) is excellent in the same region. When
scaling of both first and second types occurs, one says that
superscaling takes place. It was shown (e.g., in Refs. [15–18])
that the physical reason for superscaling phenomena is the
specific high-momentum tail of n(k), which is similar for all
nuclei.

It has been shown in Refs. [20,21] that because of the
contribution introduced by inelastic scattering, together with
the correlation contribution and meson exchange currents [22,
23], scaling of both the first and, to a lesser extent, the second
kind is violated at energies above the QE peak.

The theoretical concept of superscaling has been introduced
in Refs. [10,11] using the properties of the relativistic Fermi
gas (RFG) model. The Fermi momentum for the RFG was used
as a physical scale to define the proper scaling variable ψ ′ for
each nucleus. As emphasized in Ref. [13], however, the actual
dynamical physics content of the superscaling phenomenon
is more complex than that provided by the RFG model.
In particular, the extension of the superscaling property to
large negative values of ψ ′ (ψ ′< −1) is not predicted by
the RFG model. The QE scaling function in the RFG model
f

QE
RFG(ψ ′) = 0 for ψ ′ � −1, whereas the experimental scaling

function f QE(ψ ′) has been observed for large negative values
of ψ ′ up to ψ ′ ≈ −2 in the data for (e, e′) processes. Thus,
it has been necessary to consider superscaling in theoretical
approaches that go beyond the RFG model. One of them is

the coherent density fluctuation model (CDFM) (e.g., Refs.
[24,25]) which gives a natural extension of the Fermi gas
case to realistic finite nuclear systems. It was shown in Refs.
[15–18] that in the CDFM, both basic quantities—density and
momentum distributions—are responsible for the scaling and
superscaling phenomena in nuclei. The results of the CDFM
for the QE scaling function f (ψ ′) agree with the available ex-
perimental data at different transferred momenta and energies
below the QE peak position, showing superscaling for ψ ′<0,
including ψ ′ � −1, and going well beyond the RFG model.
Second, as pointed out in [16,18], the nucleon momentum
distribution for various nuclei obtained in Ref. [26] (and with
the modification in Ref. [18]) within a theoretical approach
based on the light-front dynamics (LFD) method (e.g., Refs.
[27,28]) can also be used to describe both y- and ψ ′-scaling
data.

The superscaling analyses of inclusive electron scattering
from nuclei (for energies of several hundred MeV to a
few GeV) have been extended in Ref. [29] to include not
only QE processes but also the region where � excitation
dominates. Both QE- and �-region scaling functions f QE(ψ ′)
and f �(ψ ′

�) were deduced from phenomenological fits to
electron-nuclei scattering data. Generally, the specific features
of the scaling function should be accounted for by reliable
microscopic calculations that take final-state interactions into
account. In particular, the scaling function f QE(ψ ′) with
asymmetric shape obtained in Refs. [30,31] by using a
relativistic mean field (RMF) for the final states agrees well
with the experimental scaling function.

The features of the superscaling phenomenon in inelastic
electron scattering have induced studies of neutrino scattering
from nuclei on the same basis. The neutrino-nucleus interac-
tions have been studied using the superscaling analyses of few-
GeV inclusive electron scattering data in a method proposed in
Ref. [29] to predict the inclusive νA and ν̄A cross sections for
the case of 12C in the nuclear resonance region. Various other
theoretical considerations (e.g., those in Refs. [32–43]) have
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been devoted to studies of both neutral- [32–36] and charge-
changing [29,30,34,35,37–43] neutrino-nucleus scattering.

The CDFM and the LFD method have been extended [18]
from the QE to the �-excitation region of the inclusive electron
scattering, and the QE scaling functions calculated in both
methods were used to calculate and predict charge-changing
neutrino-nucleus cross sections of the (νµ, µ−) and (ν̄µ, µ+)
reactions on 12C at energies from 1 to 2 GeV. The asymmetry
in the CDFM QE scaling function was introduced in a
phenomenological way. These analyses make it possible to
gain information about the nucleon correlation effects on both
nucleon momentum and local density distributions. It became
clear that only the detailed knowledge of the behavior of n(k)
at high momenta in realistic nuclear systems could lead to
quantitative agreement with the experimental scaling function.
On the other hand, the behavior of the latter gives valuable
information about the NN correlation effects on the tail of the
momentum distribution. So, it was shown in Ref. [16] within
the CDFM that the y- and ψ ′-scaling data are informative
for n(k) at momenta up to k ≈ 2–2.5 fm−1, and it was
concluded that further experiments are necessary in studies of
the high-momentum components of the nucleon momentum
distributions.

The aim of the present work is to consider in more detail the
connection between the NN forces in nuclear media and their
effect on the components of n(k) from one side and, from the
other side, the role of n(k) on the behavior of the QE scaling
function. For this purpose, we use first the MD in a hard-sphere
dilute Fermi gas model (HSDFG) (e.g., Refs. [44–48]) to
calculate the scaling function. Second, we attempt to throw
light on the connection between the generally established
high-momentum asymptotics of n(k) [44,45,49–51] and the
QE scaling function. The latter makes it possible to establish
(at least approximately) the particular form of the power-law
decrease of n(k) at large values of k. This makes it possible
to extract additional information about the NN forces from the
description of the superscaling phenomenon.

The theoretical scheme and the results of calculations are
given in Sec. II. The conclusions are summarized in Sec. III.

II. THEORETICAL SCHEME AND RESULTS OF
CALCULATIONS

In the first part of this section, we consider the hard-sphere
dilute Fermi gas, i.e., the low-density Fermi gas whose
particles interact via a repulsive hard-core potential (see,
e.g., Refs. [44–48]), and we use the nucleon momentum
distribution in such a system to calculate the scaling function
f HSDFG(ψ ′). The quantities of interest in the HSDFG model
can be expanded in powers of the parameter kF c, where c

(>0) denotes the hard-core radius in the NN interactions or it
is identified with the scattering length in free space, and kF is
the Fermi momentum. In Ref. [44], the value of kF c is adopted
to be equal to 0.70, which corresponds to an NN core radius
of c = 0.50 fm and a typical value of the Fermi momentum
kF = 1.40 fm−1. As was pointed out by Migdal [46], n(k) in the
normal Fermi gas is discontinuous at the Fermi momentum.
The analytical expressions for the dimensionless n(k) in the

HSDFG obtained in Refs. [44,48] have the form

n(k) = n<(k) + n>(k) with

{
n<(k) = 0 for k > kF ,

n>(k) = 0 for k < kF .
(1)

At k < kF :

n<(k) = 1 − ν −1

3π2x
(kF c)2

[
(7 ln2 − 8)x3 + (10 − 3 ln2)x

+ 2 ln
1 + x

1 − x
− 2

(
2 − x2)3/2

ln
(2 − x2)1/2 + x

(2 − x2)1/2 − x

]
,

(2)

where x = k/kF and ν = 4 [44] is adopted.
At 1 < x <

√
2:

n>(k) = ν −1

6π2x
(kF c)2

{
(7x3 − 3x − 6) ln

x −1

x + 1

+ (7x3 − 3x + 2) ln2 − 8x3 + 22x2 + 6x

− 24 + 2(2 − x2)3/2

[
ln

2 + x + (2 − x2)1/2

2 + x − (2 − x2)1/2

+ ln
1 + (2 − x2)1/2

1 − (2 − x2)1/2 − 2 ln
x + (2 − x2)1/2

x − (2 − x2)1/2

]}
.

(3)

At
√

2 < x < 3:

n>(k) = ν −1

6π2x
(kF c)2

{
(7x3 − 3x − 6) ln

x −1

x + 1

− 8x3 + 22x2 + 6x − 24 + (7x3 − 3x + 2)

× ln2 − 4(x2 − 2)3/2

[
arctan

(x + 2)

(x2 − 2)1/2

+ arctan
1

(x2 − 2)1/2 − 2 arctan
x

(x2 − 2)1/2

]}
.

(4)

At x > 3:

n>(k) = 2
ν −1

3π2x
(kF c)2

{
2 ln

x + 1

x −1
− 2x + (x2 − 2)3/2

×
[

2 arctan
x

(x2 − 2)1/2 − arctan
x − 2

(x2 − 2)1/2

− arctan
(x + 2)

(x2 − 2)1/2

]}
. (5)

The momentum distribution in the HSDFG model is
presented in Fig. 1 for kF c = 0.70.

Following the definition of the ψ ′-scaling function given by
Barbaro et al. [11], one can obtain for the case of the HSDFG

f HSDFG(ψ ′) = 3

2

∫ ∞

|ζ |/ηF

xn(x) dx, (6)
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FIG. 1. Momentum distribution n(k) in hard-sphere dilute Fermi
gas [44] as a function of x = k/kF .

where ηF = kF /mN,mN being the nucleon mass, and

ζ = ψ ′
{[√

1 + η2
F −1

][
2 + ψ ′2

(√
1 + η2

F −1

)]}1/2

.

(7)

In Eqs. (6) and (7), the dimensionless scaling variable ψ ′2
(in units of the Fermi energy) has the physical meaning of the
smallest kinetic energy that one of the nucleons responding
to an external probe can have [11]. Since η2

F � 1, we write
Eq. (6) as

f HSDFG(ψ ′) � 3

2

∫ ∞

|ψ ′|
xn(x) dx. (8)

It can be seen from Eq. (8) that, as expected, the HSDFG sys-
tem under consideration also exhibits superscaling. Equation
(8) was obtained using the following approximations [43]:

(i) The Fermi momentum distribution of the initial nucleon
in the nucleus 3

4πk3
F

θ (kF − |k|) is replaced by the MD

(with dimension), namely,
∫

P (�k,E) dE, where P (�k,E)
is the spectral function.

(ii) For k > kF , the step function θ (kF − |k|) is retained to
take into account approximately Pauli blocking for the
final nucleon.

In Figs. 2 and 3, we give the results for the HSDFG
scaling function (in logarithmic and linear scale, respectively)
calculated for different values of kF c from 0.70 to 0.28 and
compared with the result for the scaling function in the RFG
model. One can see that the HSDFG scaling function is
extended for large negative values of ψ ′ in contrast to the case
of the RFG scaling function, but there is no good agreement
with the experimental data. One can also see in the figures
the step behavior of the scaling function which reflects the
discontinuity of n(k) at k = kF . For these reasons, we next
consider the relation between the asymptotic behavior of the
momentum distribution and the ψ ′-scaling function.

A relationship between the NN force in nuclear medium
Ṽ NN(k) and the asymptotic behavior of the momentum
distribution n(k) was derived with great generality in

FIG. 2. Scaling function f (ψ ′) in HSDFG calculated for different
values of kF c in comparison with RFG model results. Grey area shows
experimental data from Ref. [13].

Refs. [49–51]. In those articles, Amado and Woloshyn showed
that the asymptotics of n(k) at large values of k is a power-law
decrease, that is,

n(k) −−−→
k→∞

[
Ṽ NN(k)

k2

]2

, (9)

where Ṽ NN(k) is the Fourier transform of the NN interaction
Ṽ NN(r). In the case of δ forces (i.e., in the HSDFG), the
asymptotics is n(k) ∼ 1/k4 [45]. It is still unknown if k or
k/A must be large for Eq. (9) to apply [49–51]. In principle, it
is shown in Ref. [44] that n(k) in the HSDFG decreases faster
than k−4, typically like ∼ 1/k4+m, where m > 0. In Fig. 4, we
show x4n(x) as a function of x = k/kF . It can be seen that the
HSDFG n(k) decreases approximately like ∼ 1/k4+m with
a small value of m, because the result for x4n(x) is almost
a straight line which decreases slowly with the increase of
x ≡ k/kF > 1.

Next in this work we study the question about the general
feature of the NN force Ṽ NN(k) that results in an n(k) with a
power-law behavior that best agrees with the scaling function.
To this aim, we assume a NN potential Ṽ NN(r) different from a
δ function and calculate the scaling function using different
asymptotics for n(k) in the dilute Fermi gas at k > kF .

FIG. 3. Same as Fig. 2, but on a linear scale for f (ψ ′).
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FIG. 4. Momentum distribution in HSDFG n(x) multiplied by
x4 = (k/kF )4.

Therefore, we look for the proper value of m. For k < kF ,

we use n(k) [Eq. (2)] from Ref. [44], but for k > kF , we use

n(k) = N
1

k4+m
for k > kF . (10)

The value of N is obtained by the total normalization of
n(k) and is equal to

N = 0.24

3
(1 + m)k4+m

F . (11)

The factor 0.24 corresponds to the result for the part of the
normalization (for k > kF ) from the total normalization
condition:

3

4πk3
F

∫
n(�k)d3�k = 1. (12)

Finally, from Eq. (8) one can obtain the following expres-
sion for the scaling function:

f (ψ ′) = 0.12

(
1 + m

2 + m

)
1

|ψ ′|2+m
. (13)

FIG. 5. Scaling function in a dilute Fermi gas calculated using
Eq. (13) for different values of m in the asymptotics of the momentum
distribution n(k) ∼ 1/k4+m given in comparison with the RFG result.
Grey area shows experimental data from Ref. [13].

In Fig. 5, we present the results for the scaling function
[Eq. (8)] for different values of m, compared with the RFG
model result. One can see that agreement with the experimental
QE scaling function is achieved when the value m ≈ 4.5 is
used in Eqs. (10), (11), and (13). This means that the power-law
decrease of n(k) which gives an optimal agreement with the
data is

n(k) ≈ 1

k8.5
. (14)

We should note that this particular form of the power-law
asymptotics is close to that obtained in the CDFM [25]

n(k) ∼ 1

k8
, (15)

i.e., it corresponds to n(k) ∼ 1/k4+m with m = 4. The inverse
Fourier transform of Ṽ NN(k) for m = 4 and m = 5 gives
VNN(r) ∼ 1/r and VNN(r) ∼ 1/r1/2, respectively.

We would like to emphasize the consistency of both the
optimal asymptotics of n(k) for the dilute Fermi gas found
in this work [Eq. (14)] with that in the CDFM [Eq. (15)].
As was shown in Refs. [15–18], the calculated QE scaling
function f (ψ ′) in the CDFM agrees well with the experimental
scaling function. This fact shows that the behavior of the QE
scaling function depends mainly on the particular form of the
power-law asymptotics of the nucleon momentum distribution.
This is proved in our work by the similarities of the result for
the case of an interacting dilute Fermi gas with that obtained
in the CDFM as a model accounting for NN correlations in
realistic finite nuclear systems.

III. CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) The superscaling observed in inclusive electron scat-
tering from nuclei is considered within the model of
dilute Fermi gas with interactions between particles.
The latter gives an improvement over the results of the
relativistic noninteracting Fermi gas model, allowing one
to describe the QE scaling function for ψ ′<−1, whereas
the RFG model gives f (ψ ′) = 0 in this region.

(ii) It is established that the hard-sphere (with δ-forces
between nucleons) approximation for the dilute Fermi
gas is quite a rough one. The use of more realistic
NN forces leading to m � 4.5 instead of m = 0 (for
δ-force) in the well-known power-law asymptotics of
the momentum distribution n(k) ∼ 1/k4+m at large k

leads to a good explanation of the data for the ψ ′-scaling
function in inclusive electron scattering from a wide
range of nuclei.

(iii) The asymptotics of n(k) ∼ 1/k8.5 found in the dilute
Fermi gas by optimal fit to the data for f (ψ ′) is similar
to that in the CDFM (∼ 1/k8) [25] which, being a
theoretical correlation model, describes the superscaling
in the quasielastic part of the electron-nucleus scattering.
Thus, the momentum distribution in the dilute Fermi gas
model with realistic NN forces can serve as an “effective”

034319-4



SUPERSCALING IN A DILUTE FERMI GAS AND THE . . . PHYSICAL REVIEW C 75, 034319 (2007)

momentum distribution (a steplike one with a discon-
tinuity) which gives a similar result for f (ψ ′) as the
correlation methods for realistic finite nuclear systems.
It can be concluded that the momentum distribution with
asymptotics from ∼ 1/k8 to ∼ 1/k8.5 is the proper one
for explaining the phenomenological shape of the scaling
function obtained from inclusive QE electron scattering.

As already mentioned, the superscaling is due to the specific
high-momentum tail of n(k) similar for all nuclei which is
known to be caused by the short-range and tensor correlations
related to peculiarities of the NN forces near their core. The
main result of the present work might be the observation that
the values of f (ψ ′) for ψ ′< −1 depend on the particular
form of the power-law asymptotics of n(k) at large k which
is related to a corresponding particular behavior of the
in-medium NN forces around the core. Namely, we point
out that the power-law decrease of n(k) as ∼ 1/k4+m with
m � 4.5 in the interacting dilute Fermi gas is the proper
one, and it is close to that obtained in CDFM (m = 4 [25])
which describes the superscaling correctly as well. The NN

force for m = 4 is expected to go as VNN(r) ∼ 1/r and
for m = 5 to go as VNN(r) ∼ (1/r)1/2. Hence, the present
study allows one to conclude that the important property of
the repulsive short-range core [leading to NN correlations and
high-momentum tail of n(k)] is that it goes to infinity for
r → 0 as 1/r or softer. The link between the asymptotic
behavior of n(k) and NN forces implies that inclusive QE
electron scattering from nuclei provides important information
on the NN forces in the nuclear medium.
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