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Spin polarized neutron matter within the Dirac-Brueckner-Hartree-Fock approach
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The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety
of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation
of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic
instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy
than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are
presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized
neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties
are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the properties of
the equation of state in terms of specific features of the nuclear force model.
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I. INTRODUCTION

The properties of dense and/or highly asymmetric nuclear
matter, where asymmetric may refer to isospin or spin
asymmetries, are of great current interest in nuclear physics
and astrophysics. This topic is broad since it reaches out to
exotic systems on the nuclear chart as well as, on a dramatically
different scale, exotic objects in the universe such as compact
stars.

In this paper, we investigate the bulk and single-particle
properties of spin-polarized neutron matter. The study of
the magnetic properties of dense matter is of considerable
interest in conjunction with the physics of pulsars, which are
believed to be rapidly rotating neutron stars with strong surface
magnetic fields. The polarizability of nuclear matter can
have strong effects on neutrino diffusion and, in turn, variations
of the neutrino mean free path resulting from changes in
the magnetic susceptibility of neutron matter can impact the
physics of supernovae and proton-neutron stars.

The magnetic properties of neutron and nuclear matter
have been studied extensively for a long time by many
authors and with a variety of theoretical methods [1–29].
Nevertheless, conclusions about the possibility of a phase
transition to a ferromagnetic state at some critical density
are still contradictory. For instance, calculations based on
Skyrme-type interactions [23] predict that such instabilities
will occur with increasing density. In particular, currently used
Skyrme forces show a ferromagnetic transition for neutron
matter at densities between 1.1ρ0 and 3.5ρ0 [24]. However,
more recent predictions based on Monte Carlo simulations
[16] and the Brueckner-Hartree-Fock (BHF) approach with
realistic nucleon-nucleon (NN) interactions [18,19] exclude
these instabilities, at least at densities up to several times
normal nuclear density. Similarly, no evidence of a transition
to a ferromagnetic state was found in older calculations based
on the BHF approach with the Reid hard-core potential as well
as nonlocal separable potentials [10]. Relativistic calculations

based on effective meson-nucleon Lagrangians [13] predict the
ferromagnetic transition to take place at several times nuclear
matter density, with its onset being crucially determined by
the inclusion of the isovector mesons. Clearly, the existence of
such a phase transition depends sensitively on the modeling of
the spin-dependent part of the nuclear force and its behavior
in the medium. Thus, this unsettled issue goes to the very core
of nuclear physics.

Our calculation is microscopic and treats the nucleons
relativistically. A parameter-free and internally consistent
approach is important if we are to interpret our conclusions
in terms of the underlying nuclear force. This is precisely
our focus, namely to understand the in-medium behavior of
specific components of the nuclear force (in this case, the spin
dependence). Different NN potentials can have comparable
quality, as seen from their global description of NN data, and
yet differ in specific features. Thus, it will be interesting to
explore how, for a given many-body approach, predictions for
spin-polarized neutron matter depend upon specific features
of the NN potential. Second, it will be insightful to com-
pare with predictions based on a realistic NN potential and
the BHF method [18], especially at the higher densities, where
the repulsive Dirac effect can have a dramatic impact on the
short-range nature of the force.

This work is organized in the following way: After the
introductory notes in this section, we briefly review our
theoretical framework (Sec. II); our results are presented and
discussed in Sec. III; we conclude in Sec. IV with a short
summary and outlook.

II. BRIEF DESCRIPTION OF THE CALCULATION

The starting point of any microscopic calculation of nuclear
structure or reactions is a realistic free-space NN interaction.
A realistic and quantitative model for the nuclear force with
reasonable theoretical foundations is the one-boson-exchange
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(OBE) model [30]. Unless otherwise specified, our standard
framework consists of the Bonn B potential together with the
Dirac-Brueckner-Hartree-Fock (DBHF) approach to nuclear
matter. A detailed description of our application of the DBHF
method to nuclear, neutron, and asymmetric matter can be
found in our earlier works [31–33].

Similarly to what we have done to describe isospin
asymmetries of nuclear matter, we write the single-particle
potential as the solution of a set of coupled equations,

Uu = Uud + Uuu, (1)

Ud = Udu + Udd, (2)

where u and d refer to “up” and “down” polarizations,
respectively, and where each Uσσ ′ term contains the appro-
priate (spin-dependent) part of the interaction, Gσσ ′ . More
specifically,

Uσ (�p) =
∑

σ ′=u,d

∑
q � kσ ′

F

〈σ, σ ′|G(�p, �q)|σ, σ ′〉, (3)

where the second summation indicates integration over the two
Fermi seas of spin-up and spin-down neutrons, and

〈σ, σ ′|G(�p, �q)|σ, σ ′〉
=

∑
L,L′,S,J,M,ML

〈
1

2
σ ;

1

2
σ ′

∣∣∣∣ S(σ + σ ′)
〉 〈

1

2
σ ;

1

2
σ ′

∣∣∣∣
× S(σ + σ ′)

〉
〈LML; S(σ + σ ′)|JM〉

× 〈L′ML; S(σ + σ ′)|JM〉iL′−LY ∗
L′,ML

(k̂rel)

× YL,ML
(k̂rel)〈LSJ|G(krel,Kc.m.)|L′SJ〉. (4)

The notation 〈j1m1; j2m2|j3m3〉 is used for the Clebsh-Gordon
coefficients. Clearly, the need to separate the interaction by
individual spin components brings along angular dependence,
with the result that the single-particle potential depends also
on the direction of the momentum. Notice that the G-matrix
equation is solved by using partial wave decomposition and
the matrix elements are then summed as in Eq. (4) to provide
the new matrix elements in the uncoupled-spin representation
needed for Eq. (3). The three-dimensional integration in
Eq. (3) is performed in terms of the spherical coordinates
of �q, (q, θq, φq), with the final result depending upon both
magnitude and direction of �p. However, the scattering equation
is solved by using relative and center-of-mass coordinates, krel

and Kc.m.. These are easily related to the momenta of the two
particles in the nuclear matter rest frame through the standard
definitions �Kc.m. = �p + �q and �krel = �p−�q

2 . (The latter displays
the dependence of the argument of the spherical harmonics
upon �p and �q.)

Solving the G-matrix equation requires knowledge of the
single-particle potential, which in turn requires knowledge of
the interaction. Hence, Eqs. (1) and (2) together with the
G-matrix equation constitute a self-consistency problem,
which is handled, technically, exactly the same way as previ-
ously done for the case of isospin asymmetry [31]. The Pauli
operator for scattering of two particles with unequal Fermi
momenta, contained in the kernel of the G-matrix equation,

is also defined in perfect analogy with the isospin-asymmetric
one [31],

Qσσ ′
(
p, q, kσ

F , kσ ′
F

) =
{

1 if p > kσ
F and q > kσ ′

F ,

0 otherwise.
(5)

Notice that, although a full three-dimensional integration is
performed in Eq. (3), the usual angle-average procedure is
applied to the Pauli operator (when expressed in terms of krel

and Kc.m.) and to the two-particle propagator in the kernel of
the G-matrix equation.

Once a self-consistent solution is obtained for the single-
particle spectrum, the average potential energy for particles
with spin polarization σ is obtained as

〈Uσ 〉 = 1

2

1

(2π )3

1

ρσ

∫ kσ
F

p=0

∫ π

θp=0

∫ 2π

φp=0
Uσ (�p)p2dpd�p. (6)

The average potential energy per particle is then

〈U 〉 = ρu〈Uu〉 + ρd〈Ud〉
ρ

. (7)

The kinetic energy (or, rather, the free-particle operator
in the Dirac equation within the DBHF framework) is also
averaged over magnitude and direction of the momentum. In
particular, we calculate the average free-particle energy for
spin-up(down) neutrons as

〈Tσ 〉 =
∫

d�T̄ (m∗
σ (θ ))∫

d�
, (8)

where T̄ is the average over the magnitude of the momentum.
Notice that the angular dependence comes in through the ef-
fective masses, which, being part of the parametrization of the
single-particle potential, are themselves direction dependent
(and of course different for spin-up or spin-down neutrons).

Finally,

〈T 〉 = ρu〈Tu〉 + ρd〈Td〉
ρ

(9)

and the average energy per neutron is

ē = 〈U 〉 + 〈T 〉. (10)

As in the case of isospin asymmetry, it can be expected that
the dependence of the average energy per particle upon the
degree of polarization [18] will follow the law

ē(ρ, β) = ē(ρ, β = 0) + S(ρ)β2, (11)

where β is the spin asymmetry, defined by β = ρu−ρd

ρ
. A

negative value of S(ρ) would signify that a polarized system
is more stable than unpolarized neutron matter.

From the energy shift,

S(ρ) = ē(ρ, β = 1) − ē(ρ, β = 0), (12)

the magnetic susceptibility can be easily calculated. If the
parabolic dependence is assumed, then one can write the
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FIG. 1. (Color online) Angular dependence of the single-particle
potential for spin-up and spin-down neutrons at fixed spin asymmetry
and Fermi momentum and for different values of the neutron
momentum. The momenta are in units of fm−1. The angle is defined
relative to the polarization axis.

magnetic susceptibility as [18]

χ = µ2ρ

2S(ρ)
, (13)

where µ is the neutron magnetic moment. The magnetic
susceptibility in often expressed in units of χF , the magnetic
susceptibility of a free Fermi gas,

χF = µ2m

h̄2π2
kF , (14)

where kF denotes the average Fermi momentum, which is
related to the total density by

kF = (3π2ρ)1/3. (15)

The Fermi momenta for up and down neutrons are

ku
F = kF (1 + β)1/3,

kd
F = kF (1 − β)1/3.

(16)
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FIG. 2. (Color online) Same as Fig. 1 but for a larger value of the
spin asymmetry.
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FIG. 3. (Color online) Asymmetry dependence of the single-
particle potential for spin-up and spin-down neutrons at fixed density
and momentum. The angular dependence is integrated out.

For the most general case, it will be necessary to combine
isospin and spin asymmetry. With twice as many degrees of
freedom, the coupled self-consistency problem schematically
displayed in Eqs. (1) and (2) is numerically more involved but
straightforward. This is left to a future work.

III. RESULTS AND DISCUSSION

We begin by showing the angular and momentum depen-
dence of the single-neutron potential (see Figs. 1 and 2).
The angular dependence is rather mild, especially at the lowest
momenta. As can be reasonably expected, it becomes stronger
at larger values of the asymmetry (see Fig. 2). In Fig. 3,
the asymmetry dependence is displayed for fixed density and
momentum (with the angular dependence averaged out). As
the density of u particles goes up, with the total density
remaining constant, the most likely kind of interaction for
u neutrons is of the uu type. Similarly, the largest contribution
to the d-particle potential is of the du type [see Eqs. (1) and
(2)], with the latter being apparently more attractive, as can
be inferred by the spin splitting of the potential shown in
Fig. 3. Before we move on to discuss this issue in greater
detail, we also show the effective masses of u and d neutrons
(see Fig. 4) and observe that they display a qualitatively
similar behavior to that of the corresponding single-particle
potentials. The average energy per particle at various densities
and as a function of the asymmetry parameter is shown in
the third frame of Fig. 5. The first two frames display the
contribution from the average potential energy and the average
kinetic energy, respectively. The parabolic dependence on β

(i.e., linear on β2) is obviously verified. In Fig. 6 we show
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FIG. 4. (Color online) Asymmetry dependence of the effective
masses for upward and downward polarized neutrons under the same
conditions as in Fig. 3.
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FIG. 5. (Color online) Average potential, kinetic, and total energy
per particle at various densities as a function of the spin asymmetry.
Predictions have been obtained with our standard DBHF calculation.

the corresponding predictions obtained with the conventional
BHF approach. This comparison may be quite insightful, as
we further discuss next. We notice that the Dirac energies
are overall more repulsive, but the parabolas predicted with
the BHF prescription appear to become steeper, relative to
each other, as density grows. The energy difference between
the totally polarized state and the unpolarized one for both
the relativistic and the nonrelativistic calculation is shown in
Fig. 7. Although the DBHF curve is initially higher, its growth
shows a tendency to slow down and the two sets of predictions
cross over just above 3ρ0.

Before leaving this detour into the nonrelativistic model,
we observe that the predictions shown in Fig. 6 are reasonably
consistent with those from previous studies that used the BHF
approach and the Nijmegen II and Reid93 NN potentials [18].
In fact, comparison with that work allows us to make some
useful observations concerning the choice of a particular NN
potential, for a similar many-body approach (in this case,
BHF). We must keep in mind that off-shell differences exist
among NN potentials (even if they are nearly equivalent in
their fit of NN scattering data) and those will impact the
G matrix (which, unlike the T matrix, is not constrained by
the two-body data). Furthermore, off-shell differences will
have a larger impact at high Fermi momenta, where the
higher momentum components of the NN potential (usually
also the most model dependent ones) play a larger role in
the calculation. Accordingly, the best agreement between our
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FIG. 6. (Color online) Same as Fig. 5 but for predictions obtained

with the BHF calculation.
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FIG. 7. (Color online) Energy difference between the polarized
and the unpolarized states corresponding to Figs. 5 and 6.
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DBHF calculations of the equation of state. The angular dependence
is averaged out.
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FIG. 9. (Color online) Average energy per particle at densities
equal to 0.5, 1, 2, 3, 5, 7, 9, and 10 times ρ0 (from lowest to highest
curve). Predictions have been obtained with our DBHF calculation.

BHF predictions and those of Ref. [18] is seen at low to
moderate densities. Furthermore, as far as differences based
on the choice of the NN potential are concerned, we would
expect them to be more pronounced for nuclear matter than
for pure neutron matter, since the largest variations among
modern realistic potentials are typically found in the strength
of the tensor force, which is stronger in T = 0 partial waves
(obviously absent in the nn system). This point will be explored
in a later investigation.

In the remainder of this paper, we will focus on the DBHF
model, which is our standard operational approach. To further
explore the possibility of a ferromagnetic transition, we have
extended the DBHF calculation to densities as high as 10ρ0.

The same method as described in Ref. [33] is applied to
obtain the energy per particle where a self-consistent solution
cannot be obtained (see Sec. III of Ref. [33] for details).
The (angle-averaged) neutron effective masses for both the
unpolarized and the fully polarized case are shown in Fig. 8
as a function of density. DBHF predictions for the average
energy per particle are shown in Fig. 9 at densities ranging
from ρ = 0.5ρ0 to 10ρ0. What we observe is best seen
through the spin-symmetry energy, which we calculate from
Eq. (12) and show in Fig. 10. We see that at high density
the energy shift between polarized and unpolarized matter
continues to grow, but at a smaller rate, and eventually appears
to saturate. Similar observations already made in conjunction
with isospin asymmetry were explained in terms of stronger
short-range repulsion in the Dirac model [33]. It must be
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FIG. 10. Density dependence of the spin symmetry energy
obtained with the DBHF model.
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FIG. 11. Density dependence of the ratio χF /χ . Predictions are
obtained with the DBHF model.

kept in mind that some large contributions, such as the one
from the 1S0 state, are not allowed in the fully polarized
case. Now, if such contributions (which are typically attractive
at normal densities) become more and more repulsive with
density (owing to the increasing importance of short-range
repulsive effects), their absence will amount to less repulsive
energies at high density. In contrast, if large and attractive
singlet partial waves remain attractive up to high densities,
their suppression (which is demanded in the totally polarized
case) will effectively amount to increased repulsion.

In conclusion, although the curvature of the spin-symmetry
energy may suggest that ferromagnetic instabilities are in
principle possible within the Dirac model, inspection of
Fig. 10 reveals that such a transition does not take place at
least up to 10ρ0. Clearly, it would not be appropriate to explore
even higher densities without additional considerations, such
as transition to a quark phase. In fact, even on the high side of
the densities considered here, softening of the equation of state
from additional degrees of freedom not included in the present
model may be necessary to draw a more definite conclusion.

Finally, in Fig. 11 we show the ratio χF /χ , whose behavior
is directly related to the spin-symmetry energy [see Eq. (13)].
Clearly, similar observations apply to both Fig. 11 and
Fig. 10. [The magnetic susceptibility would show an infinite
discontinuity, corresponding to a sign change of S(ρ), in case
of a ferromagnetic instability.]

IV. CONCLUSIONS

We have calculated bulk and single-particle properties
of spin-polarized neutron matter. The equations of state we
obtain with the DBHF model are generally rather repulsive at
the larger densities. The energy of the unpolarized system
(where all nn partial waves are allowed) grows rapidly at
high density with the result that the energy difference between
totally polarized and unpolarized neutron matter tends to slow
down with density. This may be interpreted as a precursor
of spin-separation instabilities, although no such transition
is actually seen up to 10ρ0. Our analysis allowed us to
locate the origin of this behavior in the contributions to
the energy from specific partial waves and their behavior in
the medium, particularly increased repulsion in the singlet
states.

In future work, the impact of further extensions will be con-
sidered. These include examining the effects of contributions
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that soften the equation of state (especially at high density),
extending our framework to incorporate both spin- and isospin-
asymmetries, and examining the temperature dependence of
our observations for spin- and isospin-asymmetries of neutron
and nuclear matter.
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