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Molecular orbitals and α+18O molecular bands of 22Ne

Masaaki Kimura
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 22 October 2005; revised manuscript received 19 October 2006; published 23 March 2007)

Focusing on α clustering, the structure of 22Ne was studied. We predict the presence of the molecular orbital
bands that have an α+16O cluster core surrounded by two neutrons occupying the molecular orbitals, together
with α+18O molecular bands. The formation of the α+16O cluster core and its close relation to the configuration
of two valence neutrons are discussed.

DOI: 10.1103/PhysRevC.75.034312 PACS number(s): 21.60.Gx, 27.30.+t

I. INTRODUCTION

Nuclear clustering is one of the most essential degrees of
freedom of nuclear excitation, and many experimental and
theoretical studies have been devoted to understanding its
nature. Since the early 1990s, the study of the clustering
aspects in N �= Z nuclei has been greatly developed, and
various new exotic aspects have been discovered. Much of
this new information on nuclear clustering in N �= Z nuclei
provides not only deeper understanding of the clustering itself
but also the knowledge of its coupling with other degrees of
freedom such as the single-particle motion of valence neutrons.
One such example is 2α clustering of Be isotopes. The cluster
model studies [1–5] and the antisymmetrized molecular dy-
namics (AMD) studies [6–8] have shown that the ground states
and many excited states of Be isotopes have the 2α core and the
covalently bound neutrons around the core (molecular orbital).
Depending on the valence neutron configurations and on the
number of the valence neutrons, the degree of the 2α clustering
changes dynamically. The AMD study [8] also predicts the
existence of the 6He+6He molecular band in 12Be in which
valence neutrons are not bound covalently but to either of two
α particles.

Considering the variety of the 2α cluster structure of
Be isotopes, it is natural to expect the α+16O clustering of
Ne isotopes. For example, W. von Oertzen [9] has proposed
the possible existence of the molecular orbital structure in
Ne isotopes and suggested a new assignment of the rotational
bands of 21Ne. Compared to 8Be, which has an almost pure
2α cluster structure in its ground state, 20Ne has a mixture of
the cluster and the shell structure in its ground and excited
states [10–12]. Consequently, when we add some neutrons
to 20Ne, we expect to find more dynamic formation and
dissolution of the α+16O cluster structure depending on the
motion of the valence neutrons.

22Ne is the lightest even-even α+16O+xn system and is
stable nucleus. Therefore, experimental information [13–18] is
rather rich compared to that from heavier Ne isotopes. Indeed,
large quadrupole deformation of the ground band is well
known and some excited rotational bands were experimentally
investigated and theoretically discussed [19–23]. However, the
theoretical interpretation of many excited states has not been
established yet. In particular, experimental and theoretical
information on α clustering of this nucleus is not enough com-
pared to 20Ne. Experimentally, to my knowledge, α clustering

in 22Ne was investigated first by W. Scholz et al. [24,25] based
on the α transfer reaction on 18O. They reported the significant
α clustering of 10 natural parity states lying between 6.24
and 8.59 MeV (3.4 and 1.0 MeV below the α+18O threshold
energy). However, the theoretical interpretation of these states
has not been given yet. Recently, in addition to those states,
the α cluster states lying above the α+18O threshold energy
are observed [26–28]. In particular, G. V. Rogachev et al. [26]
and V. Z. Goldberg et al. [28] reported 1−, 3−, 7−, and 9−
states that are the member states of the α+18O molecular band
above the α+18O threshold energy. This α+18O molecular
band is theoretically discussed by P. Descouvemont and
M. Dufour [29–31] based on the α+18O(Jπ ) extended two-
cluster model (ETCM). Thus, α clustering of 22Ne has been
reported at least in two energy regions, a few MeV below
and above α+18O threshold energy, suggests much more
complicated α clustering systematics than those of the 20Ne
and Be isotopes.

In this article, we discuss the structure of 22Ne, focusing
mainly on the α+16O clustering of the core nucleus. The
theoretical framework of the deformed-basis AMD (DAMD)
[12] plus generator coordinate method (GCM) is combined
with the α+18O cluster wave function to investigate the
systematics of the α clustering of 22Ne. Because the DAMD
assumes no cluster structure and describes the shell, the cluster,
and their mixed structure, it serves the purpose of the present
study. We predict the existence of the molecular orbital bands
that are possibly assigned to the α cluster states below α+
18O threshold energy observed in Ref. [25]. Above the α+18O
threshold energy, the existence of the α+18O molecular bands
that correspond to the observed bands [26,28] are also shown.

The contents of this article are as follows. In the next
section, we briefly present the framework of DAMD and
propose a new constraint on the variational calculation that
makes it possible to investigate various motion of the valence
neutrons. In Sec. III, we present the results and discuss the
structure of 22Ne. Especially, we discuss the detail of α

clustering and predict two different kinds of α clustering in this
nucleus, the molecular orbital bands and the α+18O molecular
bands. In the final section, we summarize the present study.

II. THEORETICAL FRAMEWORK

In this section, the framework of the DAMD is given and
the calculational procedure applied in this study is explained.
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A. Wave function and Hamiltonian

In the DAMD, the intrinsic wave function of the system
with mass A is given by a Slater determinant of single-particle
wave packets;

�int ≡ A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi(r) ≡ φi(r)χiξi, (2)

where ϕi is the ith single-particle wave packet consisting of the
spatial φi , spin χi , and isospin ξi parts. The triaxially deformed
Gaussian centered at Zi is employed as the spatial part of the
single-particle wave packet:

φi(r) ≡ exp

[
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2
]

,

χi ≡ αiχ↑ + βiχ↓, |αi |2 + |βi |2 = 1, (3)

ξi = proton or neutron.

Here, the complex number vector parameter Zi takes indepen-
dent value for each nucleon. The width parameters νx, νy , and
νz are real number parameters and take independent values for
each direction but are common to all nucleons. Spin part χi

is parametrized by αi and βi and isospin part ξi is fixed to
proton or neutron. Zi , νx, νy, νz, αi , and βi are the variational
parameters. As the variational wave function, we employ the
parity projected wave function,

�± ≡ P̂ ±�int = (1 ± P̂x)

2
�int, (4)

where P̂x is the parity operator.
By using the deformed Gaussians as the single-particle

wave packet, we can describe the deformed shell structure,
the cluster structure, and their mixed structure within the
same framework. It becomes clear when we consider two
limits of the wave function included in the DAMD model
space, the deformed shell limit, and the cluster limit, which
are schematically illustrated in Fig. 1. In the deformed shell
limit, all Zi are gathered around the center of the nucleus
and the single-particle wave packets are deformed. In the
limit of Zi → 0 the wave function becomes the eigenstate of
the deformed harmonic oscillator whose oscillator lengths are

All Zi are at the center.

Wave packets are deformed.

Zi are separated into clusters.

Wave packets are spherical.

deformed shell limit cluster limit

FIG. 1. Schematic figure showing two limits of the DAMD wave
function. Black points indicate the centroids of the single-particle
wave packets, Zi .

identical to the width parameters of the single-particle wave
packet (νx, νy , and νz). In the cluster limit, Zi are spatially
separated into several parts describing the cluster structure.
The single-particle wave packets become spherical when the
cluster subunits are spherical nuclei. Whether the system has
the cluster structure, the shell structure or their mixed structure
is determined by the variational calculation explained in the
next subsection.

Hamiltonian used in this study is given as

Ĥ = T̂ + V̂n + V̂c − T̂g, (5)

where T̂ and T̂g are the kinetic energy and the energy of
the center-of-mass motion, respectively. The Gogny D1S
force [32] was employed as an effective nuclear force V̂n.
The Coulomb force V̂c is approximated by the sum of seven
Gaussians.

B. Energy variation under the constraints

In the present work, two kinds of the constraints on the
variational wave function are applied simultaneously. The first
is the constraint on deformation of the system, which in the
following is called the β constraint. The matter quadrupole
deformation β is restricted to a certain given value β0. It is
achieved by adding a parabolic potential,

Vβ = vβ(β − β0)2, (6)

to the total energy. Here vβ is the large positive number and β

denotes the matter quadrupole deformation of the variational
wave function �±. The definition and the evaluation of β are
given in Ref. [7].

Another one is the constraint on the number of the deformed
harmonic oscillator quanta, which in the following is called the
N constraint. The number operators are defined separately for
proton and neutron as,

N̂ξ ≡
∑

i

∑
σ=x,y,z

(
p2

σ i

4h̄νσ

+ νσ r2
σ i

)
− 3

2
, (7)

ξ = proton or neutron, (8)

where summation over i runs all protons or all neutrons.
We note that the oscillation numbers of deformed harmonic
oscillator in Eq. (7) are defined by the width parameter of the
single particle wave packet [Eq. (3)] as ωσ = 2h̄νσ /m. We
impose some different constraints on the expectation values
Nξ ≡ 〈�±|N̂ξ |�±〉/〈�±|�±〉. For example, when there is no
core excitation,

Nval ≡ Nn − Np (9)

will provide the quantum number of valence neutrons. By
adding the potential,

VN = vN (Nval − N0)2 θ (Nval − N0),
(10)

θ (x) =
{

0, x < 0
1 x � 0 , vN > 0,

to the energy of the system, Nval is restricted to less than
N0. Details of the applied N constraints are explained in
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the next section. Here we make an additional comment on
the N constraint. It is easily confirmed that the value of
Nξ is independent of the frequencies ωσ and the width
parameters νσ . It depends strongly on Zi and increases as |Zi |
becomes large in general. Therefore Nξ is quite sensitive to
the formation of the cluster structure, because Zi are distantly
separated when the system has the cluster structure as shown
in Fig. 1. Of course, Nξ is also sensitive to the single particle
configuration.

The variational parameters Zi , νx, νy, νz, αi , and βi are
optimized under the β and N constraints so that the energy
of the system plus constraint potentials,

E± = 〈�±|Ĥ |�±〉
〈�±|�±〉 + Vβ + VN, (11)

is minimized. The variation is made by the frictional cooling
method, which is a kind of the imaginary time development
method. The time development equation for the complex
parameters Zi , αi , and βi is given as

dXi

dt
= µ

h̄

∂E±

∂X∗
i

, (i = 1, 2, . . . , A), (12)

and that for the real number parameters νx, νy , and νz is given
as

dνσ

dt
= µ′

h̄

∂E±

∂νσ

, (σ = x, y, z). (13)

Here Xi represents Zi , αi , or βi . µ and µ′ are the arbitrary neg-
ative real numbers. By this method, we obtain the optimized
wave function �±

int({C}) under a certain combination of β- and
N -constraint parameters {C}. It is confirmed that at the end of
the variational calculation, Vβ and VN are less than 10 keV.

C. Analysis of the single-particle orbitals

To understand the single-particle configuration, we cal-
culate the single-particle orbitals of the optimized wave
function �±

int({C}). When the wave function �±
int({C}) =

P̂±A{ϕ1, ϕ2, ...ϕA} is given, we transform the single-particle
wave packet ϕi to the orthonormalized basis ϕ̃α ,

ϕ̃α ≡ 1√
λα

A∑
i=1

ciαϕi. (14)

Here, λα and ciα are the eigenvalues and eigenvectors of the
overlap matrix Bij ≡ 〈φi |φj 〉,

A∑
j=1

Bij cjα = λαciα. (15)

Using this basis, the Hartree-Fock single-particle Hamiltonian,

hαβ ≡ 〈ϕ̃α|t̂ |ϕ̃b〉 +
A∑

γ=1

〈ϕ̃αϕ̃γ |v̂n + v̂c|ϕ̃β ϕ̃γ − ϕ̃γ ϕ̃β〉,

+ 1

2

A∑
γ,δ=1

〈ϕ̃γ ϕ̃δ|ϕ̃∗
αϕ̃β

∂v̂n

∂ρ
|ϕ̃γ ϕ̃δ − ϕ̃δϕ̃γ 〉, (16)

is calculated. The eigenvalues and eigenvectors of the Hartree-
Fock single-particle Hamiltonian give the single-particle
energies εs and the single-particle orbitals φ̃s ,

A∑
β=1

hαβfβs = εsfαs, (17)

φ̃s ≡
A∑

α=1

fαsϕ̃α. (18)

The amount of the positive-parity component in the single-
particle orbitals,

p+
α ≡ |〈φ̃α|P̂ +|φ̃α〉|2 (19)

is used to discuss their property.

D. Angular-momentum projection and
generator coordinate method

From the optimized wave function, we project out the
eigenstate of the total angular momentum J ,

�J±
MK ({C}) = P̂ J

MK�±({C}). (20)

Here P̂ J
MK is the total angular-momentum projector. The

integrals over three Euler angles are evaluated by the numerical
integration.

Finally, the wave functions �J±
MK ({C}) which have the

same parity and angular momentum but have different K and
constraint parameters {C} are superposed (GCM). Then the
wave function of the system is written as

�J±
n = cn�

J±
MK ({C}) + c′

n�
J±
MK ′ ({C′}) + . . . , (21)

where the quantum numbers except the total angular mo-
mentum and the parity are represented by n. The coefficients
cn, c

′
n, . . . are determined by the Hill-Wheeler equation,

δ
(〈
�J±

n

∣∣Ĥ ∣∣�J±
n

〉 − εn

〈
�J±

n

∣∣�J±
n

〉) = 0. (22)

In this work, we have also performed an extended calcula-
tion in which we employ α+18Og.s. Brink-type cluster wave
function [33],

�J±
MK (R) = P̂ J±

MKA
{
φα

(
−18

22
R

)
, φ18Og.s.

(
4

22
R

)}
, (23)

as the basis wave function of the GCM together with the
DAMD wave function. The internal wave function of the
ground state of 18O, φ18Og.s. , is calculated by DAMD and is
projected to Jπ = 0+. The intercluster distance R is taken
from 2 to 12 fm with an interval of 1 fm. In the following,
we refer to the GCM calculation with DAMD wave functions
as DAMD-GCM and that with DAMD and α+18Og.s. cluster
wave functions as hybrid GCM.

III. RESULTS

A. Energy surfaces obtained without N constraint

We first discuss the energy surface obtained with the
β constraint but without the N constraint. Figure 2(a) shows the
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FIG. 2. (a): The energy surfaces of the positive- (solid line) and negative-parity (dashed line) states obtained without the N constraint.
(b) and (c): Np and Nn calculated from the wave functions on the energy surface of the positive-parity (b) and negative-parity (c) states.

obtained energy surfaces of the positive- and negative-parity
states. At a glance, each surface has a simple structure that
has a minimum energy state. However, when we see the
behavior of Np and Nn, two (three) different single particle
configurations appear on the energy surface of the positive-
(negative-) parity state. Figures 2(b) and 2(c) show Np and Nn

calculated from the wave functions on the energy surfaces of
the positive- and negative-parity states, respectively. In the case
of the positive-parity state [Fig. 2(b)], Np and Nn have almost
constant values Np = 10 and Nn = 14 from β = 0 to 0.65.
Both values are the lowest Pauli-allowed values, and hence
the wave function has the 0h̄ ω configuration. In this region,
the gap between Nn and Np that roughly corresponds to the
quantum number of two valence neutrons is almost constant,
Nn − Np ∼ 4. This means that two valence neutrons are in the
sd orbitals. At β = 0.65, the structure change takes place. Np

and Nn increase discontinuously at β = 0.65 and continuously
increase as deformation becomes larger. The behavior of Np is
due to the formation of the α+16O cluster core and its growth
as the function of β. The discontinuous increase of Nn at
β = 0.65 is due to the formation of the α+16O cluster core
and the excitation of two valence neutrons. The gap between
Nn and Np is about 6 and shows the 2h̄ ω excitation of two
valence neutrons. The continuous increase of Nn is due to the
growth of the α+16O clustering. The formation of the α+16O
cluster core in this state will be clearly shown in the next
subsection.

In the case of the negative-parity state [Fig. 2(c)], Np

and Nn have almost constant values Np = 11 and Nn = 14
up to β = 0.55. They show the 1h̄ ω excitation of proton,
whereas neutron has the 0h̄ ω configuration. In the region of
0.55 < β < 0.7, Np is smaller than 11, which shows the de-
excitation of the proton. The gap between Nn and Np is about
5 and shows the 1h̄ ω excitation of a valence neutron. In the
strongly deformed region β > 0.7, both Np and Nn increase.
It is due to the formation of the α+16O cluster core and the
excitation of two valence neutrons. The gap between Nn and
Np is about 7 and shows the 3h̄ ω excitation of two valence
neutrons.

Thus, the behavior of Np and Nn shows that the 0h̄ ω and
the neutron 2h̄ ω configurations appear in the positive-parity
state and that the proton 1h̄ ω, the neutron 1h̄ ω and 3h̄ ω

configurations appear in the negative-parity state.

B. Energy surfaces obtained with the N constraint and
structure of wave function

We separated five different configurations discussed above
by applying the N constraint. In Table I, the applied
N constraints determined by referring to the results of Fig. 2
are summarized. Constraints (I) and (II) are applied to the
positive-parity state. Constraint (I) keeps approximately two
valence neutrons within the 0h̄ ω configuration, whereas (II)
forces the excitation of two valence neutrons. Constraints (III),
(IV), and (V) are applied to the negative-parity state.
Constraint (III) forces the excitation of proton, but keeps two
valence neutrons within the 0h̄ ω configuration. Constraints
(IV) approximately restricts the excitation of two valence
neutrons to more than 1h̄ ω but less than 2h̄ ω, whereas (V)
allows it to be more than 2h̄ ω.

The energy surfaces obtained by these five constraints are
shown in Fig. 3 labeled with (I) to (V), which correspond to the
applied constraints listed in Table I. All of the energy surfaces
have one energy minimum state and they are referred to as

0 0.2 0.4 0.6 0.8

en
er

gy
 [M

eV
]

matter quadrupole deformation β  

(I)
(II) 
(III)

(IV)

(V)

FIG. 3. The energy surfaces as the functions of the matter
quadrupole deformation parameter β obtained by the N constraints
(I) to (V) (see text and Table I). (I) and (II) are the positive-parity
states and (III), (IV), and (V) are the negative-parity states. The energy
before the angular-momentum projection is shown.
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TABLE I. The five different sets of the constraints on Np and Nn

applied in this study.

Constraint Parity Constraint

(I) Positive Nn − Np < 4.5
(II) Positive Nn − Np > 5.0
(III) Negative Np > 10.5 and Nn − Np < 4.5
(IV) Negative 4.5 < Nn − Np < 5.5
(V) Negative Nn − Np > 6.0

states (I) to (V) in the following. To understand the structure
of the states (I) to (V), we investigated the single-particle
configurations and the density distributions. The properties of
the single-particle orbitals of the states (I) to (V) are listed in
Table II. The density distributions of the core and the valence
neutron orbitals are shown in Fig. 4. Here, the valence neutron
orbitals are defined as the orbitals of the most weakly bound
two neutrons and the core is defined as all of the remaining

nucleons. It is noted that two valence neutrons occupy the
orbitals that have the same density distribution except for the
case of state (III).

In the case of the positive-parity state, state (I) has the 0h̄ ω
configuration. From the parity of the single-particle orbitals
[Table II(a)], we can see that the proton and neutron orbitals
No. 1 and Nos. 2 to 4 are the 0s and 0p orbitals, respectively.
The proton and neutron orbital No. 5 and the neutron orbital
No. 6 are the 1s0d orbitals. The density distribution of this state
[Fig. 4(a)] shows the parity symmetric deformation of the core
and the valence neutron orbitals. It also shows the absence of
α clustering in this state. On the contrary, the core of state
(II) has the prominent α+16O cluster structure and the parity
asymmetric deformation, as shown in the density distribution
[Fig.4(b)]. Due to this parity asymmetry, the parity of the
single-particle orbitals [Table II(b)] is strongly mixed and it
is difficult to see the correspondence to the usual spherical
orbitals. Nevertheless, the density distribution of the valence
neutron orbital [Fig. 4(b)] shows 1p0f orbital nature (it has
three nodes along z axis).

TABLE II. The properties of the single-particle orbitals of states (I) to (V). The columns denoted by “No.,” “occ.,” “ε” and “p+” show the
number assigned to each single-particle orbital for the presentation, the occupation number, the single-particle energy in MeV, and the amount
of the positive-parity component in percentages, respectively.

(a) State (I) (b) State (II)

Proton Neutron Proton Neutron

No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%)

1 2 −41.1 100 1 2 −42.7 100 1 2 −38.7 93 1 2 −39.5 92
2 2 −27.8 5 2 2 −28.0 2 2 2 −26.1 22 2 2 −25.9 22
3 2 −21.6 6 3 2 −22.4 4 3 2 −18.7 20 3 2 −20.5 21

4 2 −16.0 7 4 2 −17.2 5 4 2 −16.5 94 4 2 −16.1 90
5 2 −12.6 100 5 2 −13.5 100 5 2 −13.3 29 5 2 −14.5 43

6 2 −8.9 94 6 2 −5.6 36

(c) State (III) (d) State (IV)

Proton Neutron Proton Neutron

No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%)

1 2 −41.7 100 1 2 −42.0 100 1 2 −39.1 95 1 2 −40.5 96
2 2 −28.6 9 2 2 −29.1 8 2 2 −27.3 8 2 2 −27.4 10
3 2 −21.5 10 3 2 −21.5 10 3 2 −19.4 15 3 2 −20.8 13
4 1 −15.9 12 4 2 −15.5 11 4 2 −15.6 91 4 2 −15.9 70
5 2 −13.5 90 5 2 −14.5 91 5 2 −13.7 35 5 2 −14.5 40
6 1 −9.7 91 6 2 −8.6 90 6 1 −7.9 90

7 1 −3.4 21
(e) State (V)

Proton Neutron

No. occ. ε (MeV) p+(%) No. occ. ε (MeV) p+(%)

1 2 −38.1 91 1 2 −39.1 92
2 2 −25.2 45 2 2 −23.7 44
3 2 −18.5 38 3 2 −20.2 38
4 2 −16.0 81 4 2 −16.5 83
5 2 −12.8 47 5 2 −14.1 52

6 2 −6.5 49
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In the case of the negative-parity state, state (III) shows
proton excitation from the 0p to the 0d1s orbital, whereas the
neutron has the 0h̄ ω configuration. The occupation number
and the parity of the proton single-particle orbitals [Table II(c)]
show that a proton is excited from orbital No. 4 (0p) to orbital
No. 6 (0d1s). Due to this proton excitation, this state does not
show α clustering [Fig. 4(c)]. The core of state (IV) has the
moderate α+16O cluster structure [Fig. 4(d) and 4(e)]. One of
two valence neutrons occupies the excited orbital [Table II(d),
No. 7, and Fig. 4(e)] which has pf orbital nature and the other
occupies the 0d1s orbital [Table II, No. 6, and Fig. 4(d)].
The core of the state (V) has the most prominent α+16O
cluster structure [Fig. 4(f)]. Again, because of the strong parity
mixing, the assignment of each orbital to the spherical one is
rather ambiguous. Two valence neutrons occupy the excited
orbital that has the pf -orbital nature [Table II(e), No. 6, and
Fig. 4(f)].

To summarize this subsection, we note the following
points. The configuration of valence neutrons is controlled
by applying the N constraint. This method revealed that
α clustering of the core strongly depends on the configuration
of two valence neutrons. Namely, the core has the α+16O clus-
ter structure [states (II), (IV), and (V)], when one or two neu-
trons are excited into the orbital that has the pf -orbital nature
[Figs. 4(b), 4(e), and 4(f)]. It is also interesting that the states
(II) and (V) have a similar structure. They have the α+16O
cluster core and two valence neutrons occupying the orbitals
that have the pf -orbital nature. Indeed, in the Sec. III D, we
will discuss that these two states can be considered the parity
doublet partner.

C. Level scheme and E2 transition probabilities

The wave functions on the energy surfaces are superposed
after the angular-momentum projection and the Hamiltonian
is diagonalized (DAMD-GCM). The obtained level scheme

TABLE III. The in-band E2 transition probabilities of the ground,
Kπ = 2+, 2−, 0+

2 , and 0−
1 bands in Weisskopf units. Numbers in

parentheses are the experimental data taken from Refs. [16,34].

g.b.→g.b. Kπ = 2+ → Kπ = 2+

Ji Jf B(E2) (W.u.) Ji Jf B(E2) (W.u.)

2+
1 0+

1 14.9 (13.6±1.6) 3+
1 2+

2 15.5

4+
1 2+

1 20.5 (20.1+4.3
−3.0) 4+

2 2+
2 5.4

6+
1 4+

1 15.8 (12.8+3.1
−2.1) 4+

2 3+
1 8.4

8+
1 6+

1 10.8 (�0.02) 5+
1 3+

1 7.4

5+
1 4+

2 11.4

Kπ = 2− → Kπ = 2− Kπ = 0+
2 → Kπ = 0+

2
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1 2−
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4−
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1 2.1 4+
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3 32.1
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1 5.1

Kπ = 0−
1 → Kπ = 0−

1 Kπ = 1− → Kπ = 1−

Ji Jf B(E2) (W.u.) Ji Jf B(E2) (W.u.)

3−
3 1−

2 41.4 2−
2 1−

1 11.4

5−
3 3−

3 47.1 3−
2 2−

2 12.9

7−
1 5−

3 46.8 3−
2 1−

1 13.4

9−
1 7−

1 43.9 4−
2 3−

2 16.8

4−
2 2−

2 12.1

of 22Ne is presented in Fig. 5 together with its experimental
counterpart. The in-band E2 transition probabilities are also
listed in Table III.

FIG. 4. (Color online) The density distributions of the core and the valence neutrons of the states (I) to (V). Contour lines show the density
distribution of the core. Color plots show the density distribution of the valence neutron orbital. The density is integrated over the x axis.
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FIG. 5. Low-lying level scheme of 22Ne obtained by the DAMD-
GCM calculation. At the right-hand side, the experimental candidates
of the present results are plotted. Dashed lines show the states that
has large α reduced widths observed by the α transfer reaction [25].

The calculated ground-band (Kπ = 0+
1 ) spectrum shows

the good agreement with the experiment, though the excitation
energies of 6+

1 and 8+
1 states are slightly underestimated by

about 1 MeV. In the present calculation, higher spin state than
8+ is not obtained. The dominant component of the ground
band is state (I) and it is not strongly mixed with the states on
other energy surfaces. The in-band E2 transition probabilities

TABLE IV. The calculated α reduced widths of the ground state,
Kπ = 0+

2 , 0−
1 , and 1− band member states. Ex shows the excitation

energy in MeV. The α reduced width is given in the unit of the Wigner
limit θ2

α = γ 2
α /γ 2

W . The calculated and observed [25] ratios of the α

reduced width to that of the ground state are also shown.

Present work Exp.

J π Band Ex θ 2
α (%) Ratio J π Ex Ratio

0+
1 Kπ = 0+

1 0 1.7×10−4 1.0 0+
1 0 1.0

0+
2 Kπ = 0+

2 7.2 7.4×10−3 43.5 0+ 6.24 19.2

0+ 6.90 10.8

2+
3 Kπ = 0+

2 8.0 5.3×10−3 31.2 2+ 6.82 4.6

2+ 7.63 14.6

2+ 8.59 76.9

4+
3 Kπ = 0+

2 9.6 3.1×10−3 18.2

6+
2 Kπ = 0+

2 11.9 1.8×10−3 10.6

8+
2 Kπ = 0+

2 15.1 7.8×10−4 5.2

1−
2 Kπ = 0−

1 9.4 1.1×10−2 69.3 1− 7.06 9.2

1−
1 Kπ = 1−

1 7.9 1.4×10−3 8.2 1− 7.49 11.5

3−
3 Kπ = 0−

1 10.3 8.6×10−3 50.6 3− 7.73 18.5

3−
2 Kπ = 1−

1 9.0 1.0×10−3 5.9

5−
3 Kπ = 0−

1 12.4 3.4×10−3 20.7

5−
2 Kπ = 1−

1 11.5 2.9×10−4 1.7

7−
1 Kπ = 0−

1 14.6 9.5×10−4 5.6

7−
2 Kπ = 1−

1 15.4 1.2×10−4 0.7

9−
1 Kπ = 0−

1 18.5 6.6×10−3 3.9

(Table III) are also in good agreement with the experiment
without using any effective charge.

The intrinsic wave functions on the energy surface (I) also
generates the Kπ = 2+ band together with the ground band.
Experimentally, this band is not well established. In Ref. [30],
authors assigned the 3+ state at 5.6 MeV and the 4+ state
at 6.3 MeV as the member states of this band based on the
ETCM calculation. There are two experimental candidates for
the 2+ state (4.46 and 5.36 MeV) and the 5+ state (7.42 and
9.61 MeV). In Ref. [30], the 2+ state at the 4.46 MeV and
the 5+ state at 7.42 MeV are suggested as the band member
states. From the present results, we cannot conclude which
states are the member states of this band. For example, the
2+ state at 4.46 MeV shows a better fit with our result in the
excitation energy, but in this choice, the 2+, 3+, and 4+ states
deviate from the rotational spectrum, whereas our result shows
the rotational character. Experimental information such as E2
transition probability will fix the assignment of this band.

The obtained lowest negative-parity band is the Kπ =
2− band which is built on the 2−

1 state at 6.4 MeV. We
have assigned the observed 2− state at 5.1 MeV and 3− state
at 5.9 MeV as the member states of this band. The higher
spin states of this band have not been observed, though there
are some candidates whose spin-parity have not been surely
fixed yet. This band purely consists of the wave functions on
the energy surface (III) that have the 1h̄ ω proton excitation.
Experimentally, there is no information about the single-
particle configuration of this band. However, it is rather natural
that the lowest negative-parity band has a proton hole in the
0p orbital, because it is known that the lowest negative-parity
band of 20Ne,Kπ = 2−, also has a hole in the 0p-orbital.

Other three rotational bands Kπ = 1−, 0+
2 , and 0−

1 have the
α-cluster structure. The Kπ = 1− band mainly consists of the
wave functions on the energy surface (IV) in which one of
two neutron is excited to the pf orbital. The natural parity
states of this band have small mixing with the wave function
on the energy surface (III). The Kπ = 0+

2 band almost purely
consists of the wave functions on the surface (II) in which two
valence neutrons are excited into the pf orbital. The Kπ =
0−

1 band consists of the wave functions on the surface (V) and
has the most prominent α clustering among obtained bands.
The α clustering brings about the strong in-band E2 transition
probabilities in the Kπ = 1−, 0+

2 , and 0−
1 bands.

D. Molecular orbital bands

In this subsection, we focus on three rotational bands,
Kπ = 1−, 0+

2 , and 0−
1 , that have the α+16O cluster core and

one or two excited valence neutrons. To understand structure of
them, we investigate the neutron single-particle orbitals of state
(V), which is the dominant component of the Kπ = 0−

1 band in
detail. Figure 6 shows all of the neutron single-particle orbitals
of state (V). Two neutrons occupy each orbital. Figure 6(a)
shows the most deeply bound neutron orbital that, of course,
shows the 0s orbital nature. However, we see that the centroid
of the density distribution is not at the center of the system but
at the center of the 16O cluster. This means that orbital No. 1
is nothing but the 0s orbital inside the 16O cluster. In the same
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(c) neutron orbital No. 3

(f) neutron orbital No. 6

FIG. 6. (Color online) The density distributions of the core and the neutron single-particle orbitals Nos. 1 to 6 of state (V). Contour
lines show the density distribution of the core and are common to all figures. Color plots show the density distribution of the neutron orbital
Nos. 1 (a) to 6 (f).

way, neutron orbital Nos. 2, 3, and 5 [Figs. 6(b), 6(c), and 6(e)]
are understood as the 0p orbitals of the 16O cluster. Orbital
No. 4 [Fig. 6(d)] is at the center of the α cluster, and
hence it is the 0s orbital inside the α cluster. Thus, the
neutron orbitals Nos. 1 to 5 approximately correspond to
the single-particle orbitals inside the α or 16O clusters. This
characteristic structure of the neutron orbital Nos. 1 to 5
explains why it was difficult to understand them from their
parity [Table II(e)]. Here, we note that there is small mixing
between the single-particle orbitals inside of the α and 16O
clusters [typically between Figs. 6(d) and 6(e)]. It indicates
the weak interaction between clusters and suggests that the
α+16O subsystem could be unbound if they did not have the
valence neutrons, because of a too-weak interaction between
them.

In contrast to other neutrons, two valence neutrons go
around the entire system and interact with both clusters to bind
the total system [Fig. 6(f)]. It should be noted that the 1−

2 state
(the band head of Kπ = 0−

1 ) is bound much deeper than the
α+16O + 2n threshold energy and even deeper than the α+18O
threshold energy, despite the weak interaction between the α

and 16O clusters. This valence neutron orbital is an analog
of the σ molecular orbital of Be isotopes in the following
sense. (1) The neutron in this orbital binds two clusters.
(2) This orbital is, for the most part, composed of the orbitals
around the clusters (Fig. 7). In the case of Be isotopes, the
σ orbital is composed of the 0p orbitals around two α clusters.
In the present case, it is composed of the 0p orbital around
the α cluster and the 1s0d orbital around the 16O cluster. This
type of molecular orbital is also suggested in Ref. [9] in the
case of 21Ne. (3) The neutron in this orbital induces the α

clustering of the core. In the case of Be isotopes, it enlarges
the distance between two α. In the present case, as already
discussed, it induces the formation of the α+16O cluster core.
When one neutron occupies this orbital [state (IV)] the core has

the α+16O cluster structure. When two neutrons occupy this
orbital [states (II) and (V)], the α+16O clustering is enhanced.
Because of these similarities, we call this neutron orbital the
σ orbital in the following.

The most prominent difference between the σ orbital of
Be isotopes and that of 22Ne is the parity asymmetry of the
present one, that is induced by the parity asymmetry of the
core. The parity asymmetry leads to the presence of the parity
doublet bands. The state (II) that is the dominant component
of the Kπ = 0+

2 band has a quite similar structure to that
of state (V). It also has weakly interacting α+16O cluster
core surrounded by two valence neutrons in the σ orbital.
Therefore, the Kπ = 0+

2 and 0−
1 bands can be understood as

the parity doublet bands. Surprisingly, the energy gap between

+ + + --

1s0d-orbital
around 16O

0p-orbital

+ - +-

0p-orbital0p-orbital

Be

22Ne

FIG. 7. The schematic figure showing the σ molecular orbitals of
the Be isotopes and 22Ne. Black circles show the core clusters and
white circles show the σ molecular orbital.
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the band head states of the Kπ = 0+
2 and 0−

1 bands is quite
small (about 2 MeV). It is much smaller than that between
the Kπ = 0±

1 bands of 20Ne (5.8 MeV). The small energy gap
is understood as follows. First, the parity doublet bands of
22Ne lie in higher excitation energy than those of 20Ne. The
higher excitation energy causes more prominent clustering.
Second, more importantly, two valence neutrons prohibit the
α and 16O clusters being close to each other due to the Pauli
principle that acts between neutrons in the σ orbital and the
clusters. They also prohibit the dissolution of the α+16O core.
Indeed, the energy surfaces (II) and (V) in Fig. 3 are steeper
than surface (I) for smaller deformation. Even in the small
deformed region of surfaces (II) and (V), the core still has the
α+16O cluster structure. It is in contrast to the ground band
of 20Ne in which the α+16O cluster structure dissolves when
the intercluster distance becomes small [12]. In other words,
two valence neutrons in the σ orbital provide the potential
barrier against the inversion motion, whose height is the origin
of the small energy gap. This effect does not exist in the case
of 20Ne.

Experimentally, there is information neither about the
assignment of the Kπ = 1−, 0+

2 , and 0−
1 bands, nor about

the presence of the molecular orbital bands. However, it was
reported by W. Scholz et al. [24] that several states with the
significant α clustering existed between 6.24 and 8.59 MeV. In
Table IV, the α-reduced widths of Kπ = 1−, 0+

2 , and 0−
1 bands

and their ratios to the ground state are shown together with the
observed ratios. Here, the α reduced width γ 2

α is defined as

γ 2
α = h̄

2µa
|aYL(a)|2, (24)

The reduced width amplitude YL(r) is evaluated by taking the
overlap between the wave function of each state and the set of
the α+18O(0+

1 ) Brink-type wave functions [33] as explained
in Refs. [8,12]. The channel radius is taken as a = 5 fm. It
is notable that the calculated molecular orbital bands and the
observed states show similar nature. They appear a few MeV

TABLE V. The calculated α reduced widths of the Kπ = 0+
3 and

0−
2 bands. Ex denotes the excitation energy in MeV. The α reduced

width is given in the unit of the Wigner limit θ2
α = γ 2

α /γ 2
W . The results

of the ETCM calculation [31] and the experimental data [26,28] are
also shown. Only the upper and lower bounds of the fragmented stetes
are shown for the experimental 1− and 3− states [28].

Hybrid GCM ETCM [31] Exp. [26,28]

J π Ex θ 2
α (%) J π Ex θ 2

α (%) J π Ex θ 2
α (%)

1−
3 14.8 8.7 1− 12.58 13 1− 11.88–12.82 2–12

1− 12.84 8
3−

4 15.2 9.1 3− 12.92 13 3− 12.70–13.57 1–13
3− 13.69 11

5−
4 16.8 9.0 5− 13.68 23

5− 14.69 100
7−

3 18.9 10.3 7− 18.79 52 7− 19.28 8
7− 19.56 81 7− 19.56 5

9−
2 22.5 11.7 9− 20.85 51

9− 21.84 57

below the α+18O threshold energy, and they have 10 times
larger α reduced widths than the ground state. Therefore,
we consider that those observed states are the promising
candidates of the molecular orbital bands discussed here.

E. α + 18O molecular bands

Recently, the other type of the α clustering, α+18O
molecular band, is studied experimentally and theoretically by
some authors [26–31]. Experimentally, the Kπ = 0± bands
start from a few MeV above the α+18O threshold energy.
The member states are fragmented into several states. These
observed states are shown in Fig. 8 by connected squares
together with the ground band. Theoretically, these bands are
investigated in Refs. [29–31]. Therefore, the relation between
these α+18O molecular bands and the molecular orbital bands
discussed above is questioned. Especially, one may think that
they could be identical.

By the DAMD-GCM calculation, we did not obtain α+18O
molecular bands in the observed energy region. It is because
the DAMD wave functions employed as the GCM basis do not
have the α+18O cluster structure. To complete our calculation,
we have performed the hybrid-GCM calculation by including
the α+18O cluster model wave functions into the GCM basis.
Here we included only the elastic channel α+18Og.s., because
it was shown in Refs. [29–31] that this channel dominates the
α+18O molecular bands. The obtained bands are shown in
Fig. 8 with connected circles. The bands that do not have the
α-cluster structure are not shown for the presentation except
for the ground band. The α+18Og.s. cluster wave function
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FIG. 8. (Color online) The level scheme of the ground band and
the rotational bands that have the α+16O cluster core. Open (filled)
circles show the positive- (negative-) parity states obtained by the
hybrid GCM. Open (filled) squares connected with lines show the
experimental spectrum of the ground band and the α+18O molecular
bands [26,28]. Disconnected squares show the observed states by the
α-transfer reaction [25].
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is mixed mainly with the DAMD wave functions on the
energy surfaces (I), (II), and (V). The hybrid GCM gives
two additional rotational bands Kπ = 0+

3 and 0−
2 above the

α+18O threshold energy, together with other rotational bands
that are also obtained by the DAMD-GCM. The calculated
excitation energy and α reduced widths of the Kπ = 0+

3 and
0−

2 bands (Table V) are comparable with the experimental data
and with the ETCM calculation [31]. Therefore, the calculated
Kπ = 0+

3 and 0−
2 bands correspond to the observed α+18O

molecular bands. We have not obtained the fragmentation
of the member states of these bands. This may be due to
the lack of other channel such as α+18O(2+

1 ) in the hybrid
GCM. The properties of other bands, including the molecular
orbital bands obtained by the hybrid GCM, are almost the
same as those obtained by the DAMD-GCM. Therefore, the
observed α+18O molecular bands and the molecular orbital
bands predicted in this study are not identical. Indeed, their
excitation energies are different and their α reduced widths
are different in the order of magnitude.

The hybrid-GCM result suggests that there are two kinds of
the α-cluster structure in 22Ne. The first one is the molecular
orbital bands that have the α+16O cluster core and two valence
neutrons go around the entire system to bind the system.
They start from the states below the α+18O threshold energy.
The second one is the α+18O molecular bands in which two
neutrons go around the 16O cluster. They start from the states
above the α+18O threshold energy.

IV. SUMMARY

In this work, the low-lying level scheme of 22Ne has been
investigated by the DAMD-GCM and the hybrid GCM. By
applying the N constraint, the states with different single-
particle configurations and different structures are obtained.
The properties of the ground band is successfully described and

the known experimental data are reproduced. The low-lying
Kπ = 2+ band with (sd)6 configuration and Kπ = 2− band
with π (0p)−1(sd)3 configuration are also suggested.

It is found that depending on the configurations of two
valence neutrons, the α+16O cluster structure is formed and
dissolved in the core nucleus 20Ne. When one or two neutrons
occupy the σ orbital, the α+16O cluster core develops. We
predict the presence of the molecular orbital bands Kπ =
1−, 0+

2 , and 0−
1 , in which the valence neutrons in the σ orbital

bind the weakly interacting α and 16O clusters. These bands
start form the states below the α+18O threshold energy and
they can be assigned to the observed α cluster states below
the α+18O threshold energy reported in Refs. [24,25]. The
σ orbital of 22Ne is an analog of that of Be isotopes. The
most prominent charactor of the σ orbital of 22Ne is its parity
asymmetry. It leads to the presence of the parity doublet bands
Kπ = 0+

2 and 0−
1 in which two valence neutrons occupy the

σ orbital. By the hybrid GCM, the α+18O molecular bands
are also obtained. They correspond to the observed α+18O
molecular bands reported in Refs. [26,28].

Thus we suggest two different kinds of α cluster states in
22Ne, the molecular orbital bands below the α+18O threshold
energy and the α+18O molecular bands above the threshold
energy.
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