
PHYSICAL REVIEW C 75, 034309 (2007)

Negative parity states and some electromagnetic transition properties of even-odd erbium isotopes
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The negative parity states and some electromagnetic transition properties of even-odd erbium isotopes
(159,161,163,165Er) were studied within the framework of the interacting boson-fermion model. The single fermion
is assumed to be in one of the lh9/2, 3p3/2, 2f5/2, and 3p1/2 single-particle orbits. It was found that the calculated
negative parity state energy spectra of the even-odd erbium isotopes agree quite well with the experimental data.
The B(E2) values were also calculated and compared with the experimental data.
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I. INTRODUCTION

The interacting boson approximation represents a signifi-
cant step forward in our understanding of nuclear structure. It
offers a simple Hamiltonian, capable of describing collective
nuclear properties across a wide range of nuclei, and is founded
on rather general algebraic group theoretical techniques, which
have also found recent application to problems in atomic,
molecular, and low-energy physics [1,2]. The application
of this model to deformed nuclei is currently a subject of
considerable interest and controversy.

The interacting boson model (IBM) [3] and its extension
to the odd-A nuclei, the interacting boson-fermion model
(IBFM) [4], have proved to be able to give a successful
description of widely varying classes of nuclei situated away
from closed-shell configurations. Here, we apply the IBFM
model to account for even-odd erbium isotopes.

Detailed work has been done on the structure of erbium
nuclei in recent years. Gill et al. [5] studied the (n, γ ) reaction
for 168Er and obtained a number of new levels for the first
time. Alfter et al. [6] determined M1/E2 multipole mixing
ratios of erbium isotopes by experiment. Minkov et al. [7]
derived analytic expressions for the energies and B(E2)
transition probabilities in the states of the ground and γ bands
of heavy deformed nuclei within a collective vector-boson
model with SU(3) dynamical symmetry. Barrett et al. [8]
calculated the multipole mixing ratios of 168Er within the
framework of the interacting boson approximation. Guo et al.
[9] calculated the energies of excited states and the values of
B(E2) of 159−163Er by using the IBFM. Yazar et al. [10] ex-
plored the energy levels and the electric quadrupole transition
probabilities B(E2; Ii → If ) and γ -ray E2/M1 mixing ratios
for selected transitions of 162−164−166−168−170Er.

In recent years, many negative parity states of the even-odd
nuclei, such as even-odd erbium isotopes, have been found ex-
perimentally. It is generally believed that such negative parity
low-spin states can be explained in particle-core coupled-type
models. 159−165Er has 68 protons and 91–97 neutrons; it
is thus appropriate to describe 159−165Er in the interacting
boson fermion approximation (IBFA) by the coupling of a
single fermion to the 158−164Er even-even core. Over the
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major shell N = 82, there are four available negative parity
single-particle levels, the lh9/2, 3p3/2, 2f5/2, and 3p1/2. For
the boson core, the IBM-1 basis states are used. To describe the
negative parity states, however, it is necessary to consider
the inclusion of all four negative parity single-particle levels.
The inclusion of multilevel possibilities into the IBFM has
been analyzed by Scholten [11], who developed a formalism
based on the BCS (Bardeen, Cooper, and Schrieffer) equations.
The single-particle energies were calculated by using the
relations given by Ref. [12], and related formulas [Eqs. (10),
(11), and (12)] are given in Sec. III.

The aim of the present work is to do a systematic study of the
Er isotopes within the IBFA-1 model to give a comprehensive
view of these isotopes in a rather simple way. As the model
we are using has been extensively described recently [4] we
shall present here only the results of the calculation and refer
the reader to that paper for details of the model. We restrict
the discussion to the negative parity states of the 165Er isotope
because the negative parity states of 159,161,163Er isotopes were
presented elsewhere [13]. The results of the IBFM multilevel
calculations for 159,161,163,165Er are presented for energy levels
for which transitions probabilities were compared with the
corresponding experimental data in Sec. III.

II. ELECTROMAGNETIC TRANSITION PROBABILITIES
OF AN EVEN-EVEN CORE

The IBM [14] provides a unified description of collective
nuclear states in terms of a system of interacting bosons. The
159−165Er isotopes have 68 protons 91–97 neutrons, which fill
the orbits above major shell closure at N = 82, characterized
by 9–15 particle-like neutron states. It is thus appropriate
to describe 159−165Er in the IBFM model by coupling of
a single fermion (neutron) to the 158−164Er even-even core.
Within the IBM, these structure or shape changes correspond
to the system moving among the vibrational SU(5), γ -unstable
O(6), and rotational SU(3) limits. The 158−164Er nuclei have
been considered as a transitional nucleus from SU(3) to O
(6) [15]. The IBM-1 Hamiltonian we used to describe the
158−164Er nuclei has the standard form as given in Ref. [16].
The calculations were done by using the computer codes PHINT

for energies and BEFM for B(E2) values, both written by
Scholten [11]. The IBM-1 Hamiltonian is nonlinear in the
parameters. To obtain the values of the parameters that give
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the best fit we have to calculate for each energy level the
difference between its experimental and calculated values.
Then we have to sum over the squares of all these differences
to find a local minimum to this summation. The least-square-fit
procedure was used to find the best fit to the three lowest bands
(ground-state, γ -state, and β-state bands) of the erbium isotope
under consideration. We find that the calculated energy states
that were obtained in the present work are largely consistent
with experimental data although the γ states and β states may
be considered to show irregularities.

The IBM of Arima and Iachello [1,2] has become widely
accepted as a tractable theoretical scheme of correlating,
describing, and predicting low-energy collective properties of
complex nuclei. In this model it is assumed that low-lying
collective states of even-even nuclei could be described as
states of a given (fixed) number N of bosons. Each boson
could occupy two levels, one with angular momentum L = 0
(s boson) and another with L = 2 (d boson). In the original
form of the model known as IBM-1, proton- and neutron-boson
degrees of freedom are not distinguished. The model has an
inherent group structure associated with it. In terms of s- and
d-boson operators the most general IBM-I Hamiltonian can be
expressed as [14]

H = εs(s
†s) + εd (d† · d) +

∑
L=0,2,4

cL[(d†d†)(L) · (dd)(L)]

+ (1/2)v0
[
(d†d†)(0)

0 s2 + (s†)2(dd)(0)
0

]

+
√

1/2v2[(d†d†)(2)ds](0)
0 + [s†d†(dd)(2)](0)

0

+ (1/2)u0(s†)2s2 + 1/
√

5u2s
†s(d† · d). (1)

This Hamiltonian contains two one-body terms, (εs and
εd ) and seven two-body interactions [cL(L = 0, 2, 4), vL(L =
0, 2), uL(L = 0, 2)], where εs and εd are the single-boson en-
ergies, and cL, vL and, uL describe the two-boson interactions.
However, it turn out that for fixed boson number N , only
one of the one-body terms and five of the two-body terms
are independent, as can be seen by noting N = ns + nd . The
Hamiltonian can be rewritten in terms of the Casimir operators
of U(6) groups. In that case, one says that the Hamiltonian H

has a dynamical symmetry. These symmetries are called SU(5)
vibrational, SU(3) rotational, and O(6) γ -unstable.

The values of the interaction parameters for the 164Er
isotope in the IBM-1 Hamiltonian (in terms of code PHINT

notation) that gave the best fit to the experimental data are
EPS = 0.0208, ELL = 0.0155, QQ = −0.0267, OCT =
0.0057, CHQ = −1.130 and HEX = 0.0143 MeV.) The
values of the interaction parameters for the 158,160,162Er
isotopes were given in Ref. [13]. The calculated energy levels
of 158,160,162,164Er isotopes are shown in Fig. 1 and compared
with the experimental levels.

A successful nuclear model must yield a good descrip-
tion not only of the energy spectrum of the nucleus but
also of its electromagnetic properties. The most important
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FIG. 1. The three lowest rotational bands in spectra of (a) 158Er [13], (b) 160Er [13], (c) 162Er [13] and (d) 164Er. In each band the experimental
data are plotted on the left and calculated values on the right.
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electromagnetic features are the E2 transitions. The B(E2)
values were calculated by using the E2 operator. The E2
transition operator must be a Hermitian tensor of rank two
and therefore the number of bosons must be conserved. Since
with these constraints there are two operators possible in the
lowest order, the general E2 operator can be written as [14]

Tm(E2) = eBQB,
(2)

QB = (s+xd̃ + d+xs̃)2 + χ (d+xd̃)(2),

where χ is a parameter shown by microscopic theory to lie
between and

√
7/2 and −√

7/2 determines the structure of
the quadrupole operator and is determined empirically, QB

is the boson quadrupole operator, and eB is the “effective
boson charge”. For IBM-1 calculations effective charges eB

were taken as eB = 0.13 eb for 164Er and eB = 0.11 eb for
158,160,162Er isotopes [13]. The B(E2) strength for the E2
transitions is given by

B(E2; Li → Lf ) = 1/(2Li + 1)1/2|〈Lf ‖Tm(E2)‖Li〉|2. (3)

Since the erbium nucleus has a rather rotational character,
taking into account the dynamic symmetry location of the
even-even erbium nuclei at the IBM phase triangle where
their parameter sets are at the O(6)-SU(3) transition region
and closer to SU(3) rotational character and possessing good
rotational states, we used the multiple expansion form of the
Hamiltonian for our approximation. The predicted B(E2)
values agree very well with the theoretical ones, which
suggests that the wave functions obtained in this work are
reliable. Some calculated B(E2) values from the ground-state
band are given in Table I.

III. THE INTERACTING BOSON-FERMION MODEL AND
ENERGY LEVELS

In the IBFM, odd-A nuclei are described by the coupling
of the odd fermionic quasiparticle to a collective boson core.
The total Hamiltonian can be written as the sum of three parts:

H = HB + HF + VBF, (4)

where HB is the usual IBM-1 Hamiltonian [14] for the even-
even core, HF is the fermion Hamiltonian containing only
one-body terms, and VBF is the boson-fermion interaction that
describes the interaction between the odd quasinucleon and
the even-even core nucleus. VBF is dominated by three terms:
a monopole interaction characterized by the parameter A0,

which plays a minor role in actual calculations, and the more
important terms arising from the quadrupole interaction [4]
characterized by �0 and the exchange of the quasiparticle with
one of the two fermions forming a boson [15] characterized by
�0. HF is the fermion Hamiltonian containing only one-body
terms and

HF =
∑
jm

εja
+
jmajm, (5)

where the εj are the quasiparticle energies and a+
jmajm is the

creation (annihilation) operator for the quasiparticle in the
eigenstate |jm〉.

The boson-fermion interaction VBF that describes the
interaction between the odd quasinucleon and the even-even
core nucleus contains, in general, many different terms and is
rather complicated, but it has been shown to be dominated by
the following three terms:

VBF =
∑

i

Aj [(d+xd̃)(0)x(a+
j xãj )(0)]

+
∑
jj

�jj [Q(2)x(a+
j xãj )(2)](0)

0

+
∑
jjj

�
j

jj : [(d+xãj )(j )x(a+
j xd̃j )(j )](0)

0 (6)

The first term in VBF is a monopole interaction, which plays a
minor role in actual calculations, the dominant terms are the
second and third, which arise from the quadrupole interaction.
The third term represents the exchange of the quasiparticle
with one of the two fermions forming a boson; Talmi [15] has
shown that this exchange force is a consequence of the Pauli
principle for the quadrupole interaction between protons and
neutrons. The remaining parameters in Eq. (6) can be related to
the BCS occupation probabilities uj , νj of the single-particle
orbits by

�jj =
√

5�0(ujuj + νjνj )Qjj , (7)

�
j

jj = −
√

5�0[(ujνj + νjuj )Qjjβjj

+ (ujνj + νjuj )Qjjβjj ]/
√

2j + 1, (8)

TABLE I. B(E2; I → I − 2) values for ground-state bands of 158−164Er isotopes.

N B(E2) (W.u.) B(E2) ratios

41 → 21 21 → 01 (41 → 21)/(21 → 01)

Theory Exp. [17] Theory Exp. [17] Theory Exp. [17]

90 92 [13] 177(5) 63 [13] 119(5) 1.46 [13] 1.48(5)
92 113 [13] 262(15) 91 [13] 166(7) 1.24 [13] 1.57(15)(7)
94 162 [13] 113 [13] 191(1) 1.43 [13]
96 261 258(26) 209 218(7) 1.24 1.18(7)(26)
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TABLE II. BCS parameters for the multilevel calculations of erbium isotopes
(εj in MeV).

s.p. orbits 159Er [13] 161Er [13] 163Er [13] 165Er

εj ν2
j εj ν2

j εj ν2
j εj ν2

j

1h9/2 2.154 0.883 2.910 0.885 2.154 0.883 1.702 0.883
3p3/2 2.70 0.670 1.510 0.234 2.70 0.670 2.190 0.670
2f5/2 1.983 0.195 1.533 0.324 1.983 0.195 1.583 0.195
3p1/2 2.06 0.068 1.315 0.420 2.06 0.068 1.638 0.068

where Qjj are single-particle matrix elements of the
quadrupole operator and

βjj = (ujνj + νjuj )Qjj/(εj + εj − h̄w) (9)

are the structure coefficients of the d boson deduced from
microscopic considerations [18] with h̄w being the energy of
a |D〉 pair relative to an |S〉 pair [19].

The BCS trial wave function [12]

|φ〉 =
∏
j

(uj + νj c
†
j c̃

†
j )|0〉 (10)

clearly mixes components with various numbers of particles.
Consequently, one usually requires that expectation values of
the particle number operator fulfills the relation

〈φ|N̂ |φ〉 = min, (11)

where n = Z or N (proton or neutron number, respectively).
This equation can be treated as an auxiliary constraint when
minimizing the total energy:

〈φ|H |φ〉 = min . (12)

Minimization in Eq. (12) with subsidiary condition Eq. (11)
leads to the well-known expressions for the coefficients and for
the BCS wave function Eq. (10); the appropriate considerations
will not be repeated here (see, e.g., Ref. [20]).

The BCS occupation probability νj and the quasiparticle
energy εj of each single-particle orbital can be obtained by
solving the gap equations:

εj = [(Ej − λ)2 + 
2]1/2, (13)

ν2
j = 1

2

[
1 − (Ej − λ)

εj

]
, (14)

where Ej is the single-particle energy calculated from the
relations in Ref. [18], λ is the Fermi level energy, and 
 is the
pairing gap energy, which was chosen to be 12A−1/2 MeV [21].
That leaves the strengths A0, �0, and �0 as free parameters to
be varied to give the best fit to the excitation energies.

The whole Hamiltonian was then diagonalized in the model
space. The boson interaction parameters were determined
from a least-square calculation on the energy spectra of
the boson-core nuclei. This left us with two boson-fermion
interaction parameters, �0 and �0, and the fermion single-
particle energies εj in the model. Those parameters were
determined by least-square calculation on the energy spectra

of the even-odd Er isotopes. It was found that the obtained
parameters vary smoothly versus the change of the mass
numbers. The calculated wave functions can be used to
calculate the B(E2) values of the electromagnetic transitions.
This serves as a further test of the model.

The Hamiltonian [Eq. (4)] was diagonalized by means of the
computer program ODDA [21] in which the IBFM parameters
are identified as A0 = BFM, �0 = BFQ, and �0 = BFE. The
parameters for the 164Er core were derived in the present work
and are given in Sec. II and for the 158,160,162Er core were given
in [13] the quasiparticle energies and occupation probabilities
used in this work are given in Table II.

The level calculation was used to fit experimental energy
levels (up to the spin 11/2− level at 820 keV) with the
boson-fermion parameters A0 = 0.0, �0 = 0.413, and �0 =
0.589 MeV for the 165Er nucleus. The 11/2− and 9/2− levels
at 822 and 689 keV, however, were calculated to be higher
than the experimental values and are given in Fig. 2, but
the present choice of parameters gives a good agreement for
electromagnetic properties. The boson-fermion parameters for
other erbium isotopes were given in Ref. [13].

IV. ELECTROMAGNETIC TRANSITION PROBABILITIES
OF AN EVEN-ODD CORE

Calculation of electromagnetic transitions is a good test of
the nuclear model wave functions. In this section, we discuss
the calculation of the E2 transition strengths and compare the
results with the available experimental data. In general, the
electromagnetic transition operators can be written as sums of
two terms, the first of which acts only on the boson part of the
wave function and second of which acts only on the fermion
part. In the IBFM, the E2 operator is

T (E2) = eBQ
(2)
B + eF

∑
jj ′′

Qjj ′ (ajxãj ′ )(2), (15)

where eB and eF are the boson and fermion effective charges,
respectively. The E2 boson and fermion effective charges and
the boson gyromagnetic factors are adjustable parameters. The
experimental B(E2) values were used to find the best fit with
PBEM [11] and to determine the boson effective charge eB .
The fermion effective charge eF is taken to be equal [22] to
eB . In calculating the E2 transition rates, we chose the boson
and fermion effective charges as eB = eF . The gyromagnetic
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FIG. 2. Comparasion of some calculated energy levels for negative parity with experimental data of (a) 159Er [13], (b) 161Er [13],
(c) 163Er [13], and (d) 165Er.

values used for the odd proton are gl = 1 n.m. and gs =
3.9095 n.m. (quenching of 0.7 included).

The negative, low-spin states of B(E2) values, given
in Table III, were determined with the boson and fermion
effective charges These effective charges are equal to that of

TABLE III. The calculated and experimental B(E2)
values for 159Er–165Er.

B(E2) values (W.u.)

Theory Exp [17,23]

159Er 7−
21

→ 3−
21

82 [13] >55
161Er 7−

21
→ 5−

21
0.52 [13] >0.59

163Er 7−
21

→ 5−
21

285 [13] 310
3−
21

→ 7−
21

21 [13] 25
13−
21

→ 9−
21

1.67 [13] >0.43
3−
21

→ 5−
21

0.13 [13] >1.8
165Er 7−

21
→ 3−

21
82 >55

7−
21

→ 5−
21

0.52 >0.59
7−
21

→ 5−
21

285 310
3−
21

→ 7−
21

21 25
13−
21

→ 9−
21

1.67 >0.43
3−
21

→ 5−
21

0.13 >1.8

the even-even erbium core (Sec. II), which has an SU (3) →
O(6) transitional structure with similarities to even-odd erbium
isotopes.

V. SUMMARY AND CONCLUSION

In this paper we have carried out an analysis for the
odd-mass erbium isotopes based on the IBFM-1. The nucleus
is described by coupling a single fermion to the even-even
core of 158−164Er. The boson core parameters have been
obtained from an IBM-1 analysis and the main results for
energy levels and quadrupole transition probabilities agree
very well with experiment. In general, good agreement was
obtained when compared with experiment. The boson-boson
interaction parameters were fixed by the calculations on the
boson core nuclei and the boson-fermion monopole interaction
was omitted (A0 = 0.0); there are only two (�0 and �0)
free varying boson-fermion interaction parameters for each
even-odd nucleus. The results indicate that the energy spectra
of all different quasibands of the even-odd Er isotopes can be
reproduced quite well. It is noticed, however, that the results
of B(E2) calculations for even-even erbium nuclei were in
better agreement with the existing experimental data. Though
the observed B(E2) values for the odd Er isotopes are very
few, the calculated and experimental B(E2) values are shown
in Table III for comparison.
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The IBFM was used to calculate electromagnetic properties
and, in general, good agreement was obtained when compared
with experiment. It is noticed that although the collective
degrees of freedom appear well described in the odd-even
159,161,163,165Er nuclei, single-particle degrees of freedom still
require improvement.

The IBFM was extended to include a multilevel calculation
for 159,161,163,165Er. The present study has shown that the
IBFM provides a successful description for the energy level
properties of the transitional 159,161,163,165Er nuclei, for which
four single-particle levels play a major role.

In general, the calculated values agree with the experi-
mental data reasonably well. The B(E2) values depend quite
sensitively on the wave functions, which suggests that the wave
functions obtained in this work are reliable. The model may
be applied to many other even-odd nuclei and their many other
nuclear properties.
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Rev. C 60, 037302 (1999).

[9] R. S. Guo and L. M. Chen, J. Phys. G 26, 1775 (2000).
[10] H. R. Yazar and I. Uluer, Pramana-J. Phys. 65 (3), 393 (2005).
[11] O. Scholten, Computer code PHINT, KVT, Groningen, Holland,

1980.

[12] De Voight and M. J. A. Dudek, Rev. Mod. Phys. 55, 949
(1983).

[13] H. R. Yazar, J. Korean, Phys. Soc. 49 (1), 60 (2006).
[14] F. Iachello and O. Scholten, Phys. Rev. Lett. 43, 679 (1979).
[15] I. Talmi, in Interacting Bose-Fermi System in Nuclei, edited by

F. Iachello (Plenum Press, New York, 1981), p. 329.
[16] O. Scholten, Ph.D. dissertation, University of Groningen, 1980.
[17] R. G. Helmer, Nucl. Data Sheets 72, 83 (1994).
[18] J. Bardeen, L. N. Cooper, and J. R. Schriefer, Phys. Rev. 108,

1175 (1957).
[19] B. S. Reehal and R. A. Sorensen, Phys. Rev. C 2, 819

(1970).
[20] A. Bohr and B. R. Mottelson, Nuclear Structure, Vols. 1 and 2

(Benjamin, New York, 1969 and 1975).
[21] O. Scholten, Internal Report KVI 252, Computer Code ODDA,

University of Groningen, 1980.
[22] O. Scholten, Prog. Part. Nucl. Phys. 14, 189 (1985).
[23] Nuclear Data Sheets, http://www.nndc.bnl.gov/ensdf/.

034309-6


