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A collective S and D nucleon pair approximation of the shell model is applied to even-even Sn, Te, Xe, Ba, and
Ce isotopes with mass number A ∼120–150 and neutron number ranging from 74 to 90. Our Hamiltonian
employs monopole pairing, quadrupole pairing plus quadrupole-quadrupole-type interactions between like
valence nucleons and quadrupole-quadrupole interactions between valence neutrons and valence protons. With
very few parameters, the low-lying states of even-even Sn, Te, Xe, Ba, and Ce isotopes are well described. The
calculated B(E2) values and g factors are consistent with recent experimental data. Our systematic calculations
also predict B(E2) values and g factors (in particular, for nuclei with valence neutrons in the 82–126 region) if
these data are not available.
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I. INTRODUCTION

One of the central problems of nuclear structure theory is to
describe the collective and low-lying excitations in terms of the
spherical shell model. Because the shell-model configuration
space for medium and heavy nuclei is usually prohibitively
huge, one needs to select collective configurations from the
whole shell-model space. Through the great success of the
interacting boson model (IBM) [1], it has been generally
recognized that the collective pairs with spin zero (S) and spin
two (D) play a dominant role in collective motions of low-lying
states for medium and heavy nuclei. The IBM stimulated many
studies of collectivity by using correlated S pairs and D pairs as
building blocks of the model space, e.g., the fermion dynamical
symmetry model (FDSM) [2], the broken pair approximation
(BPA) [3], the favored pair approximation (FPA) [4], etc.

In 1993 Chen studied the application of Wick theorem to
coupled clusters and obtained recursion relations of calculating
matrix elements of a Hamiltonian within a multipair basis [5].
Based on this technique, he proposed a nucleon-pair shell
model (NPSM) [6]. In the NPSM, nucleon pairs with various
angular momenta are used as building blocks of the truncated
shell-model space. If one restricts only a few types of collective
pairs as building blocks of the model space, the NPSM is
called nucleon-pair approximation of the shell model (NPA).
The NPA is flexible enough to include the BPA, the FPA,
and the FDSM as its special cases, because nucleon pairs
in the NPA can be arbitrarily constructed if necessary. A
simplified and unified version of the NPA was developed in
Ref. [7].

*Corresponding author. Electronic address: ymzhao@sjtu.edu.cn

In numerical calculations one usually truncates the shell
space to collective SD-pair subspace. Description of some
specific states may need other pairs. For example, one needs
G pairs in deformed regions [8]; one needs one pair with
spin equal to 10 (alignment of two particles in h11/2 orbit) to
improve the description of spin 6–10 states of the yrast band of
even-even 132Ba [9]. However, for low excitations the SD-pair
truncation is reasonably good when the deformation of nuclei
is not so large, which is the case for nuclei discussed in this
work.

In this article, we apply the SD version of the NPA to Sn,
Te, Xe, Ba, and Ce isotopes, with neutron number ranging
from 74 to 90. Although there were a number of calculations
on Sn, Te, Xe, Ba, and Ce isotopes with both valence
protons and valence neutrons (holes) in the 50–82 shell, there
have been few systematic and microscopic calculations of
low-lying states with valance neutrons in the 82–126 shell
for these isotopes, except quantum Monte Carlo shell-model
calculations on Te isotopes by Shimizu et al. in Ref. [10],
shell-model calculations on some Xe, Te isotopes by Jakob
et al. in Ref. [11], and on some Sn, Te, Xe isotopes by
Brown et al. in Ref. [12], where those authors calculated
systems with only a very few valence neutrons outside the
N = 82 shell. In this article we shall calculate cases with more
valence neutrons in the 82–126 shell by using our nucleon pair
approximation.

This article is organized as follows. In Sec. II we give a
brief introduction of our formulation, which includes our pair
configuration basis, Hamiltonian, and transition operators. In
Sec. III we discuss the pair structure coefficients and Hamilto-
nian parameters used in this article. In Sec. IV our calculated
results are presented and compared with experimental data. In
Sec. V we summarize our calculated results and conclusions
of this article.
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II. FRAMEWORK OF OUR CALCULATIONS

A collective pair of spin r and projection µ is defined by

A
r†
µ =

∑
ab

y(abr)(C†
a × C

†
b)rµ. (1)

The a, b denote all quantum numbers (except the magnetic
quantum number) necessary to specify a state [a ≡ (nlj )]. We
also use them to denote the spin j of the single-particle orbit.
The C

†
a and C

†
b are single-particle creation operators. r = 0

and 2 correspond to S pair and D pair, respectively. One easily
sees that structure coefficients y(abr) follow the symmetry

y(abr) = −(−)a+b+ry(bar).

The nucleon pairs are coupled stepwise to construct the N -pair
basis

|τJNMN 〉 ≡ A
JN †
MN

(ri, Ji)|0〉,
A

JN †
MN

(r1r2. . .rN , J1J2. . .JN )

= [. . . (Ar1† × Ar2†)J2 × . . . × ArN †]JN

MN
, (2)

where J1 = r1, JN is the total angular momentum of the
N -pair operator, and MN is the z projection of JN . Here τ

is an abbreviation for all the necessary intermediate quantum
numbers. It is noted that for a fixed total number n of S and
D pairs the number of linear independent basis states for a
given angular momentum JN is usually equal to that of the
sd boson states, with very few finite exceptions, which are
Pauli blocked. There are various ways to choose intermediate
angular momenta Ji (i = 2 · · · N − 1) to make those basis
states. For a given JN , it would be better to choose the smallest
value for each Ji to save computing time. The choice of
Ji (i = 2 · · · N − 1) must ensure the basis are linear inde-
pendent.

The time reversal of the above N -pair operator is

Ã
JN

MN
(r1r2r3 . . . rN , J1J2J3 . . . JN )

=
{
. . .

[
(Ãr1 × Ãr2 )J2 × Ãr3

]J3 × · · · × ÃrN

}JN

MN

≡ Ã
JN

MN
(ri, Ji). (3)

The Ãri is defined as

Ãri = (−)
∑
ab

y(abri)(C̃a × C̃b)ri ,

where C̃am = C̃(nlj )m = (−)j−mCa−m, and Cam is the annihi-
lation operator.

In this article the Hamiltonian is defined as follows.

H = H0 + HP + κQπ · Qν. (4)

The first part is the spherical single-particle energy term,

H0 =
∑
ασ

εασC†
ασCασ , (5)

where α denotes all quantum numbers necessary to specify
a state, α ≡ (nljm), and σ = π, ν corresponds to degree of
freedom for protons and neutrons, respectively.

The second term is residual interaction between like
valence particles and is assumed to consist of monopole and
quadrupole pairing and quadrupole-quadrupole interactions:

HP = V0 + V2 + VQ, (6)

where V0 is monopole pairing interaction

V0 = GπP†
πPπ + GνP†

νPν, (7)

where

P†
σ =

∑
aσ

ĵσ

2

(
C†

aσ
× C†

aσ

)0
0,

with ĵ = (2j + 1)
1
2 . The V2 in Eq. (6) is quadrupole pairing

force defined as follows.

V2 =
∑

σ

G2
σP (2)†

σ · P (2)
σ , (8)

where P (2)†
σ is defined as

P (2)†
σM =

∑
aσ bσ

q(aσ bσ )
(
C†

aσ
× C

†
bσ

)2
M

,

with M = 0,±1,±2; q(aσ bσ ) is the same as the q(ab) appears
in the Qσ operator

QM =
∑
ab

q(ab)
(
C†

a × C̃b

)2

M
, (9)

with q(ab) = (−)ja−1/2√
20π

ĵ ĵ ′C20
j1/2,j ′−1/2〈nl|r2|nl′〉. Here

C20
j1/2,j ′−1/2 is the Clebsch-Gordan coefficient. The matrix

elements of r2 are given in Ref. [13].

〈nl|r2|nl′〉
=

{
(n + 3/2)r0

2 l = l′,
(n + l′ + 2 ± 1)1/2(n − l′ + 1 ∓ 1)1/2r0

2 l = l′ ± 2,

where r0
2 = h̄

MN ω0
= 1.012A1/3f m2. MN is mass of a nucleon,

and ω0 is the harmonic oscillator frequency. Note that the script
σ = π or ν is omitted in the above definition because Q is just
r2Y 2

M , and it has the same form for protons and neutrons.
We do not use the actual value of r0

2 when we calculate the
excitation energies and binding energies in this article, because
quadrupole pairing and quadrupole interaction strengths are
given in unit of MeV/r0

4.
The VQ in Eq. (6) is quadrupole-quadrupole interaction

between like valence nucleon,

VQ =
∑

σ

κσQσ · Qσ . (10)

The E2 transition operator is

T (E2) = eπQπ + eνQν, (11)

where eν and eπ are effective charges of valence neutrons
and protons that include their bare charges, respectively. The
B(E2) value is given by

B(E2) = 2Jf + 1

2Ji + 1
〈T (E2)〉2, (12)

where Jf , Ji stands for the angular momentum of the final
state, initial state, respectively.
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TABLE I. Single-particle energies taken in this article. The upper table presents single-particle
energies for both valence protons (particle-like) and valence neutrons (hole-like) in the 50–82 shell.
The lower table lists single-particle energies of valence neutrons for the same isotopes with valence
neutrons (particle-like) in the 82–126 shell. Taken from Refs. [15–17].

j s1/2 d3/2 d5/2 g7/2 h11/2

επ (MeV) 2.990 2.690 0.963 0 2.76
εν(MeV) 0.332 0.000 1.655 2.434 0.242
j p1/2 p3/2 f5/2 f7/2 h9/2 i13/2

εν(MeV) 1.656 0.854 2.005 0.000 1.561 1.800

The magnetic moment operator is

µ = glπLπ + glνLν + gsπSπ + gsνSν, (13)

where π and ν represent proton and neutron degree of freedom,
respectively. gl and gs are the orbital and spin gyromagnetic
ratios. The total orbital angular momentum operator L and
total spin S can be identified with collective dipole operators
as below:

Lσ = Q1
lσ =

∑
ab

ql(ab1)(C†
a × C̃b)1, σ = (π, ν),

Sσ = Q1
sσ =

∑
ab

qs(ab1)(C†
a × C̃b)1, σ = (π, ν),

with

ql(ab1) = (−1)l+1/2+b

√
l(l + 1)

3
âb̂l̂

{
a b 1
l l 1/2

}
,

qs(ab1) = (−1)l+1/2+a

√
1

2
âb̂

{
a b 1

1/2 1/2 l

}
.

The g factor is defined by µ/J .
There are several computer codes for the NPA calculation.

The input includes single-particle energies, the parameters of
the Hamiltonian, effective charges in the E2 operator, and
effective g factors in the magnetic moment operator µ. The
output includes calculated energies for low-lying levels, E2
and M1 transition rates among these states, and so on.

III. PARAMETERS OF THE HAMILTONIAN

Let us discuss first structure coefficients of our S and D

pairs. In this article we use the BCS pair as our S pair. For
given pairing strengths Gν and Gπ we solve the BCS equation
to obtain the empty and occupied amplitude, ua and va . Our S

pair is then given by

S† =
∑

a

y(aa0)(C†
a × C†

a)0, y(aa0) = â
va

ua

. (14)

The D pair is obtained by using the commutator

D† = 1
2 [Q,S†] =

∑
ab

y(ab2)(C†
a × C

†
b)2, (15)

as suggested and studied in the references in Ref. [14]. Here
operator Q is defined in Eq. (9). From Eq. (15), it is easy to

obtain (after symmetrization)

y(ab2) = −1

2
q(ab)

[
y(aa0)

â
+ y(bb0)

b̂

]
. (16)

There are other ways to define S and D pairs [8], but it
is expected that the choice of SD-pair structure coefficients
given in Eqs. (14) and (16) is one of the best ways when
the quadrupole-quadrupole interaction between protons and
neutrons are strong. Note that we omitted the script π or
ν here because we determine S and D pairs separately for
protons and neutrons in the same way and this omission does
not cause confusion.

Our neutron single-particle energies of the 50–82 shell
are taken from experimental data of Ref. [15] and neutron
single-particle energies of the 82–126 shell, and proton single-
particle energies are obtained from an extension of available
experimental data of Refs. [16] and [17]. These values are
given in Table I. By taking these single particle energies,
we calculate low-lying states of even-even nuclei with proton
number 50 � Z � 58 and neutron number 74 � N � 90.

We next come to parametrization of our phenomenological
shell-model Hamiltonian, as given in last section. One of
improvements that we made in this work is that we propose a
method to determine parameters of the above Hamiltonian for
nuclei with both valence protons and valence neutrons outside
the core, by introducing two phenomenological requirements
that will be explained later. Here let us first exemplify our
procedure by cases with both valence neutrons and valence
protons in the 50–82 shell. The same procedure is applied
to cases with valence protons in the 50–82 shell and valence
neutrons in the 82–126 shell.

(i) We fix Gπ,Gν, κ for all these isotopes with valence
neutrons in the 50–82 shell. We take Gπ = −0.180 MeV,
Gν = −0.131 MeV, and κ = 0.06 MeV/r4

0 , the same
values as in Ref. [18]. Instead of using assumptions
G2

π = G2
ν and κπ = κν , we fix ratios G2

π/κπ and G2
ν/κν

for all nuclei.
(ii) Consider nuclei in which there are only valence neutrons.

Let us use p0n1 to denote nucleus 130
50Sn, in which

there are one valence neutron pair but no valence
proton pairs (For sake of simplicity, we use in this
article pm1nm2 to denote nuclei in which there are m1

valence proton pairs and m2 valence neutron pairs.). We
take G2

ν = −0.013 MeV/r4
0 , κν = −0.015 MeV/r4

0 , the
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same values as in Ref. [18] for 130
50Sn nucleus. G2

ν and
κν with such values well reproduce E(2+

1 ) of 130
50Sn.

Then we adjust parameters of Hamiltonian for 128
50Sn

(i.e., p0n2) nucleus. We multiply G2
ν = −0.013 and

κν = −0.015 (parameters for the p0n1 case) by a factor
αν to reproduce E(2+

1 ) of 128
50Sn (p0n2). Similarly, we

obtain parameters for p0n3 and p0n4 cases.
(iii) We take G2

π = −0.025, κπ = −0.045 for 134
52Te (p1n0).

By the same procedure as done for p0nm1 cases, we
obtain our parameters for pm1n0 system.

(iv) For nuclei with m1 valence proton pairs and m2 valence
neutron pairs, we find factors απ and αν , with the
requirements that

E(2+
1 )cal = E(2+

1 )exp (17)

and

Eπ
cal

Eν
cal

= Eπ
exp

Eν
exp

. (18)

The Eπ
cal and Eν

cal denote calculated E(2+
1 ) of pm1n0 case

and that of p0nm2 case, respectively, using the parameters of
pm1nm2. Eπ

exp and Eν
exp denote experimental data of E(2+

1 )
of pm1n0 case and that of p0nm2 case, respectively. For
example, to determine the parameters for the p4n3 case, we
multiply both G2

π = −0.025 and κπ = −0.045 by απ = 1.920
and multiply G2

ν = −0.013, κν = −0.015 by αν = 1.258.
We point out here that the two parameters απ and αν can
be uniquely determined by our phenomenological and simple
requirements given in Eqs. (17) and (18).

We similarly apply above procedures to these isotopes
with valence neutrons in the 82–126 shell. We take Gπ =
−0.150 MeV, Gν = −0.131 MeV, and κ = −0.06 MeV/r4

0 .
Note that κ is negative because both valence protons and va-
lence neutrons are particle-like. For 134

50Sn (p0n1) we use G2
ν =

−0.0135 MeV/r4
0 , κν = −0.015 MeV/r4

0 , and for 134
52Te (p1n0)

we use G2
π = −0.0177 MeV/r4

0 , κπ = −0.032 MeV/r4
0 . The

parameters απ and αν for both shells are listed in Tables II
and III.

An argument to adopt the above procedure of determining
parameters of our Hamiltonian is presented as follows. Our
parametrization is expected to not only reproduce the experi-
mental value of E(2+

1 ) but also reflect the relative contribution
to E(2+

1 ) from protons and neutrons. In principle, one cannot
discriminate the contribution from one kind of nucleons
from the other because there are proton-neutron correlations.
However, we can take into relative contribution into account
approximately via the above phenomenological procedure.
Along this line the requirement Eq. (18) is found to be
important, especially when one discusses B(E2) and B(M1).

In Ref. [18] parameters of the Hamiltonian do not satisfy
Eq. (18). If we use those parameters, neutron excited energies
will be lower than those in this article and the proton excited
energies are higher. So the neutron excitation contribute more
to the low-energy states than they should. Reference [18]
used nearly equal magnitudes of eπ and eν (χ2-fitting results
are eπ = 1.73035e and eν = −1.41201e). Our χ2-fitting

TABLE II. απ and αν for nuclei with both valence pro-
tons and neutrons in the 50–82 shell (including single-closed
shell nuclei). Gπ = −0.180 MeV, Gν = −0.131 MeV, and
κ = 0.06 MeV/r0

4 are fixed for all these nuclei. We de-
fine G2

π = −0.025απ MeV/r0
4, κπ = −0.045απ MeV/r0

4, G2
ν =

−0.013αν MeV/r0
4, κν = −0.015αν MeV/r0

4. The values of απ and
αν are determined by two requirements in Eqs. (17) and (18) for each
nucleus.

Nucl. 132Sn 130Sn 128Sn 126Sn 124Sn

αν – 1.000 1.100 1.200 1.230
απ – 1.000 1.000 1.000 1.000

Nucl. 134Te 132Te 130Te 128Te 126Te

αν 1.000 1.170 1.353 1.512 1.673
απ 1.000 1.130 1.190 1.250 1.330

Nucl. 136Xe 134Xe 132Xe 130Xe 128Xe

αν 1.000 1.320 1.540 1.764 1.980
απ 0.920 1.113 1.187 1.279 1.371

Nucl. 138Ba 136Ba 134Ba 132Ba 130Ba

αν 1.000 1.370 1.573 1.812 2.103
απ 0.850 1.071 1.131 1.224 1.352

Nucl. 140Ce 138Ce 136Ce 134Ce 132Ce

αν 1.000 1.430 1.639 1.920 2.005
απ 0.850 1.088 1.148 1.258 1.335

TABLE III. απ and αν for nuclei with valence protons in the
50–82 shell but valence neutrons in the 82–126 shell (including
single-closed shell nuclei). Gπ = −0.150 MeV, Gν = −0.131 MeV,
κ = −0.06 MeV/r0

4 are fixed for all nuclei in this region. We
define G2

π = −0.0177απ MeV/r0
4, κπ = −0.032απ MeV/r0

4, G2
ν =

−0.0135ανMeV/r0
4, κν = −0.015αν MeV/r0

4. απ and αν are deter-
mined by Eqs. (17) and (18) for each nucleus.

Nucl. 132Sn 134Sn 136Sn 138Sn 140Sn

αν – 1.000 1.050 1.105 1.140
απ – 1.000 1.000 1.000 1.000

Nucl. 134Te 136Te 138Te 140Te 142Te

αν 1.000 1.100 1.197 1.249 1.288
απ 1.000 1.300 1.520 1.540 1.540

Nucl. 136Xe 138Xe 140Xe 142Xe 144Xe

αν 1.000 1.100 1.208 1.315 1.368
απ 0.840 1.134 1.327 1.504 1.588

Nucl. 138Ba 140Ba 142Ba 144Ba 146Ba

αν 1.000 1.080 1.197 1.392 1.414
απ 0.750 0.990 1.208 1.665 1.650

Nucl. 140Ce 142Ce 144Ce 146Ce 148Ce

αν 1.000 1.040 1.103 1.216 1.425
απ 1.020 1.122 1.153 1.295 2.448
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calculations give eπ = 1.9389e, eν = −1.0795e, closer to the
relation eν = δe, eπ = (1 + δ)e in Ref. [19]. Furthermore, if
we used parameters of Ref. [18], our magnetic moment would
be much smaller. The details will be presented in next section.

IV. CALCULATED RESULTS

A. Energy spectra

The Hamiltonian (4) is believed to include all the essential
ingredients of physics, and it is expected to describe the
general features of the low-lying excitations well if the SD
truncation is good. Our calculated energy spectra of nuclei
with valence neutrons in the 50–82 shell are shown in Fig. 1;
and results for the 82–126 neutron shell are shown in Fig. 2. In
these figures, experimental values are plotted on the left and
calculated values on the right. One sees that the low-lying
energy levels on low spin states of the ground band and
quasi-γ bands are reasonably reproduced, generally speaking.
However, we also point out that there are sizable differences
between calculated energies of ground-band states and those
of experimental data when I ≥ 6. Such inconsistencies can
be improved substantially if one introduces one pair with
the largest spin, e.g., pair with spin equal to 10, which is

an alignment of two protons in h11/2 orbit (see Ref. [9]). In
this article we are interested in only very low spin states and
thus such configurations are not taken into account.

B. B(E2) values

To describe the experimental data of E2 transition rates,
we perform the χ2 fitting of B(E2, 0+

1 → 2+
1 ) to obtain our

effective charges, eπ and eν . We get eπ = 1.9389e and eν =
−1.0795e for nuclei with valence neutrons in the 50–82 shell
and eπ = 1.9389e and eν = 1.0795e for those with valence
neutrons in the 82–126 shell. eν has a minus sign in the neutron
50–82 shell because valence neutrons are holelike in this case.
Note that these eπ and eν values are consistent approximately
with relation eν = δe and eπ = (1 + δ)e in Ref. [19]. The
calculated B(E2, 0+

1 → 2+
1 ) values are listed in “cal1” of

Table IV. In Ref. [18], eπ = 1.73035e, eν = −1.41201e for
the neutron 50–82 shell. Their absolute values are nearly equal.
The reason is that Hamiltonian parameters of Ref. [18] lead to
larger contributions from valence neutrons. Correspondingly, a
larger value of eν is necessary to reproduce experimental data.

It is also interesting to perform the χ2 fitting of B(E2)
for nuclei with valence neutrons in the 50–82 shell and for
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FIG. 1. The energy spectra of nuclei with
both valence protons and neutrons in the 50–82
shell. The left-hand side of each figure is plotted
based on the experimental data, which are taken
from Ref. [17], whereas the right-hand side is
plotted based on our calculated results.
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FIG. 2. Same as described in the legend to
Fig. 1 except for nuclei with valence protons
in the 50–82 shell and valence neutrons in the
82–126 shell.

those with valence neutrons in the 82–126 shell separately.
We obtain eπ = 1.91e and eν = −1.17e for the former case
and eπ = 1.93e and eν = 1.04e for the latter. Both sets are
close to each other and to above results (eπ = 1.9389e and
eν = 1.0795e), which are obtained by χ2-fitting of B(E2) for
all nuclei in this article.

One sees that our such calculated B(E2, 0+
1 → 2+

1 ) are
larger than the experimental data near the closed shell, and
smaller far from the closed shell. To get a better fit with
the experimental data, we take effective charges which are
linear with valence pair number of the nuclei, introduced
empirically in Ref. [20]. We use eπ = (1 + δ)e. eν = −δe

in the neutron 50–82 shell, and eν = δe in the neutron
82–126 shell. In Ref. [20], Yoshinaga and Higashiyama used
δ = 0.6 + 0.05(Nπ + Nν). Nπ and Nν are pair numbers of
valence protons and valence neutrons, respectively. We used
δ = 0.577 + 0.0781(Nπ + Nν), in which coefficients 0.577,
0.0781 are obtained via the χ2-fitting procedure. By using
these effective charges, the agreement with the experimental
data is improved. Our calculated results of B(E2) values are
presented in “cal2” of Table IV.

Recent experimental data of B(E2) values for 132−136Te
attracted much interest, because they are very much hindered.
There have been a number of shell-model calculations to

describe these results [10,18]. We can reasonably describe
these B(E2) values if we fix our effective charges. The
description can be improved if our effective charges increases
with number of valence pairs very slowly, as shown in
Table IV.

In Table IV we also present our calculated results of B(E2)
for 126−140Sn and 138−142Te for which no experimental data of
B(E2) are available, and 138−144Xe for which experimental
data are incomplete. We hope that some of them will be
measured in near future.

In many previous calculations [9,20,21] of above nuclei
with valence neutrons in the 50–82 shell, relative B(E2) values
were calculated and compared with experimental data. Some
of these nuclei exhibit nearly O(6) behavior of the interacting
boson model. Our calculations are consistent with those results
in this respect, as shown in Table V.

C. g factor

We have also calculated g2+
1
. Because experimental data are

very scarce (especially for nuclei within the neutron 82–126
shell), we did not perform the χ2-fitting procedure. We take
glπ = 1µN and glν = 0 throughout this article. In “cal1” of
Table VI we use gsπ = 5.586 × 0.7µN, gsν = −3.826 ×
0.7µN , i.e., free nucleon g factors multiplied by a factor
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TABLE IV. The B(E2, 0+
1 → 2+

1 ) in unit e2b2. The left side of this table corresponds to the case with valence neutrons in the 50–82 shell,
whereas the right side corresponds to the case with valence neutrons in the 82–126 shell. Nuclei without valence neutrons are listed twice, the
first is based on parameters given in Table II and the second is based on those in Table III. We present here two sets of results, denoted by
“cal1” and “cal2,” respectively. In “cal1” effective charges eπ = 1.9389e and |eν | = 1.0795e (eν takes minus sign for valence neutrons in the
50–82 shell and positive sign for valence neutrons in the 82–126 shell) are fixed; in “cal2” eπ and eν change linearly with total pair number
of valence neutrons and valence protons. These effective charges in “cal1” are obtained by χ2 fitting of the experimental data for B(E2) in
both shells. To describe effective charges used in “cal2,” we define eπ = (1 + δ)e. eν = −δe for nuclei with valence neutrons in the 50–82
shell, and eν = δe for those with valence neutrons in the 82–126 shell. δ change with the relation δ = 0.577 + 0.0781 (Nπ + Nν). Nπ and Nν

are the pair numbers of the valence protons, valence neutrons respectively. The two coefficients 0.577 and 0.0781 in δ are obtained via the χ2

fitting. These two coefficients are very close to those taken in Ref. [20], where δ = 0.6 + 0.05 (Nπ + Nν). The experimental data are taken
from Refs. [22,39].

Nucl. 124Sn 126Sn 128Sn 130Sn 132Sn 132Sn 134Sn 136Sn 138Sn 140Sn

Cal1 0.1922 0.1653 0.1244 0.0699 – – 0.0969 0.1680 0.2130 0.2401
Cal2 0.1305 0.0934 0.0574 0.0257 – – 0.0357 0.0775 0.1203 0.1630
Exp. 0.1660(40) – – – – – – – – –

Nucl. 126Te 128Te 130Te 132Te 134Te 134Te 136Te 138Te 140Te 142Te

Cal1 0.4638 0.4155 0.3479 0.2616 0.1743 0.1694 0.2667 0.4049 0.4981 0.5501
Cal2 0.4115 0.3267 0.2444 0.1697 0.1270 0.1234 0.1598 0.2717 0.3802 0.4777
Exp. 0.475(10) 0.383(6) 0.295(7) 0.172(17) 0.096(12) 0.096(12) 0.103 – – –

Nucl. 128Xe 130Xe 132Xe 134Xe 136Xe 136Xe 138Xe 140Xe 142Xe 144Xe

Cal1 0.7029 0.6278 0.5260 0.4023 0.2763 0.2515 0.4156 0.6239 0.7803 0.9172
Cal2 0.7218 0.5802 0.4397 0.3106 0.2208 0.2010 0.3054 0.5045 0.7045 0.9265
Exp. 0.750(40) 0.65(5) 0.460(30) 0.34(6) 0.36(6) 0.36(6) – 0.324(14) – –

Nucl. 130Ba 132Ba 134Ba 136Ba 138Ba 138Ba 140Ba 142Ba 144Ba 146Ba

Cal1 0.8814 0.7774 0.6430 0.4760 0.3212 0.2579 0.4581 0.7455 1.0078 1.1959
Cal2 1.0155 0.8117 0.6098 0.4144 0.2803 0.2250 0.3829 0.6890 1.0342 1.3606
Exp. 1.163(16) 0.86(6) 0.658(7) 0.410(8) 0.230(9) 0.230(9) 0.45(19) 0.699(37) 1.05(6) 1.355(48)

Nucl. 132Ce 134Ce 136Ce 138Ce 140Ce 140Ce 142Ce 144Ce 146Ce 148Ce

Cal1 1.0989 0.9689 0.7691 0.5273 0.3427 0.1918 0.4520 0.8980 1.2884 1.6447
Cal2 1.3981 1.1249 0.8142 0.5100 0.3255 0.1822 0.4231 0.9363 1.4822 2.0827
Exp. 1.87(17) 1.04(9) 0.81(9) 0.450(30) 0.298(6) 0.298(6) 0.480(6) 0.83(9) 1.14(12) 1.96(18)

TABLE V. The relative B(E2) values of 130,132,134Ba and 128,130Xe. The experimental data are taken from Ref. [32]. “O(6)” means the
relative B(E2) transitions of the IBM prediction in the O(6) limit. eπ = 1.9389e, and eν = −1.0795e. One sees that our calculations reasonably
reproduce the O(6) behavior for these nuclei.

Nucl. O(6) 132Ba 134Ba 130Xe 130Ba 128Xe
Ji → Jf

Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal.

2+
2 → 2+

1 100 100 100 100 100 100 100 100 100 100 100
→ 0+

1 0 0.2 1.34 0.6 0.05 8 0.0646 5.7 2.64 1.2 0.05
3+

1 → 2+
2 100 100 100 100 100 100 100 100 100 100 100

→ 4+
1 40 73 28.1 40 29.4 25 30.2 30 32.5 37 35.5

→ 2+
1 0 0.2 0.601 1.0 0.0153 1.4 0.055 1.5 1.45 1 0.02

4+
2 → 2+

2 100 100 100 100 100 100 100 100 100 100 100
→ 3+

1 0 – 9.32 14.5 5.07 – 0.005 – 9.54 – 0.401
→ 4+

1 91 75 59.8 77 58.9 107 93.9 89 61.6 133 102
→ 2+

1 0 2.2 2.12 2.5 5.38 3.2 5.06 3.9 2.01 1.7 4.64
5+

1 → 3+
1 100 100 100 100 100 100 100 100 100 100 100

→ 4+
2 46 – 84.0 – 88.7 – 106 �57 86.0 88 99.3

→ 6+
1 45 – 50.7 – 55.7 – 61.1 381 56.8 204 61.7

→ 4+
1 0 – 0.526 – 1.81 – 4.36 6.7 0.142 3.7 3.60

0+
2 → 2+

2 100 100 100 100 100 100 100 100 100 100 100
→ 2+

1 0 0 45.3 4 77.2 2.6 19.0 – 14.4 14 4.07
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TABLE VI. g factor of 2+
1 state (in unit of µN ). The left side of this table is for the neutron 50–82 shell, whereas the right side is for

the neutron 82–126 shell. Nuclei without valence neutrons are calculated twice by using two sets of parameters given in Tables II and III.
We fix glπ = 1µN, glν = 0 throughout this article but take two sets of gsν and gsπ : gsπ = 5.586 × 0.7µN, gsν = −3.826 × 0.7µN in the first
set (denoted by “cal1”) and gsπ = 5.586µN, gsν = −3.826µN in the second set (denoted by “cal2”). In case that there is a big difference
between several sets of experimental data, we list both the largest and the smallest, denoted by “exp1” and “exp2,” otherwise we present the
experimental data in “exp1.” SM1 and SM2 are two sets of shell-model-calculated results. SM1 is from Ref. [11], SM2 is from Ref. [12].

Nucl. 124Sn 126Sn 128Sn 130Sn 132Sn 132Sn 134Sn 136Sn 138Sn 140Sn

Cal1 −0.111 −0.106 −0.101 −0.096 – – −0.036 −0.039 −0.040 −0.038
Cal2 −0.159 −0.151 −0.144 −0.137 – – −0.051 −0.055 −0.057 −0.054
Exp1 −0.15(10)a – – – – – – – – –
SM2 −0.125 −0.120 −0.115 −0.126 – – −0.221 – – –

Nucl. 126Te 128Te 130Te 132Te 134Te 134Te 136Te 138Te 140Te 142Te

Cal1 0.163 0.192 0.241 0.337 0.879 0.860 0.148 0.121 0.100 0.081
Cal2 0.110 0.139 0.188 0.283 0.809 0.780 0.119 0.093 0.072 0.055
Exp1 0.31(4)b 0.25(3)b 0.29(5)b 0.35(5)c – – – – – –
Exp2 0.19(3)d 0.35(4)e – – – – – – – –
SM1 – – 0.598 0.648 0.811 0.811 – – – –
SM2 – – 0.341 0.479 0.833 0.833 0.348 – – –

Nucl. 128Xe 130Xe 132Xe 134Xe 136Xe 136Xe 138Xe 140Xe 142Xe 144Xe

Cal1 0.293 0.325 0.369 0.456 0.881 0.855 0.272 0.223 0.181 0.156
Cal2 0.239 0.271 0.314 0.400 0.813 0.771 0.233 0.187 0.147 0.123
Exp1 0.31(3)f – 0.349(34)g 0.504(49)g 0.83(10)g 0.83(10)g – – – –
Exp2 0.41(7)h 0.334(11)i 0.314(12)i 0.354(7)i 0.766(45)i 0.766(45)i – – – –
SM1 – – 0.510 0.594 0.812 0.812 – – – –
SM2 – – – 0.412 0.884 0.884 0.394 – – –

Nucl. 130Ba 132Ba 134Ba 136Ba 138Ba 138Ba 140Ba 142Ba 144Ba 146Ba

Cal1 0.403 0.415 0.447 0.486 0.909 0.875 0.297 0.297 0.253 0.216
Cal2 0.352 0.365 0.397 0.438 0.857 0.803 0.262 0.258 0.215 0.180
Exp1 0.35(3)j 0.34(3)j 0.43(5)j 0.345(50)j 0.7(1)k 0.7(1)k – 0.425(50)l 0.34(5)m 0.28(7)m

SM2 – – – – 0.98 0.98 – – – –

Nucl. 132Ce 134Ce 136Ce 138Ce 140Ce 140Ce 142Ce 144Ce 146Ce 148Ce

Cal1 0.514 0.521 0.532 0.514 0.977 0.980 0.350 0.432 0.400 0.336
Cal2 0.475 0.484 0.498 0.484 0.964 0.968 0.331 0.405 0.370 0.304
Exp1 – – – – 0.95(10)n 0.95(10)n 0.21(5)n – 0.24(5)o 0.37(6)o

Experimental data:
aExperimental data from Ref. [25]
bExperimental data from Ref. [26]
cExperimental data from Ref. [27]
dExperimental data from Ref. [28]
eExperimental data from Ref. [29]
fExperimental data from Ref. [30]
gExperimental data from Ref. [31]
hExperimental data from Ref. [33]
iExperimental data from Ref. [11]
jExperimental data from Ref. [34]
kExperimental data from Ref. [35]
lExperimental data from Ref. [36]
mExperimental data from Ref. [37]
nExperimental data from Ref. [23]
oExperimental data from Ref. [38]
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of 0.7. In “cal2” of Table VI we use gsπ = 5.586µN, gsν =
−3.826µN , which are g factors of a free proton and a free
neutron, respectively.

The calculated g2+
1

are listed in Table VI. The tendency of
our calculated g2+

1
is consistent in general with the formula

g(2+
1 ) = Nπ

Nπ +Nν
suggested in Ref. [24], which predicted that

g2+
1

increase with Nπ and decrease with Nν , although there
are also a few exceptions in our calculated results that violate
such a tendency. We also list two sets of results using a shell
model for comparison. One sees from Table VI that both sets
of our calculations describe the experimental data very well,
although we do not adjust g factors in transition operators.
Therefore, we present our calculated results of g2+

1
for all nuclei

discussed in this article and hope that our predicted results
are useful to future measurements of g2+

1
for nuclei in this

region.
We note that g2+

1
values calculated by using parameters

in Ref. [18] are not in good agreement with experimental
data.

V. DISCUSSION AND SUMMARY

In this article we introduce a new procedure to find param-
eters of the phenomenological shell-model Hamiltonian that
consists of single particle energies, monopole and quadrupole
pairing interactions, and quadrupole-quadrupole interactions
between valence protons, valence neutrons, and valence
protons and valence neutrons. We apply this phenomenological
Hamiltonian and nucleon pair approximation of the shell
model to Sn, Te, Xe, Ba, and Ce isotopes with mass number
A ∼120–150 and neutron number ranging from 74 to 90. The
parameters in our Hamiltonian for cases with both valence
protons and valence neutrons outside the core are determined
by experimental data of E2+

1
and our phenomenological

requirements introduced in this article. To achieve this, one
needs only strengths of monopole pairing, neutron-proton
interaction, and parametrization of three single-closed nu-
clei, Sn134, Te130, and Te134. In previous calculations, one
may get similar outputs even if one takes different sets
of parameters with sizable differences, whereas here we
remove such ambiguities by using our phenomenological
requirements.

Our nucleon pairs are restricted to correlated S and D pairs.
We take the BCS pair as our S pair and D pair is obtained
by commutating quadrupole operator Q with the S pair. By

choosing such SD-pair subspace, we diagonalize the shell-
model Hamiltonian and study low-lying states of Sn, Te, Xe,
Ba, and Ce isotopes with neutron numbers ranging from 74
to 90. Our calculated results well reproduce the eigenenergies
of low-lying states. Our systematic calculations also describe
reasonably B(E2) values and g2+

1
for these nuclei in cases

where experimental data are available.
Recent development of the radioactive beam facilities

provides us with opportunities to explore the nuclear structure
of new regions of the nuclear chart. Many new and interesting
data of nuclear structure become available, some of which
challenge previous calculations. For example, the anomaly of
B(E2, 0+

1 → 2+
1 ) for 136Te [39] has attracted much attention.

The B(E2) value for this nucleus is exceptionally hindered (a
similar situation occurs in nucleus 16C; see Ref. [40]). In this
article we also calculated and discussed B(E2) values of Te
isotopes in the neutron-rich side, including the 136Te nucleus.
Our pair approximation can reproduce the experimental result
of Ref. [39] by taking effective charges that increase very
slowly with the number of pairs.

In previous works, systematic calculations of nuclei in
this region concentrated on neutron deficient side for Sn, Te,
Xe, Ba, and Ce isotopes. For the neutron-rich side, further
experimental measurements and theoretical calculations are
warranted. Encouraged by the success of applying the SD
pair approximations to nuclei with relatively rich data, we
also present in this article predicted results of B(E2) values
and g factors for nuclei without experimental measurements
(in particular, Sn, Te, and Xe isotopes). We expect with
the updated radioactive beam facilities measurement of these
quantities can be performed in the near future.
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