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Microscopic structure of deformed and superdeformed collective bands in rotating nuclei
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We investigate in self-consistent cranked Nilsson plus quasiparticle random-phase approximation the structure
of 190,192,194Hg in their evolution from normal to superdeformation and from low to high rotational frequencies.
The analysis of the energy levels suggests a splitting of few normally deformed bands into two or more branches.
The investigation of the dynamical moments of inertia supports the octupole character of the low-lying negative
parity superdeformed bands, in agreement with previous theoretical predictions and experimental findings. As
a more direct confirm of their octupole nature, we obtain strong E1 transitions linking those bands to the yrast
superdeformed band, in agreement with experiments. A similar result is shown to hold also for 152Dy. Like in
152Dy, the collectivity of the low-lying scissors mode gets enhanced with the onset of superdeformation.
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I. INTRODUCTION

The new generation of γ detectors is producing a grow-
ing mass of data on high-spin spectroscopy that allows a
deeper understanding of the structure of nuclei under extreme
conditions of fast rotation and superdeformation. The role
of single-particle motion in determining the superdeformed
(SD) minima, thereby generating new shell gaps, is well
established [1,2]. The same single-particle model provides the
key interpretation scheme for the quadrupole moments and the
dynamical moments of inertia and their rotational evolution in
nuclei of the A ∼ 150 region [3–7].

According to most calculations, the SD minima in both A ∼
152 and A ∼ 190 regions are soft toward octupole deformation
[8–18] because of the presence of �l = 3 intruder states in
the region of Fermi surface. It is therefore natural to expect
octupole fluctuations around SD minima. This was indeed
predicted in a cranked Nilsson plus quasiparticle random-
phase approximation (QRPA) for 152Dy [19] and 190,192,194Hg
[20]. The calculation could reproduce the empirical dynamical
moments of inertia in their rotational evolution thus supporting
the prevalent role of octupole correlations in low-lying excited
SD bands.

A more direct evidence in favor of octupole collectiv-
ity in SD nuclei was provided by several experiments on
190Hg [21–25] and 194Hg [26,27]. The experiments on 190Hg
measured strong E1 transitions connecting the excited SD2
to the yrast SD band. Those on 194Hg not only measured fast
E1 deexcitations of low-lying SD levels to the yrast SD band
but were even able to measure their absolute energies and
to observe transitions from SD to normally deformed (ND)
levels.

Very similar results were obtained more recently on 152Dy
[28], where the SD6 band was found to deexcite to the yrast
SD band via strong E1 transitions. The same experiment,
combined with a previous one that linked the yrast SD band to
ND states [29], could provide the absolute energy of the levels
of the SD6 band.

In a recent work [30], we studied the octupole properties
of SD bands in 152Dy adopting a cranked Nilsson plus QRPA
similar to the one used in Refs. [19,20]. We found similar
fluctuations, in the rotational frequency, of the dynamical
moment of inertia induced by octupole vibrations. We also
studied how high-spin and superdeformation affect the electric
multipole (Eλ) giant resonances and the magnetic dipole (M1)
mode.

The low-lying M1 mode came out to be of special relevance
to possible future experiments. Because of the combined
action of fast rotation and superdeformation, the orbital M1
strength gets so enhanced as to confer to the low-energy
M1 excitations a dominant scissorslike character [31–33].
Such a feature was made explicit by the close link shown
to exist between the M1 response and the kinematical moment
of inertia in their evolution with rotation and deformation.
That superdeformation deeply affects the scissors mode was
established long ago [34]. Recent investigations using the same
formalism as in Ref. [30] had emphasized the large impact of
fast rotation on orbital M1 excitations [35].

The data presented in Ref. [28] on the the E1 transitions
linking the SD6 to the yrast band of 152Dy were not discussed
in Ref. [30]. Although published earlier, Ref. [28] had escaped
our attention. We present here our findings on this band
jointly with the study of ND and SD rotational bands in
190,192,194Hg.

Adopting the approach used in Ref. [30], we investigate
how the collective properties of 190,192,194Hg change as these
nuclei rotate with increasing angular velocities and evolve
from a ND to a SD shape. We focus our attention first on
the octupole collectivity by showing how the negative parity
bands change with rotation and how these changes affect the
dynamical moment of inertia. For a more direct test of these
correlations, we analyze the E1 transitions linking the excited
SD bands to the yrast SD band. We also include in our study
the SD6 band in 152Dy and the E1 transitions connecting its
levels to the yrast SD band.
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We finally investigate how superdeformation plus rotation
modify the structure of other collective modes, well established
at normal deformation and low rotational frequency. We will
check, in particular, if the enhancement of the collectivity of
the low-lying scissors M1 mode with the onset of superde-
formation, predicted for 152Dy, is confirmed also for the Hg
isotopes.

II. THEORETICAL FRAMEWORK

The cranked shell model plus RPA was developed long
ago [36] and applied extensively to high-spin collective modes
[37–46].

Following the procedure adopted in Refs. [30,35] we start
with the Hamiltonian

H� = H0(�) + Vpair + VFF, (1)

where Vpair is a proton-proton and neutron-neutron monopole
pairing, VFF a sum of isoscalar and isovector separable
potentials, and H0(�) a cranked one-body term

H0(�) = H0 −
∑

τ=n,p

λτNτ − h̄�I1. (2)

H0 is a modified triaxial harmonic oscillator (HO) Nilsson
Hamiltonian plus a local Galilean invariance restoring piece
of the form given in Refs. [20,35,47], the second piece provides
a constraint in the neutron and proton numbers, and the third
is the cranking term.

The equilibrium deformation may be determined by mini-
mizing at each � the expectation value of the above one-body
Hamiltonian with respect to the HO frequencies ωi , also
dependent on �, under the volume conserving constraint

ω1ω2ω3 = ω3
0. (3)

This prescription is equivalent to a Hartree mean-field ap-
proximation applied to a system of nucleons interacting via
many-body forces [48,49].

The two-body potential is composed of several separable
pieces

V =
∑
λµ

κλF
′′2
λµ. (4)

The sum includes quadrupole-quadrupole plus monopole-
monopole plus spin-spin separable potentials, acting in
the positive parity sector, as well as dipole-dipole plus
octupole-octupole interactions, effective in the negative-parity
subspace.

All multipole and spin-multipole fields F ′′
λµ have good

isospin T and signature, denoted by r = ± or, equivalently,
α = 0, 1 [50]. The fields are expressed in terms of doubly
stretched coordinates x ′′

i = (ωi/ω0)xi [51,52]. These new vari-
ables guarantee, at least for a pure HO one-body Hamiltonian,
that the self-consistent conditions

〈Q′′
µ〉 = 0, µ = 0, 1, 2 (5)

be fulfilled for the quadrupole field at the equilibrium defor-
mation, making feasible the separation of the spurious from
the physical RPA solutions.

We express the Hamiltonian (1) in terms of quasiparticle
creation and annihilation operators obtained through a Bogoli-
ubov transformation and plug the transformed Hamiltonian
into the RPA equations of motion

[H�,Pν] = ih̄ω2
νXν, [H�,Xν] = −ih̄Pν,

[Xν, Pν ′ ] = ih̄δνν ′ , (6)

where Xν, Pν are, respectively, the collective coordinates and
their conjugate momenta.

The above RPA eigenvalue equations are solved separately
for the positive and negative signature pieces, H�( + ) and
H�( − ), respectively, under the constraints [35]

[
H�(π=+

r=+ ), Nτ

] = 0,
[
H�(π=−

r=+ ), P1
] = 0,[

H�(π=+
r=+ ), I1

] = 0,
[
H�(π=+

r=− ), �†] = ��†,
(7)

where

�† = 1√
2〈I1〉

(I2 + iI3) (8)

and

� = (�†)† = 1√
2〈I1〉

(I2 − iI3) (9)

satisfy the commutation relation

[�,�†] = 1. (10)

The first three Eqs. (7) generate three Goldstone modes of
positive signature, associated, respectively, with the noncon-
servation of the particle number induced by the Bogoliubov
transformation and the breaking of translational and spherical
symmetries of the mean field. The last equation yields a
negative signature Goldstone mode. This, however, acquires a
rotational energy ωλ = � from the cranking term responsible
for breaking axial symmetry.

Equations (7) guarantee a complete separation of spurious
or redundant modes from the intrinsic solutions. They are satis-
fied if a self-consistent Hartree-Bogoliubov (HB) mean field is
adopted. As shown in Ref. [30], however, all those constraints
are fulfilled with a good accuracy also in our minimization
procedure under the volume conserving condition (3).

The tool for investigating the electromagnetic properties is
represented by the strength function

SXλ(E) =
∑
νI ′

B(Xλ, I → I ′, ν)δ(E − h̄ων), (11)

where B(Xλ, I → I ′, ν) is the reduced strength of an electric
(X = E) or magnetic (X = M) transition of multipolarity λ

from a state of the yrast line with angular momentum I .
Because it is practically impossible to expand the cranked

intrinsic RPA states into components with good K quantum
numbers, the strength function is to be computed approxi-
mately in the limits of zero and high angular frequencies at the
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shifted energy

S(E) → S(E − µh̄�), (12)

where µ = �I = I −Iyrast, as required when moving from the
intrinsic to the laboratory frame [39,40]. In these limits, the
strength function can be computed efficiently by a method that
avoids the explicit solution of the RPA eigenvalue equations,
as long as the δ distribution is replaced by a Lorentzian weight
[50].

Once the strength has been computed, it is straightforward
to evaluate the m0(Xλ) and m1(Xλ) moments giving, respec-
tively, the energy unweighted and weighted summed strengths
by the formula

mn(Xλ) =
∫ ∞

0
EnSXλ(E)dE (13)

valid for any nth moment.

III. MEAN-FIELD SOLUTIONS

Following Ref. [30], we determined the parameters of
the Nilsson Hamiltonian by forcing such a Hamiltonian to
reproduce at each � a set of single-particle energies close to
the ones determined in a Nilsson-Strutinsky approach [53] and
used in Ref. [2].

Such a fit yields, for the l2 parameter µ, values considerably
larger than the ones normally adopted [19,20,53]. As discussed
in Ref. [30], however, these large values are only partly the
results of our forced fit. Part of the discrepancy with respect to
Refs. [19,20,53] is due to our use of unstretched, rather than
singly stretched, coordinates in the Nilsson potential and to the
coupling between all �N �= 0 shells fully accounted for here.

To avoid unwanted singularities in proximity of the critical
frequencies, we have evaluated the pairing gaps following the
phenomenological prescription [54]

�τ (�) =




�τ (0)

[
1 − 1

2

(
�

�c

)2
]

�<�c

�τ (0)
1

2

(
�c

�

)2

� > �c,

(14)

where �c is the critical rotational frequency of the first band
crossing. The pairing gaps at zero rotational frequency were
deduced from the odd-even mass differences and resulted to
be �n(0) = 0.792 MeV and �p(0) = 0.806 MeV for 190Hg,
�n(0) = 0.817 MeV and �p(0) = 0.803 MeV for 192Hg, and
�n(0) = 0.842 MeV and �p(0) = 0.800 MeV for 194Hg.

We determined the equilibrium deformations at each
angular velocity by minimizing at each � the BCS expectation
value of the cranked Nilsson Hamiltonian (2) plus the pairing
potential. Very similar equilibrium deformations were also
obtained from the self-consistent conditions (5)

〈Q′′
2µ〉� = 〈�|Q′′

2µ|�〉 = 0, µ = 0, 2 (15)

at each �. As already pointed out, these zeros correspond to
the energy minima of the HO Hamiltonian under the volume
conserving constraint [48,49].

FIG. 1. (Color online) Angular momenta versus rotational fre-
quency.

It must be pointed out that the energy minima are sensitive
to the details of the Nilsson Hamiltonian and, in particular,
to the l2 term [55], whose effect here is amplified. However,
we checked that the collective responses are little sensitive to
these changes.

For all nuclei under investigation and all rotational fre-
quencies, we obtained two minima, both axially symmetric
(γ = 0). One of them is the SD minimum. It occurs at
β = 0.45 and is insensitive to �. The other falls at low
deformation (β = 0.13 − 0.20) and is weakly dependent on
�. In 190Hg, for instance, the minimum moves from β = 0.13
for �< 0.25 MeV to β = 0.15 for 0.25 < � < 0.40 (MeV)
and, further, to β = 0.20 for � > 0.40 MeV. Each jump in
deformation corresponds to a band crossing in turn connected
with a backbending critical point.

The full picture is more vividly illustrated in Fig. 1, where
the angular-momentum expectation value, 〈Ix〉� = 〈�|Ix |�〉
is plotted against the angular frequency. The plots show
clearly for all three nuclei a close connection between β

discontinuities and band crossings as well as the onset of
first and second backbending. The substantial agreement of
the theoretical lines with experimental points emphasizes the
validity of our mean-field approach.

In all Hg isotopes, the ND minima are deeper than the SD
ones at all frequencies. Consequently, the SD band is never
yrast and, therefore, decays to the ND states. This is at variance
with 152Dy where the SD band becomes yrast starting from
� ∼ 0.6 MeV.

IV. RPA ANALYSIS OF ND BANDS

The rotational spectrum of 190Hg, as determined in Refs.
[21,22,25] and reviewed in Ref. [56], is composed of 21 bands,
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labeled Bi = B1, . . . B21. Four of them, B18, B19,

B20, B21, are superdeformed and are denoted as SD1, SD2,

SD3, SD4, following a widely common practice. The energies
of the SD bands with respect to the ND ones are not known.
Few E1 transitions, connecting the SD2 to the yrast SD band
(SD1), have been measured and the relative energies between
the two bands determined.

The rotational bands observed so far in 192Hg amount to
14 [57,58]. Three of them, B9, B10, B11, are superdeformed.
The relative energies of the SD bands among themselves and
with respect to ND bands are not known.

The experimental spectrum of 194Hg has 15 rotational bands
[59]. Among them, three (B13, B14, B15) are superdeformed.
The energies of all of them with respect to the ND bands are
also known.

As in Ref. [30], we solved the RPA Eqs. (6) under the
symmetry constraints (7) for each parity and signature (π, α).
It is important to enforce these constraints at each �. Only by
doing so were we able to separate the redundant or spurious
solutions from the physical ones at all rotational frequencies.
The same constraints fixed the strength constants of the
multipole-multipole interactions. The fact that these constants
came out to be close to the HO values [35] reflects the essential
self-consistent character of our approach. The strengths of the
spin-spin interaction, the only ones left out, were fixed in the
standard way [35,60]. Finally, we used bare charges for the Eλ

transitions and a quenching factor gs = 0.7 for the spin
gyromagnetic ratios.

The experimental Routhians Rν[�ν(I )] were extracted
from the observed energy levels Eν(I ) of each rotational band
ν through the standard formula

Rν[�ν(I )] = Eν(I ) − h̄�ν(I )I, (16)

where the rotational frequency is given by

h̄�ν(I ) = Eν(I + 2) − Eν(I )

2
. (17)

The RPA energies h̄ων were compared with the differences
Rν(�ν)−Ryrast(�ν). This was done for the ND levels of given
parity and signature shown in Figs. 2–4.

The B14 and B15 bands in 190Hg and the B13 and B14
bands in 192Hg did not fit into the signature classification
scheme. Each of these bands was therefore split into two,
one with positive (π, α = 0) and the other with negative
(π, α = 1) signatures. Thus, the negative-parity band B14
was decomposed into the (π, α = 0) B14a and the (π, α = 1)
B14b bands.

Moreover, groups of levels, though belonging to the
same band, yield moments of inertia and Routhians very
different from each other. This is the case of the bands
B14a, B14b in 190Hg, B14b in 192Hg, and B10 in 194Hg.
Thus, we suggest that each of these bands should split
into two branches, each with alike moments of inertia and
Routhians. These branches are labeled as B14a1, B14a2 and
so on.

Figures 2–4 show that all ND bands fit fairly well into
the RPA level scheme. Following the evolution of the levels
with �, one may notice, in the positive-parity and signature

FIG. 2. (Color online) RPA and experimental spectra at different
angular velocities in 190Hg.

(+, 0) plot, the rapid downfall of RPA levels in correspondence
of the experimental level crossings connected with the first
and second backbending. One may also notice the rapid
decrease with � of the negative-parity bands. The difference
between experimental Routhian becomes negative even for
the B14b2 band of 190Hg and the B7 and B14b2 bands of
192Hg. This means only that the positive-parity ND band is
no longer the yrast band, thus reflecting instability toward
octupole deformation. Our mean-field approach is clearly not
adequate to describe these bands. It should be necessary to
modify the one-body potential so as to incorporate octupole
deformations.

FIG. 3. (Color online) RPA and experimental spectra at different
angular velocities in 192Hg.
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FIG. 4. (Color online) RPA and experimental spectra at different
angular velocities in 194Hg.

V. RPA ANALYSIS OF SD BANDS

A. Energies and dynamical moment of inertia

To investigate the superdeformed bands we solved the RPA
Eqs. (6) on top of the secondary superdeformed minimum. The
eigenvalues were compared with the difference of Routhians
Rν(�)−RSD1(�), where SD1 is the lowest SD yrast band. The
low-lying RPA SD levels are plotted in Fig. 5. The agreement
with the available experimental data is good.

The calculation confirms the close link, predicted in
Ref. [20], of the low-lying negative-parity SD levels with the
octupole degrees of freedom. This link was found also in ND
bands at high �.

Another point worthy of attention is the crossing of the
lowest two negative-parity SD bands of both signatures in
190Hg and 192Hg but not in 194Hg. These crossings induce

FIG. 5. (Color online) Rotational evolution of the RPA energies
of the lowest positive (π = +) and negative (π = −) parity SD bands
in 190,192,194Hg. Full and dashed lines correspond to positive (α = 0)
and negative (α = 1) signatures, respectively. The corresponding
experimental levels are denoted by circles (α = 0) and triangles
(α = 1). The data are taken from Refs. [21,22,25] for 190Hg and
from [26,57] for 194Hg.

large fluctuations on the dynamical moment of inertia. This
was computed using the formula

	(2)
ν (�) = 	(2)

yr − d2Eν

d�2
, (18)

where 	(2)
yr is the dynamical moment of inertia of the SD yrast

band, given approximately by the Harris formula

	(2)
yr = a + b�2 + c�4. (19)

From the fit of the SD1 band we extracted the parameters
a = 82.6h̄2 MeV−1, b = 339h̄2 MeV−3, and c = 0h̄2 MeV−5

in 190Hg, a = 91.7h̄2 MeV−1, b = 264.6h̄2 MeV−3, and
c = 0h̄2 MeV−5 in 192Hg, and a = 88.5h̄2 MeV−1, b =
339h̄2 MeV−3, and c = −195h̄2 MeV−5 in 194Hg.

The fluctuating part, given by the second derivative of
the RPA energy Eν(�) = (h̄ω)ν(�), was computed for a
given band at different rotational frequencies. The theoret-
ical moment of inertia (18), computed following the above
prescriptions, was compared with the empirical one. This was
extracted from the levels of each rotational band according to

	(2)
ν (�) = h̄

dI

d�ν

= 4h̄2

Eν(I + 4) − 2Eν(I + 2) − Eν(I )
. (20)

As shown in Fig. 6, the dynamical moment of inertia
undergoes strong variations with � only in the (−, 0)SD4
band in 190Hg and the (−, 1)SD2 and (−, 0)SD3 bands in
192Hg. All these bands display a crossing of the two lowest

FIG. 6. (Color online) The dynamical moments of inertia, deter-
mined by Eq. (18) (solid lines), is compared to the corresponding
empirical values obtained from Eq. (20). The dotted lines give the
Harris fit [Eq. (19)].
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TABLE I. Strengths of the E1 transitions from the SD2 to the
yrast SD band in 190Hg.

J π
i → J π

f Eγ

(keV)
B(E1)exp (W.u.) B(E1)th (W.u.)

25− → 24+ 911 >1.4 × 10−3a 2.29 × 10−3

27− → 26+ 864 1.2(3) × 10−3a 1.58 × 10−3

3.8(8) × 10−3b

29− → 28+ 812 1.5(4) × 10−3a 0.99 × 10−3

1.5(3) × 10−3b

31− → 30+ 757 <2.4 × 10−3a 1.62 × 10−3

1.6(4) × 10−3b

aTaken from Ref. [22].
bTaken from Ref. [25].

bands, as already pointed out. This crossing yields nonzero
second derivatives of the energy in Eq. (18) and, therefore, is
responsible for the fluctuations of the moments of inertia with
�, in fairly good agreement with the experiments.

In all other bands, including all SD bands of 194Hg, both
theoretical and empirical moments of inertia vary smoothly
with �.

B. E1 transitions among low-lying SD bands

A more direct test of the collective properties of rotational
and superdeformed bands comes from the measurement of
electromagnetic transition strengths. The experimental infor-
mation on these properties is still rather scant.

Recent experiments, however, have identified few E1
transitions linking the excited SD2 band to the yrast SD band in
190Hg [25] and measured the E1 decay strengths. Also in 194Hg
few relatively strong E1 transitions connecting the SD3 to the
yrast SD band were identified [26]. Table I shows measured
and computed E1 transition strengths from the SD2 to the
yrast SD band in 190Hg. The agreement is quite satisfactory,
stressing once more the important role of octupole correlations
in this band.

For the not-yet-measured E1 transitions linking the
SD4 band to the yrast SD1 band in 190Hg we found
B(E1, I−SD4 → I+SD1) 
 3 × 10−3 W.u. at � ∼ 0.2 MeV
and the smaller values B(E1, I−SD4 → I+SD1) 
 0.5 ×
10−3 W.u. for � ∼ 0.4. Similar results hold for the unmeasured
E1 strengths in 192Hg. We got for both SD2 and SD3 bands
B(E1, I− → I+SD1) 
 2.5 × 10−3 W.u. at � ∼ 0.2 MeV
B(E1, I− → I+SD1) 
 10−4 W.u. at � ∼ 0.4 MeV. It
seems that the admixture of Kπ = 1− and Kπ = 0− octupole
amplitudes decreases as � increases, in agreement with the
conclusions drawn in Refs. [20,26].

As shown in Table II, the computed strengths of few
E1 transitions, connecting the SD3 to the yrast SD band in
194Hg, agree qualitatively with the rough estimates given in
Ref. [26], confirming the octupole nature of the band. These
E1 strengths are smaller than in 190,192Hg and, contrary to
the latter isotopes, are little affected by rotation. In fact,
we obtained B(E1, I−SD2 → I+SD1) 
 10−4 W.u. at
all �’s.

TABLE II. Strengths of the E1 transitions
from the SD3 to the yrast SD band in 194Hg. The
experimental values are reported to be of the order
of ∼10−5 W.u. for all E1 transitions [26].

J π
i → J π

f Eγ (keV) B(E1)th (W.u.)

11− → 10+ 824.2 0.92 × 10−4

13− → 12+ 832.4 1.12 × 10−4

15− → 14+ 839.1 0.83 × 10−4

17− → 16+ 844.6 0.72 × 10−4

19− → 18+ 848.8 0.91 × 10−4

The quenching of the E1 transitions in 194Hg compared
to 190,192Hg combined with the absence of level crossing and
the ensuing smooth behavior of the moment of inertia may be
explained with the fact that the SD bands in 194Hg keep their
K = 2 character and contain smaller K = 0, 1 components
[20,27].

VI. A SHORT ANALYSIS OF THE SD6 BAND IN 152DY

To complete the study of the collective properties of rota-
tional spectra in 152Dy performed in Ref. [30], we computed
all quantities that characterize the SD6 band and compared our
results with the experimental data [28].

As shown in Fig. 7, the QRPA SD6 energy follows closely,
though remaining few keV below, the measured energy in its �

path. Our QRPA values are very similar to the ones obtained in
Ref. [20]. We can therefore state that our calculation supports

FIG. 7. (Color online) Evolution with the rotational frequency �

of the energy of the SD6 band in 152Dy. The experimental data are
taken from Ref. [28].
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TABLE III. Strengths of the E1 transitions from the SD6 to
the yrast SD band in 152Dy. The experimental data are taken from
Ref. [28].

J π
i → J π

f Eγ (keV) B(E1)exp (W.u.) B(E1)th (W.u.)

33− → 32+ 1676 2.2 × 10−4 2.86 × 10−4

35− → 34+ 1696 3.8 × 10−4 1.86 × 10−4

37− → 36+ 1715 4.5 × 10−4 1.94 × 10−4

39− → 38+ 1734 3.9 × 10−4 1.74 × 10−4

41− → 40+ 1751 4.9 × 10−4 3.69 × 10−4

the interpretation of the SD6 band as an octupole vibrational
band.

This interpretation is strengthened by the analysis of the
E1 transitions linking the SD6 levels to the yrast SD band. As
shown in Table III, the computed E1 strengths are generally
smaller than the experimental ones by at most a factor of 2.
Such a substantial agreement supports strongly the prevalence
of the octupole degree of freedom in such a band.

VII. GIANT RESONANCES AND M1 MODE

The electromagnetic response in the Hg isotopes is similar
to the one in 152Dy [30]. As shown in Fig. 8, the E1 giant
resonance built on the SD minimum gets damped and splits
into too broad peak, a Kπ = 0− prominent one around 10−
11 MeV and a smaller peak around 21–22 MeV.

In Fig. 9, the strong E0 peak remains at about 16 MeV for
small deformations and slow rotations. It spreads and shifts at
about 20 MeV with the onset of superdeformation. Moreover,

FIG. 8. E1 strength distribution for different angular frequencies
and deformations. The reduced strengths are summed in bins of
1 MeV around the energy E of the final state excited from the yrast
band.

FIG. 9. E0 spectra for different angular frequencies and defor-
mations. The reduced strengths are summed in bins as in Fig. 8.

the structure of the E2 giant resonance is substantially altered
only at high rotational frequencies and superdeformation
(Fig. 10). The small high-energy isovector peak is swept away,
whereas the low- and high-energy branches of the isoscalar
resonance get damped and spread over a wider energy range.

As in 152Dy, the M1 response changes qualitatively in
going from the ND to the SD phase (Fig. 11). At normal
deformation, most of the M1 strength is concentrated within
the energy range of 2 ÷ 10 MeV, peaks around 5–6 MeV, and
is due mainly to spin excitations. Only in the low-energy tail
(2 ÷ 4) MeV are orbital and spin contributions comparable.
The shape and structure of the peak remain unchanged even at
relatively high rotational frequencies for small deformations.

With the onset of superdeformation, the strength gets
enhanced at low as well as high energy. At low energy, the

FIG. 10. E2 spectra for different angular frequencies and defor-
mations. The reduced strengths are summed in bins as in Fig. 8.
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FIG. 11. (Color online) M1 spectra for different angular frequen-
cies and deformations. The reduced strengths are summed in bins as
in Fig. 8.

strength remains concentrated in the same 2 ÷ 10 interval
and still peaks around 5–6 MeV. The peak, however, is
more prominent and dominated by the orbital motion. The
orbital strength appears dominant over the whole energy range,
whereas the spin transitions are quenched and scattered all
along. It follows that the shape and peak of the total M1
strength distribution result to be determined mainly by the
orbital response.

For a better characterization of the mode, we put the
m1(M1) moment, yielding the energy weighted sum of the
M1 strengths, in relation to the kinematical moment of inertia

	(1)
ν (�) = h̄I

�ν(I )
= 2Ih̄2

Eν(I + 2) − Eν(I )
. (21)

As shown in Fig. 12, the orbital M1 moment appears closely
correlated with the moment of inertia as the system evolves.
The dramatic enhancement induced by superdeformation is
similar in both quantities. In virtue of a such a close link with
	(1), we may safely state that the low-lying peak arises from
the excitation of the scissors mode. For such a mode, indeed,
the following energy weighted sum rule holds [61,62]

m1(M1)(sc) =
∑

n

(En − E0)B(sc)
n (M1)

= 3

16π
	(1)ω2, (22)

where ω is the centroid of the scissorslike excitations.
Apart from the octupole mode, the M1 is the lowest col-

lective mode in energy. Its detection might not be prohibitive
with the new accelerators and detectors. Thanks to the recent
technological improvements, a γ cascade experiment could
disentangle the M1 from the Eλ deexcitations and provide
evidence of a scissors mode built on excited states in slowly
rotating nuclei [63].

FIG. 12. (Color online) The yrast line kinematical moment of
inertia (upper panel) versus the total (second panel), orbital (third
panel), and spin (bottom panel) m1(M1) moments.

VIII. CONCLUSIVE REMARKS

A basically selfconsistent cranked Nilsson plus QRPA
approach, previously adopted for 152Dy, has proved to be
successful also in describing the properties of the high-spin
levels in 190,192,194Hg.

It accounts fairly well for the dynamical moment of inertia
all along their deformation and rotational paths, confirming the
octupole character of the negative-parity excited SD bands near
the yrast line, in agreement with previous predictions [19,20].

The approach accounts quantitatively well for the strong
E1 transitions connecting the excited to the yrast SD bands,
measured in 190,192,194Hg [22,25,26] and in 152Dy [28]. The
deexcitation of these SD bands via strong E1 transitions is a
more direct test of their octupole character.

A careful analysis of moments of inertia and Routhians has
suggested a split of some ND bands into different branches
according to signature and homogeneous moments of inertia.
In our opinion, this point deserves a detailed experimental test.

Our analysis confirms the pronounced influence of superde-
formation on all collective modes, just as in 152Dy. In particular,
we found that superdeformation greatly enhances the strength
of the orbital M1 transitions to the point of conferring to the
low-lying M1 excitations the typical features of the scissors
mode. Being the lowest in energy, apart from the octupole
excitations, such a mode may well be proposed for future
experiments. p′′
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