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Isospin symmetry in mirror α decays
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We show that a consequence of isospin symmetry, recently discovered in mirror conjugated one-nucleon
decays, can be extended to mirror-conjugated α-particle decays, both virtual and real. For virtual α decays of
bound mirror pairs this symmetry manifests itself as a relation between the asymptotic normalization coefficients
(ANCs) of α-particle overlap integrals. This relation is given by a simple analytical formula that involves
α-particle separation energies and charges of residual nuclei. For bound-unbound mirror pairs, the ANC of a
bound nucleus is related to the α width of the mirror unbound level. For unbound mirror pairs we get a new
analytical formula that relates the widths of mirror resonances. We test the validity of these analytical formulas
against the predictions of a two-body potential and of a many-body microscopic cluster model for several mirror
states in 7Li-7Be, 11B-11C, and 19F-19Ne isotopes. We show that these analytical formulas are valid in many
cases but that some deviations can be expected for isotopes with strongly deformed and easily excited cores.
In general, the results from microscopic model are not very sensitive to model assumptions and can be used to
predict unknown astrophysically relevant cross sections using known information about mirror systems.
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I. INTRODUCTION

In the past few years, it has been acknowledged that
charge symmetry of nucleon-nucleon (NN) interaction leads to
specific relations between the amplitudes of mirror-conjugated
one-nucleon decays A

NZ → A−1
N−1Z + n and A

ZN → A−1
Z−1N + p

[1]. In a mirror pair of bound states this symmetry links asymp-
totic normalization coefficients (ANCs) for mirror-conjugated
overlap integrals 〈ANZ|A−1

N−1Z ⊗ n〉 and 〈AZN |A−1
Z−1N ⊗ p〉. In

bound-unbound mirror states, it manifests itself as a link
between the neutron ANC and the width of the mirror proton
resonance. In both cases this link can be represented by
an approximate simple model-independent analytical formula
that contains only nucleon binding energies, nuclear charges
and the range of the strong nucleon-core interaction [1].
Comparison with microscopic cluster model calculations [2,3]
has shown that the average accuracy of this formula is about
7% for bound mirror pairs [2] and 10% for bound-unbound
mirror pairs [3].

The knowledge of the link between mirror ANCs can be
beneficial for predicting unknown ANCs using the unforma-
tion about known mirror ANCs. The latter can be used in
nuclear astrophysics to predict or verify nucleon capture cross
sections at stellar energies. Thus, the proton ANCs for 8B, 9C,
12N, and 27P have been determined using the measured neutron
ANCs for their mirror analogs 8Li [4], 9Li [5], 12B [6], and
27Mg [7], respectively, and then have been used to predict
the astrophysical S factors for the corresponding nonresonant
(p,γ ) reactions on 7Be, 8B, 11C, and 26Si at low energies. Also,
the isospin symmetry in bound-unbound mirror pairs has been
used to predict the neutron ANC for the halo nucleus 15C( 1

2
+

)

and the low-energy cross section for the 14C(n,γ )15C( 1
2

+
)

reaction using the measured width of the proton resonance
15F( 1

2
+

) [8].
In this article, we show that similar consequences of isospin

symmetry are present in mirror-conjugated α decays. Their

knowledge may be used in nuclear astrophysics to predict
important (α, γ ), (α,N ), and (N ,α) cross sections.

In Sec. II A we consider bound mirror pairs and derive a
simple analytical formula for the ratio of mirror ANCs squared.
As in the case of nucleon decays, the formula depends only
on mirror α-particle binding energies, nuclear charges, and the
range of the α-core potential. We test this formula for the two-
body model, where exact numerical solutions are available. In
Sec. II B we make predictions in the microscopic cluster model
(MCM) for the ANCs of bound mirror pairs 7Li-7Be, 11B-11C,
and 19F-19Ne in which the α-decay threshold in the lowest.
All three mirror pairs are important for nuclear astrophysics
applications. In Sec. III we consider bound-unbound mirror
states of the same pairs of nuclei both in a two-body model
and in the MCM. In Sec. IV we discuss isospin symmetry in
mirror resonance states and in Sec. V we summarize the results
obtained and draw conclusions.

II. BOUND MIRROR PAIRS

A. Two-body model with charge-independent α-core
strong interaction

We consider (i) a bound system A−4
Z−2(N − 2) + α and

(ii) its bound mirror analog A−4
N−2(Z − 2) + α in a two-body

model. We order these systems is such a way that the binding
energy ε1 of the first system is larger than the second binding
energy ε2. We denote this two cores as X1 and X2 and assume
that the nuclear α − Xi interaction VN in mirror systems is
exactly the same so that all the difference in the wave functions
�1 and �2 of these mirror systems is determined by different
Coulomb interactions VC1 and VC2 . In practice, the two mirror
α-particle wave functions are close to each other both in the
internal nuclear region and on the surface, where the α − Xi

potential strongly decreases.
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The wave function �i , where i = 1, 2, satisfies the
Schrödinger equation(

T + VN + VCi
+ εi

)
�i = 0 (1)

with binding energy εi . The radial part �
(i)
l (r) corresponds to

the orbital momentum l behaves asymptotically as

�
(i)
l (r) ≈ C

(i)
l W−ηi ,l+1/2(2κir)/r. (2)

Here C
(i)
l is the α-particle ANC, W is the Whittaker function,

κi = √
2µεi/h̄, µ is the reduced mass for the α + Xi system

(we neglect the i dependence of µ), and ηi = ZiZαe2µ/h̄2κi .
The ANC C

(i)
l can be represented by the integral

C
(i)
l = −2µ

h̄2

∫ ∞

0
drr2φ̃

(i)
l (r)

(
VN + VCi

− Ṽi

)
�

(i)
l (r), (3)

where the function φ̃
(i)
l is the regular solution of the

Schrödinger equation with an arbitrary potential Ṽi

(Tl + Ṽi + εi)φ̃
(i)
l = 0, (4)

with the boundary condition

φ̃
(1)
l (r) → φ

(1)
l (r) = e− πi

2 (l+1+η1)Fl(iκ1r)/κ1r, (5)

for r → ∞, where F is the regular Coulomb function. The
only requirement on the potential Ṽi is that at large distances r

it should cancel the long-range Coulomb interaction potential
VCi

between α and Xi to provide convergence for the
integral (3).

We exploit the freedom in choosing the Ṽ1 to separate out
from the formula (3) for C

(2)
l a term that looks as close as

possible to the corresponding formula for C
(1)
l . We choose Ṽ1

to be the Coulomb interaction V
(1)
C0

between a point α particle
and a point core X1 so that

φ̃
(1)
l (r) = φ

(1)
l (r) = e− πi

2 (l+1+η1)Fl(iκ1r)/κ1r (6)

for all r . We next choose Ṽ2 so that φ̃
(2)
l (r) is proportional to

φ̃
(1)
l (r) for a range of values of r < a that will be specified

later. For r > a the general requirement for the Ṽ2 at large
distances must be satisfied, so we define

Ṽ2 = ε1 − ε2 + V
(1)
C0

, r < a
(7)

Ṽ2 = V
(2)
C0

, r � a,

With this choice in Eq. (4) the function φ̃
(2)
l (r) is the regular

solution of the Schrödinger equation
(
Tl + V

(1)
C0

+ ε1
)
φ̃

(2)
l (r) = 0, r < a

(8)(
Tl + V

(2)
C0

+ ε2
)
φ̃

(2)
l (r) = 0, r � a.

and is therefore proportional to φ
(1)
l (r) for r < a. Its explicit

form is

φ̃
(2)
l (r) = Aφ

(1)
l (r), r � a,

(9)
φ̃

(2)
l (r) = φ

(2)
l (r) + BW−η2,l+1/2(2κ2r)/r, r � a.

The coefficients A and B are found from continuity of φ̃
(2)
l (r)

and its derivative at r = a:

A = A0(a) + BW2/aφ
(1)
l , (10)

where

A0(a) = φ
(2)
l (a)

/
φ

(1)
l (a), (11)

B = A′
0(a)

/(
W2/aφ

(1)
l

)′
. (12)

Here the notation W2 for W−η2,l+1/2(2κ2r) is introduced and
the prime symbol denotes the differentiation with respect to a.
With these choices for Ṽi , formula (3) becomes

− h̄2

2µ
C

(2)
l = A

∫ a

0
drr2φ

(1)
l

(
VN + 	VC1

)
�

(2)
l

+
∫ ∞

a

drr2φ̃
(2)
l

(
VN + 	VC2

)
�

(2)
l + RC(a),

(13)

where

	VCi
= VCi

− V
(i)
C0

(14)

and

RC(a) = A

∫ a

0
drr2φ

(1)
l

(
VC2 − VC1 − ε1 + ε2

)
�

(2)
l . (15)

Introducing new functions

	�12 = �
(2)
l − �

(1)
l (16)

and

δφ12(r, a) = φ
(2)
l (r) − A0(a)φ(1)

l (r) (17)

and rearranging all terms in Eq. (13) in such a way that
integrals from a to ∞ do not contain products φ

(1)
l (r)�(2)

l (r)
that increase with r , we get

− h̄2

2µ
C

(2)
l = A0(a)

∫ ∞

0
drr2φ

(1)
l

(
VN + 	VC1

)
�

(1)
l

+RC(a) + R	� + Rδφ(a) + RB(a) + R	VC
(a),

(18)

where the first term of the right-hand side of Eq. (18) is nothing
but −h̄2/2µA0(a)C(1)

l .
We will show that all the five remainder terms in Eq. (18) are

small compared with either −h̄2/2µA0(a)C(1)
l or −h̄2/2µC

(2)
l

provided the radius a is chosen in a specific way.
The term RC(a) is negligible for a < RN , where RN is

the radius of the nuclear interior, because both the Coulomb
difference VC2 − VC1 and the binding energy difference ε1 − ε2

are small compared with the nuclear potential VN . For a >

RN,RC(a) grows because the function φ
(1)
l increases faster

than �
(2)
l decreases.

The contribution from R	� , where

R	� =
∫ ∞

0
drr2φ

(2)
l

(
VN + 	VC1

)
	�12, (19)

does not depend on a and is determined by the difference
between the functions �

(2)
l and �

(1)
l in the region that gives

034302-2



ISOSPIN SYMMETRY IN MIRROR α DECAYS PHYSICAL REVIEW C 75, 034302 (2007)

the most contribution to the integral in the right-hand side
of Eq. (19). In the cases considered below, this difference is
about 2%.

The term Rδφ(a) defined as

Rδφ(a) =
∫ ∞

a

drr2δφ12(r, a)VN�
(1)
l

−
∫ a

0
drr2δφ12(r, a)VN	�12, (20)

contains the function δφ12(r, a), which is equal to zero at
r = a. Therefore, if a is at a point where VN�

(1)
l reaches

its maximum and is a decreasing function at r > a, then the
contribution from Rδφ(a) will be small. This point can be
chosen to be the nuclear radius RN , which for the α + X

system is about (1.1–1.3)(41/3 + X1/3). If at the same time
φ

(2)
l (r)/φ(1)

l (r) varies slowly with r around a, then φ12(r, a) ≈
0, which guarantees that Rδφ(a) is negligible. However, Rδφ(a)
increases if a < RN and φ

(2)
l /φ

(1)
l at r = RN differs from

A0(a). Conversely, Rδφ(a) is very small for a > RN .
The next term,

RB(a) = B

∫ ∞

a

drrW2
(
VN + 	VC2

)
�

(2)
l

+B
W2

aφ
(1)
l

∫ a

0
drr2φ

(1)
l

(
VN + 	VC1

)
�

(2)
l , (21)

depends on B. The B is zero at two points, at a = 0 and at
a = am, where the function A0(a) reaches its maximum (or in
other words A′

0(am) = 0). At all other points the contribution
from RB(a) depends on how large is BW2/aφ

(1)
l with respect

to A0(a). We show in the Appendix that

BW2

aφ
(1)
l A0(a)

= p2(a) − p1(a)

p2(a) + p1(a)
, (22)

where

pi(a) =
√

2ηiκi

r
+ l(l + 1)

r2
+ κ2

i . (23)

For mirror α states p2(a) does not differ much from p1(a),
especially near a ≈ RN . Thus BW2/aφ

(1)
l 	 A0(a) and, there-

fore, RB(RN ) will be small compared with −h̄2/2µA0(a)C(1)
l .

The last term,

R	VC
(a) =

∫ ∞

a

drr2
(
φ

(2)
l 	VC2 − A0(a)φ(1)

l 	VC1

)
�

(1)
l

−
∫ a

0
drr2

(
φ

(2)
l 	VC2 − A0(a)φ(1)

l 	VC1

)
	�12.

(24)

is zero for all a greater than the radius of the α-core Coulomb
interaction Rc and is small for a < Rc if 	VCi

	 VN . For all
cases considered below, this condition is satisfied.

Thus, if �
(1)
l ≈ �

(2)
l is a good approximation and if a is

chosen near RN , then the contributions from all the remainder
terms Ri(a) are very small and Eq. (18) reduces to

h̄2

2µ
C

(2)
l = A0(a)

h̄2

2µ
C

(1)
l . (25)

Then the ratio R
R = (

C
(2)
l

/
C

(1)
l

)2
(26)

of the mirror squared ANCs can be approximated by the
model-independent analytical expression

R ≈ R0 = A2
0(RN ) =

∣∣∣∣κ1Fl(iκ2RN )

κ2Fl(iκ1RN )

∣∣∣∣
2

. (27)

The accuracy of this approximation depends on how rapidly
A0(RN ) changes over the region of uncertainty of RN . In all
cases considered below this function varies slowly around RN

(see the insets in Fig. 1 where A0(a)/A0(am) is plotted).
The approximation (27) is similar to the formula,

(
Cp

Cn

)2

≈
∣∣∣∣ Fl(iκpRN )

κpRNjl(iκnRN )

∣∣∣∣
2

, (28)

obtained in Ref. [1] for ANCs Cp and Cn of mirror proton
and neutron virtual decays, respectively. In principle, Eq. (27)
could be obtained from Eq. (28) by replacing the spheri-
cal Bessel function jl(iκnr) by Fl(iκ1RN )/κ1RN . However,
Eq. (28) has been obtained in Ref. [1] starting from different
assumptions. Namely, it was explicitly assumed that the main
contribution to the ANC comes only from internal nuclear
region, r � RN , that the Coulomb interactions inside the
nuclear region can be replaced by constants and that the
difference between these constants is equal to the difference
in proton and neutron binding energies. Our exact two-body
calculations have shown that the accuracy of these assumptions
is much worse than the accuracy of the formula (27) itself. In
particular, all α-particle wave functions have nodes because
of the Pauli principle, which causes cancellations between
some contributions to the ANC from the internal region so
that the contributions from the surface become important.
For large orbital momentum l the surface region, in which
the nuclear potential decreases, is even more important. We
illustrate this in the insets of Fig. 1 by plotting some examples
of C2(a)/C2, where the ANC C2(a) has been calculated
neglecting the contributions from r > a in Eq. (3). Quite
often the r � RN region gives only half the contribution to
the ANC. The derivation of Eq. (27) in the present article is
quite general and it suggests that Eq. (27) should be valid
even when the contribution from r � RN is small. Also, this
equation should be valid for all shapes of nuclear potentials,
even with unphysically diffused edges, and does not depend
on the exact functional form of the Coulomb potential in the
internal region. The only criteria of its applicability is the
similarity of the wave functions of mirror nuclei.

In Fig. 1 we show the deviations 	i from C
(2)
l defined as

	i = −2µ

h̄2 Ri(a)
/
C

(2)
l , (29)

where i = C,	�, δφ,B, and 	VC , together with the total
deviation 	 = ∑

i 	i for three mirror pairs, 7Li(= α + t)-
7Be(= α+3He), 11B(= α+7Li)-11C(= α+7Be), and 19F(=
α+15N)-19Ne(= α+15O). The calculations have been done
using a Woods-Saxon potential with a diffuseness of 0.65 fm,
the radius and the depth of which have been adjusted to fit the
α-particle energies in mirror systems. The total spin-parity in
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FIG. 1. The deviations 	i and 	 = ∑
i 	i as a function of matching radius a for the 3

2

−
states in mirror pairs 7Li-7Be (a), 11B-11C (b), and

19F-19Ne (c). Also shown in insets are the ratios A0(a)/A0(am) and C2(a)/C2.

all three cases is 3
2

−
(the second 3

2
−

state was considered for
11B-11C to enhance the difference in the mirror wave functions)
but the orbital momenta l and the number of nodes are different.
The ratio A0(a)/A0(am), shown in the insets of Fig. 1, does
not change much near RN . The total deviation 	 is minimal at
r = RN and is determined mainly by 	δφ when r < RN and
by 	C + 	B at r > RN with 	C significantly larger than 	B .
The contribution from 		VC

is too small to be shown in these
figures.

We have performed exact two-body calculations for other
states of the mirror pairs 7Li-7Be, 11B-11C, and 19F-19Ne using
Woods-Saxon potentials with diffusseness varying from 0.35
to 0.95 fm. The sensitivity of the ratioR to the potential choice
was less than 2%. Both the exact ratios RPM and the analytical
approximationsR0 are given in Table I. Because in all cases am

was very close to RN and A0(a) changed very slowly around
RN , the R0 values from Table II were calculated at RN = am.
The ratio RPM/R0 is also plotted in Fig. 2. One can see that
RPM and R0 agree on average within 2% or less. For 7Li-7Be
this agreement is slightly worse, about 3–4%, which can be
explained by the larger difference in internal wave functions
due to the smaller Coulomb interaction.

B. Mirror ANCs in a microscopic cluster model

The relation (27) for mirror ANCs obtained in the two-body
model can be extended to many-body systems. The expression

for an ANC in the many-body case is [9]

C
(i)
l = −2µ

h̄2

∫ ∞

0
drr2φ̃

(i)
l (r)

〈[
�

JXi

Xi
⊗ Yl(r̂)

]
JA

×�α

∥∥VN + VCi
− Ṽi

∥∥�
JA

A

〉
, (30)

where �
JA

A ,�α , and �
JXi

Xi
are the many-body wave functions of

the nucleus A, α-particle, and the decay product Xi , and JA and
JXi

are the total spins of A and Xi . The integration in the source

term 〈[�JXi

Xi
⊗ Yl(r̂)]JA

�α||VN + VCi
− Ṽi ||�JA

A 〉 is carried out
over the internal coordinates of α and Xi and the potentials
VN and VC are the sums of the two-body nuclear and Coulomb
interactions. Following the reasoning of Sec. II A, we get the
formula (27). The deviation from this formula will be deter-
mined by the remainder terms RC(a), R	�,RB(a), Rδφ(a),
and R	VC

(a) defined by equations similar to (15), (19), (20),
(21) and (24) but in the integrands of which V � is be replaced

by the matrix elements of the 〈[�JXi

Xi
⊗ Yl(r̂)]JA

�α||V ||�JA

A 〉
type.

The main difference between the two-body and many-body
cases is that VC − VC0 is not zero at r > RN . It contains
long-range contributions from the r−λ (λ � 2) terms, the
strengths of which are determined by the matrix elements

〈[�JXi

Xi
⊗ Yl(r̂)]JA

�α||M(Eλ)||�JA

A 〉, where M(Eλ) is the
electromagnetic operator of multipolarity λ [2]. If these matrix
elements are large, then all the remnant terms that contain 	VCi
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FIG. 2. (Color online) The range of changes
in squared ANCs (filled circles), in spectroscopic
factors (stars), and in ratio RMCM (open circles)
with the choice of oscillator radius and the
NN potential. For 11B-11C, this range includes
changes with different number of clusters.

034302-4



ISOSPIN SYMMETRY IN MIRROR α DECAYS PHYSICAL REVIEW C 75, 034302 (2007)

TABLE I. Microscopic calculations for RMCM, analytical estimate R0 and the potential model estimate RPM, for the mirror pairs from
the first column with the spin-parity J π and the orbital momentum l of the α particle. Also shown are the ratios RMCM

bα
= [bα(2)/bα(1)]2 (the

significance of these ratios is discussed in the text), where bα(i) = Cα(i)/
√

Sα(i) is the normalized ANC for the nucleus i, Sα is the spectroscopic
factor, and the ratio RMCM

S = Sα(2)/Sα(1). For RMCM,RMCM
bα

, and RMCM
S , average values and range of variations between calculations with V2

and MN potentials and two different oscillator radii are presented. RPM is averaged over the choice of different parameters of the Woods-Saxon
potentials and shown together with the range of its variation.

Mirror pair J π l RMCM R0 RPM RMCM
bα

RMCM
S

7Li-7Be 3
2

−
1 1.35 ± 0.01 1.37 1.34 ± 0.01 1.37 ± 0.01 0.995 ± 0.005

1
2

−
1 1.43 ± 0.01 1.47 1.41 ± 0.01 1.45 ± 0.01 0.99

11B-11C 3
2

−
1

0 1.60 ± 0.02 1.56 1.57 ± 0.02 1.55 ± 0.01 1.026 ± 0.006
Two-cluster 2 1.50 ± 0.01 1.46 1.49 ± 0.02 1.51 ± 0.02 0.995 ± 0.005
MCM 1

2

−
2 1.65 ± 0.02 1.60 1.61 ± 0.02 1.64 ± 0.02 1.005 ± 0.005

5
2

−
2 1.85 ± 0.02 1.82 1.83 ± 0.02 1.83 ± 0.02 1.01

3
2

−
2

0 2.23 ± 0.05 2.30 2.27 ± 0.02 2.27 ± 0.02 0.988 ± 0.006
2 2.16 ± 0.05 2.01 2.02 ± 0.03 2.06 ± 0.02 1.05 ± 0.01

1
2

+
1 4.55 ± 0.01 4.61 4.54 ± 0.04 4.54 ± 0.02 1.005 ± 0.005

7
2

−
2 4.38 ± 0.06 4.20 4.19 ± 0.05 4.24 ± 0.02 1.035 ± 0.005
4 2.51 ± 0.02 2.38 2.44 ± 0.04 2.48 ± 0.01 1.012 ± 0.002

5
2

+
1 13.29 ± 0.12 13.53 13.19 ± 0.10 13.2 ± 0.1 1.005 ± 0.005
3 7.79 ± 0.15 7.75 7.76 ± 0.10 7.56 ± 0.04 1.03 ± 0.02

3
2

+
1 (1.68 ± 0.02) × 1012 1.72 × 1012 (1.68 ± 0.02) × 1012 (1.66 ± 0.02) × 1012 1.006 ± 0.006
3 (3.59 ± 0.07) × 1011 3.69 × 1011 (3.68 ± 0.03) × 1011 (3.55 ± 0.05) × 1011 1.01 ± 0.01

11B-11C 3
2

−
1

0 1.71 1.56 1.56 ± 0.02 1.66 1.03
Three-cluster 2 1.58 1.47 1.49 ± 0.02 1.56 1.01
MCM 1

2

−
2 1.69 1.60 1.61 ± 0.02 1.66 1.01

5
2

−
2 1.96 1.82 1.83 ± 0.02 1.91 1.02

3
2

−
2

0 2.27 2.30 2.27 ± 0.02 2.31 0.98
2 2.21 2.01 2.02 ± 0.03 2.09 1.06

1
2

+
1 4.63 4.61 4.54 ± 0.04 4.61 1.00

7
2

−
2 4.45 4.20 4.19 ± 0.05 4.24 1.05
4 2.68 2.38 2.44 ± 0.04 2.64 1.02

5
2

+
1 13.60 13.53 13.19 ± 0.10 13.46 1.01
3 8.39 7.75 7.76 ± 0.10 7.76 1.08

3
2

+
1 1.68 × 1012 1.72 × 1012 (1.68 ± 0.02) × 1012 1.70 × 1012 0.99
3 3.79 × 1011 3.69 × 1011 (3.68 ± 0.03) × 1011 3.69 × 1011 1.03

19F-19Ne 1
2

+
1 4.12 ± 0.06 4.24 4.21 ± 0.06 4.17 ± 0.04 0.99 ± 0.01

5
2

+
3 4.23 ± 0.07 4.27 4.29 ± 0.04 4.26 ± 0.07 0.99 ± 0.01

1
2

−
0 4.70 ± 0.01 4.63 4.61 ± 0.04 4.66 ± 0.01 1.005 ± 0.005

5
2

−
2 9.58 ± 0.04 9.44 9.43 ± 0.09 9.53 ± 0.02 1.005 ± 0.005

3
2

−
2 10.74 ± 0.04 10.63 10.6 ± 0.1 10.69 ± 0.03 0.98 ± 0.01

3
2

+
1 8.39 ± 0.15 8.84 8.78 ± 0.08 8.56 ± 0.07 1.005 ± 0.005

9
2

+
5 222 ± 3 228 229 ± 2 223 ± 2 0.99

may cause significant differences between R and R0. This
is expected for nuclei with strongly deformed and/or easily
excited cores.

Another factor that may lead to additional differences
between R and R0 in many-nucleon systems is that the
condition �

(1)
l ≈ �

(2)
l for the validity of Eq. (27) in the

two-body case is replaced by the equality of the projections

〈[�JXi

Xi
⊗ Yl(r̂)]JA

�α|�JA

A 〉 (or overlap integrals) of the mirror

wave functions for nuclei A
NZ and A

ZN into the mirror
channels Xi + α. If the norms of these overlap integrals
(or spectroscopic factors) differ, then the terms R	�,Rδφ(a),
and R	VC

(a) will increase. This can be especially important
for weak components of overlap integrals where symmetry
breaking in the spectroscopic factors may become large.

Our previous study of many-body effects in mirror virtual
nucleon decays suggests that they are on average of the order of
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TABLE II. Range of change for the width α (in MeV) of an α-particle resonance, for its mirror squared ANC C2
α (in fm−1), and for the

ratio R with different model parameters. These results are given both in the potential model and in the MCM. The analytical estimate Rres
0

is also shown.

J π and l 11B-11C 19F-19Ne

3
2

−
3
l = 0 3

2

−
3
l = 2 3

2

+
2
l = 1 7

2

−
3
l = 4

Potential model α (2.13–3.53) × 10−3 (1.20–2.44) × 10−4 (3.95–10.2) × 10−10 (3.67–15.1) × 10−10

C2
α (2.04–3.40) × 106 (8.17–16.3) × 104 (1.23–3.11) × 1023 (4.68–18.4) × 1072

Rres
PM 1.05 × 10−9 (1.48 ± 0.01) × 10−9 (3.25 ± 0.04) × 10−33 (8.00 ± 0.18) × 10−84

MCM α (0.98–2.51) × 10−3 (3.25–11.2) × 10−5 (0.76–2.58) × 10−10 (0.98–3.40) × 10−13

C2
α (8.91–25.3) × 105 (2.18–8.11 × 104 (2.21–7.54) × 1022 (2.54–23.8) × 1069

RMCM
 (1.05 ± 0.06) × 10−9 (1.47 ± 0.03) × 10−9 (3.42 ± 0.04) × 10−33 (1.32 ± 0.12) × 10−83

Rres
0 1.18 × 10−9 1.52 × 10−9 3.30 × 10−33 7.86 × 10−84

7% [2], although stronger deviations in some individual cases
were observed as well. Here, we study the many-body effects in
mirror α-particle ANCs using a multicluster model of the same
type as in Ref. [2] for the same mirror pairs 7Li-7Be, 11B-11C,
and 19F-19Ne considered above in the two-body model.

The multichannel cluster wave function for a nucleus A

consisting of a core X and an α particle can be represented as
follows:

�
JAMA

A =
∑
lωJX

A�α

[
g

JXJA

ωl (r) ⊗ �
JX

X

]
JAMA

, (31)

where A is the antisymmetrization operator that permutes
nucleons between the α particle and the core. Both the
α-particle wave function and the “core" wave function �

JX

X

corresponding to the total spin JX are defined in the translation-
invariant harmonic-oscillator shell model. In addition, for 11C
we used the three-cluster model of Ref. [10], in which �

JX

X

is defined in a two-cluster model. The quantum number l

labels the orbital momentum of the α particle. The relative
wave function g

JXJA

ωlm (r) = g
JXJA

ωl (r)Ylm(r̂) is determined using
the microscopic R-matrix method [11] to provide the correct
asymptotic behavior

g
JXJA

ωl (r) ≈ C
JXJA

l,ω

W−η,l+1/2(2κr)

r
, r → ∞, (32)

determined by the Whittaker function and the ANC C
JXJA

l,ω .
The MCM requires some choice of the oscillator radius b

to describe the internal structure of the clusters. In all three
mirror pairs considered in this article, the oscillator radius
that provides a good description of the α particle differs
significantly from that of the core. Dealing with different b

for each of the cluster would create big difficulties in using the
MCM. Therefore, we use the same value of b for both clusters
but do the calculations twice. The first time we use b = 1.36 fm
that reproduces the root-mean-square radius of the α particle
and minimizes its binding energy, and the second time we
use either b = 1.5 fm (to describe the triton and/or 3He core
for the 7Li-7Be mirror pair) or b = 1.6 fm (for 11B-11C and
19F-19Ne). Our previous calculations for 17O-17F have shown
that different oscillator radii change strongly the absolute value

of neutron and proton ANCs but does not change their ratio
very much [2]. In the three-cluster calculations for the 11B-11C
mirror pair we used only one value of the oscillator radius,
b = 1.36 fm, the same as in Ref. [10].

For each oscillator radius, we use two NN potentials, the
Volkov potential V2 [12] and the Minnesota (MN) potential
[13], except in three-cluster calculations for 11B-11C where
only V2 is used. The two-body spin-orbit force [14] with
S0 = 30 MeV·fm5 and the Coulomb interaction are also
included. Both V2 and MN have one adjustable parameter that
gives the strength of the odd NN potentials V11 and V33. We
fit this parameter in each case to reproduce the experimental
values for the α-particle separation energies. Slightly different
adjustable parameters in mirror nuclei, needed to reproduce
these energies, simulate charge symmetry breaking of the
effective NN interactions, which could be a consequence of
charge symmetry breaking in realistic NN interactions. The
range of changes in squared ANCs with different input MCM
parameters is shown in Fig. 2. Similar to previous studies of
one-nucleon ANCs in Refs. [2,8,15], the V2 potential gives
larger C2

α values than the MN (up to a factor of 2) at a
fixed oscillator radius b and the different choices of b give
a comparable change (up to the factor of 2) in C2

α at a fixed NN
potential. The average value of RMCM is compared in Table I
to the analytical estimate R0 and to predictions within the
potential model RPM.

We have also calculated the α-particle spectroscopic factors
Sα defined as

Sα =
(

A

4

) ∫ ∞

0
drr2

∣∣〈[�JXi

Xi
⊗ Yl(r̂)

]
JA

�α

∣∣�JA

A

〉∣∣2
(33)

and have shown their range of variation in Fig. 2. The ratio
RMCM

S = Sα(2)/Sα(1) of these spectroscopic factors is given
in Table I. We also calculate the ratio RMCM

bα
= [bα(2)/bα(1)]2

of the normalized squared ANCs bα = Cα/
√

Sα . As in the
case of mirror virtual nucleon decays studied in Ref. [2,16],
the approximate equality RMCM

bα
≈ RPM means that in mirror

nuclei the effective local nuclear α-core interaction can be
considered to be the same. We now discuss individual mirror
pairs in more detail.
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1. 7Li-7Be

The squared ANCs in these mirror nuclei change by about
55% with different oscillator radii and NN potentials. However,
the ratio Cα(7Be)/Cα(7Li) changes by only about 1.5% both
in the ground and the first excited states. This ratio differs
from the analytical estimate R0 by no more than 3 and 4%
for the ground and the first excited states, respectively, and
agrees reasonably well with the potential model calculations.
The mirror symmetry in spectroscopic factors is also clearly
seen. Some minor differences in RMCM

bα
and RPM are present,

which means that the effective local nuclear t + α and
3He+α interactions differ slightly. Because the 7Li and 7Be
ANCs determine the cross sections for the 3H(α, γ )7Li and
3He(α, γ )7Be capture reactions at zero energies, the mirror
symmetry of the α-particle ANCs means that relations should
exist between the astrophysical S factors of these reactions.
Thus, with our value of RMCM the ratio S34(7Be)/S34(7Li) at
zero energy is 6.6 and 5.9 for the ground and the first excited
states, respectively.

2. 11B-11C

The calculations for this mirror pair have been performed
for all excited states that are below the α-particle emission
threshold in 11C. In the two-cluster model, only the ground
and the 1

2
−

first excited state in the 7Li-7Be mirror cores have
been taken into account. In the three-cluster model, both the
7Li+α (7Be + α) and t + 8Be (3He + 8Be) partitions are taken
into account with the first excited states 1

2
−
, 3

2
−
, 5

2

−
and 7

2
−

in
7Li (7Be) and the first 0+ and 2+ states in 8Be included [10].

The squared ANCs calculated in the two-cluster MCM
change with different NN potential and oscillator radius choice
by the factor of 4 on average. Taking two-cluster nature of 7Li
and 7Be into account in most cases significantly increases
ANCs, thus increasing the range of their variations with
model assumptions. However, in all cases the ratio RMCM

changes by no more than 9%. The RMCM values obtained
in the two-cluster model are close to the analytical estimate
R0 and to the potential model prediction RPM, agreement
being within 1–5% (see Table I). For the second 3

2
−

state with
l = 2, a larger deviation from R0 and RPM (5–10%) coincides
with larger symmetry breaking in the mirror spectroscopic
factors.

The RMCM values obtained in the three-cluster MCM are
significantly larger than the predictions of the two-cluster
model. This is caused mainly by the influence of the t + 8Be
and 3He+8Be channels. When these channels are removed, so
that only the 7Li+α and 7Be+α partitions are left, then both
the two-cluster and three-cluster MCM predict very similar
results for the ratio RMCM. At the same time, the ratio of
mirror spectroscopic factors is not very much influenced by the
t + 8Be (3He+8Be) clustering, although for the 5

2

+
state with

l = 3 it is slightly reduced. This happens because the effective
local α-7Li and α-7Be interactions differ. This can be seen by
comparing theRMCM

bα
obtained in the three-cluster calculations

withRPM. In two-body calculations these quantities agree with
each other within the uncertainties of their calculations for
most of the mirror states.

3. 19F-19Ne

The two-cluster MCM calculations for this mirror pair
have been performed for all excited states that are below
the α-particle emission threshold in 19Ne. The mirror cores
15N-15O were considered both in the ground and the first
excited state 3

2
−

. We have found that different choices of
the oscillator radius strongly influence the mixture of the
α+15N( 1

2
−

) and α+15N( 3
2

−
) configurations in all the states

of 19F, leading to large changes in spectroscopic factors and
ANCs. The same is true for the α+15O( 1

2
−

) and α+15O( 3
2

−
)

configurations in 19Ne. However, despite the 3–5 times change
in squared ANCs, the ratio RMCM of mirror squared ANCs
changes by less 3.5%. This ratio is close to both the analytical
estimate R0 and the predictions of the potential model RPM.
The deviation between RMCM and these estimates does not
exceed 5%. The mirror symmetry in spectroscopic factors is
also clearly seen. In most cases RMCM

bα
and RPM agree within

uncertainties of their definition, which means that mirror
symmetry in the effective local α+15N and α+15O interactions
is a good assumption.

III. BOUND-UNBOUND MIRROR PAIRS

The symmetry in mirror α decays can be extended to bound-
unbound mirror pairs. As in the case of nucleon decays [1,3],
such a symmetry would manifest itself as a link between the
ANC of the bound α-particle state and the width of its analog
resonant state. This follows from the possibility to represent
the resonance width by an integral similar to (3) and (30).
For isolated narrow resonances, the generalization of Eq. (17)
of Ref. [3] for the two-body α-particle case gives the width
0

l as

0
l ≈ 2κR

ER

∣∣∣∣
∫ Rm

0
drrFl(κRr)(VN − 	VC)�BSA

l (r)

∣∣∣∣
2

, (34)

where ER is the resonance energy, kR =
√

2µER/h̄2, Fl is the
regular Coulomb wave function and �BSA

l is a wave function
of the α-particle resonance in the bound-state approximation.
This function has the dimension of a bound-state wave function
and is defined and normalized within some channel radius Rm

taken well outside the range of the α-core interaction. The
width 0

l defined by Eq. (34) is related to the residue γ 2
l at the

R-matrix pole by [17],

0
l = 2κRRmγ 2

l

/|Ol(κRRm)|2, (35)

where Ol is the outgoing Coulomb function. It determines the
observable width l by

l = 0
l

/(
1 + γ 2

l S ′
l

)−1
, (36)

where Sl = Re(κRRmO ′
l /Ol) and the derivation is performed

with over the energy E. For very narrow resonances, such that
γ 2

l S ′
l 	 1, the observed width, l , and the one related to the

residue in the R-matrix pole, 0
l , are the same. It is for such

cases that the analytical expression for the ratio

R = α

/
C2

α (37)
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FIG. 3. The ratios |Fl(kRa)Fl(iκb.s.am)/Fl(iκb.s.a)Fl(kRam)| as a
function of a.

can be derived. Following the reasoning of Sec. II A we get
the approximate model-independent formula

R ≈ Rres
0 = h̄2kR

µ

εb.s.

ER

∣∣∣∣ Fl(kRRN )

Fl(iκb.s.RN )

∣∣∣∣
2

(38)

where εb.s. is the binding energy of a bound α-particle state
and κb.s. = √

2µεb.s./h̄. As in the case of bound mirror pairs,
the difference between Rres

0 and the exact value of R will
be determined by remainder terms similar to those given in
Eqs. (15), (19), (20), (21), and (24), and their magnitude will
depend on how similar are the bound state α-particle wave
function and its mirror analog �BSA

l . As for bound mirror
pairs, the formula (38) will be more accurate if the function
|Fl(kRr)/Fl(iκb.s.r)| varies slowly near r ≈ RN . This function
changes the most slowly near its maximum, at r = am.

In Fig. 3 we plot the function |Fl(kRa)Fl(iκb.s.am)/
Fl(iκb.s.a)Fl(kRam)| for three mirror pairs of excited
states 11B( 3

2
−
3 , 8.560 MeV)-11C( 3

2
−
3 , 8.105 MeV), 19F( 3

2
+
2 ,

3.908 MeV)-19Ne( 3
2

+
2 , 4.033 MeV), and 19F( 7

2
−
2 , 3.999 MeV)-

19F( 7
2

−
2 , 4.197 MeV). The α particle in the chosen states of

11B and 19F is weakly bound and its mirror states in 11C and
19Ne are resonances that are important for some astrophysical
applications. This ratio is almost a constant for r ∼ 4 − 6 fm
that is close to RN .

We compare Rres
0 , calculated assuming RN = am, to R

obtained in exact two-body calculations. To perform the two-
body calculations, we have chosen an α-core potential of the
Woods-Saxon form and varied its diffuseness from 0.35 to
0.95 fm. For each diffuseness the depth and the radius of this
potential were adjusted to reproduce simultaneously both the
α-particle separation energy εb.s. in a chosen state and the
position ER of the resonance in its mirror analog. The width
has been determined from the behavior of the resonant phase
shift tan δl = l(E)/2(E − ER) near ER . The range of change
in squared ANCs and in resonance widths with the potential
geometry is presented in Table III. The widths change by a
factor from 1.65 to 4.1 and the ANCs squared in the mirror
states change by the same amount so that Rres

PM changes by less
than 2% with respect to an average value. These average values
are very close toRres

0 when lα �= 0. In the lα = 0 case, when the
centrifugal barrier in absent, the approximation (38) becomes
less accurate, with Rres

PM being smaller than Rres
0 by 12%. This

loss of accuracy is probably caused by a larger difference in
mirror s-wave functions when one of the α particles is loosely
bound. In all cases, the agreement between Rres

PM and Rres
0 is

much better than for nucleon decays in bound-unbound mirror
pairs [3].

To check the validity of the approximation (38) for many-
body systems we have calculated R for bound-unbound
mirror states from Table II using the MCM of the previous
section. The width α have been calculated by solving the
Schrödinger-Bloch equation, as described in Ref. [11]. The
calculations have been done using two oscillator radii for
potential V2 and only one oscillator radius, 1.36 fm, for
potential MN, because the larger radius, b = 1.6 fm, has
caused numerical problems. The resulting ratio RMCM

 is

TABLE III. Resonance widths α for mirror nuclei 1 and 2 (in MeV) and their ratio calculated in the MCM, RMCM
 , and potential model,

RPM
 , for mirror states with spin-parity J π and orbital momentum l. The analytical estimates Rθ

 and R0
 are shown as well.

Jπ l Microscopic cluster model Potential model Rθ
 R0



α (2) α (1) RMCM
 α (2) α (1) RPM



7Li-7Be
7
2

−
1 3 0.142–0.267 0.079–0.149 1.795 ± 0.005 0.247 0.134 1.82 1.74 1.79

11B-11C two-cluster MCM
5
2

−
2 2 (1.68–4.21) × 10−4 (1.07–2.56) × 10−7 1610 ± 40 6.47 × 10−3 4.51 × 10−6 1434 1493 1530

4 (5.25–26.6) × 10−7 (5.28–26.6) × 10−7 (1.02 ± 0.04) × 104 7.44 × 10−5 7.46 × 10−9 9964 9982 1.0 × 104

7
2

+
1 3 (2.19–7.20) × 10−4 (5.78–18.5) × 10−6 38.4 ± 0.5 6.19 × 10−3 1.67 × 10−4 37 38.1 38.3

5 (0.82–8.19) × 10−8 (0.58–5.18) × 10−10 151 ± 7 5.38 × 10−5 3.54 × 10−7 152 152.3 152.2

11B-11C three-cluster MCM
5
2

−
2 2 2.70 × 10−4 1.55 × 10−7 1740

4 1.24 × 10−6 1.08 × 10−10 1.14 × 104

7
2

+
1 3 1.60 × 10−3 3.95 × 10−5 40.3

5 2.11 × 10−6 1.15 × 10−8 183

19F − 19Ne
7
2

+
1 3 (0.45–1.95) × 10−8 (0.36–1.50) × 10−13 (1.28 ± 0.03) × 105 1.23 × 10−6 9.50 × 10−12 1.29 × 105 1.31 × 105 1.30 × 105

5
2

−
2 2 (0.89–283) × 10−7 (0.48–134) × 10−9 204 ± 7 2.84 × 10−4 1.40 × 10−6 203 209 207
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presented in Table II. For 11B( 3
2

+
3 )-11C( 3

2
+
3 ) with l = 2 and

for 19F( 3
2

+
2 )-19Ne( 3

2
+
2 ) RMCM

 agrees well with both Rres
PM

and Rres
0 . In the case of 11B( 3

2
+
3 )-11C( 3

2
+
3 ) with lα = 0RMCM



agrees only with Rres
PM, deviating from Rres

PM by 12%. For
19F( 7

2
−
2 )-19Ne( 7

2
−
2 ), a 68% difference between RMCM

 and Rres
0

is obtained. It originates because of the specific structure
of the second 7

2
−

state in 19F (19Ne), which is built mostly

on the second excited state 3
2

−
of the 15N (15O) core with

an orbital momentum l = 2. The spectroscopic factor for
the configuration 〈19F|15Og.s. ⊗ α〉 is very small, about 10−3.
The spectroscopic factor of the mirror configuration, defined
using the concept of the bound-state approximation for the
narrow resonance function, is also very small. In such weak
components effects due to charge symmetry breaking could be
large. When the 15N( 3

2
−

) ⊗ α (15O( 3
2

−
) ⊗ α) configuration in

19F (19Ne) is neglected, the MCM gives for the 7
2

−
2 state RMCM



values that are close both to Rres
0 and Rres

PM. For example,
with V2 and an oscillator radius of 1.6 fm RMCM

 = 8.24 ×
10−84 MeV·fm.

IV. UNBOUND MIRROR PAIRS

The ideas of Secs. II and III about mirror summetry can
be immediately applied to the widths of two mirror narrow
resonances 2 and 1. For the ratio

R = α(2)/α(1), (39)

Eqs. (27) and (38) can be generalized straightforwardly to give

R ≈ R0
 = k1

k2

∣∣∣∣Fl(k2RN )

Fl(k1RN )

∣∣∣∣
2

, (40)

where ki = √
2µEi/h̄ and Ei is the resonance energy of the

i-th α-particle.
The idea that the widths of two mirror resonances are related

has already been used many times to predict unknown widths
for those resonances where the widths of their mirror analogs
are known. The relation between mirror widths is usually
obtained from the relation of the width α to the Coulomb
barrier penetration factor Pl(E,RN ) and the reduced width
θ2
α [17]:

α = 2h̄2

µR2
N

θ2
αPl(E,RN ), (41)

where

Pl(E,RN ) = kRN

F 2
l (kRN ) + G2

l (kRN )
, (42)

G2
l (kRN ) is the irregular Coulomb function, and RN is located

somewhere on the surface. Assuming that the reduced widths
θα(1) and θα(2) for mirror resonances are equal one obtains
from Eqs. (39), (42), and (41)

R ≈ Rθ
 ≡ k2

k1

F 2
l (k1RN ) + G2

l (k1RN )

F 2
l (k2RN ) + G2

l (k2RN )
. (43)

Equations (40) and (43) are not identical and cannot be
deduced one from another.
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FIG. 4. The ratio |Fl(k2a)/Fl(k1a)| for ER(α+15N) = 0.350 MeV
and ER(α+15O) = 0.850 MeV for different orbital momenta l as a
function of a.

First, we investigate numerically the difference between
the approximations (40) and (43) in a two-body model for
a hypothetical mirror pair 19F-19Ne with arbitrary resonance
energy E1 in the α+15N and (E2) energy in the (α+15O)
channel such that E2 = E1 + 0.5 MeV, for all lα � 5. The
difference of about 0.5 MeV is typical for low-lying α-particle
resonances in 19F-19Ne. The ratio |Fl(k2a)/Fl(k1a)| for such a
system is presented in Fig. 4 for the lowest resonance energy
in the real α+15N system, E1 = 0.350 MeV, as a function of a.
This ratio is varies very slowly for 5 < a < 8 fm and reaches
its maximum at about 6–7 fm, which is beyond the nuclear
surface radius RN . To compare Eqs. (40) and (43) we calculate
them both at the surface, RN = 5 fm, as has been done in other
studies of mirror symmetry in the 19F-19Ne resonances [18,19].
The ratio R0

/Rθ
 is plotted in Fig. 5 for different energies

E1 taken below the Coulomb barrier. According to Fig. 5, R0


and Rθ
 are the same for E1 � 2 MeV but at higher energies a

difference appears. This difference increases with decreasing
orbital momentum. The largest difference, about 12%, is seen
for lα = 0 at E1 ≈ 4 MeV. The most likely reason for this effect
is the growth of the resonance width with the resonance energy.
At some point, the integral representation (34) looses its
accuracy, making the approximation (40) invalid. The higher
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FIG. 5. The ratio R0
/Rθ

 for different orbital momenta l as a
function of the resonance energy E1 in α+15N.
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is the centifugal barrier, the higher the resonance energy can
be before this happens.

Next, we compare R0
 and Rθ

 to the results of potential
model and MCM calculations for some realistic mirror narrow
resonances in 7Li-7Be, 11B-11C, and 19F-19Ne. Unlike in
previous sections, only one value of the diffuseness, 0.65 fm,
has been used in the potential model calculations. As for the
MCM, the conditions of the calculations are the same as in
previous sections.

The calculated widths α in mirror resonances and their
ratio are presented in Table III, where they are compared
to R0

 and Rθ
 . In all cases studied, α depends strongly

on the choice of the model and its parameters. For the
7Li-7Be and 19F-19Ne mirror pairs, the ratios RMCM

 and
RPM

 agree very well with the analytical predictions R0
 and

Rθ
 . For 7Li-7Be they also agree with experimental value

Rexp
 = 

exp
α (7Be)/

exp
α (7Li) = 1.88 ± 0.24 obtained using

the 7Li and 7Be widths of the 7
2

−
resonance from Ref. [20].

For the 5
2

−
2 resonance in 19F-19Ne, the value Rexp

 = 121 ± 55
determined by using 

exp
α from Ref. [19] is much smaller than

the theoretical values of 203–211. The most likely reason for
this is that the 19Ne( 5

2

−
2 ) width has been determined Ref. [19]

indirectly using the measured 19Ne( 5
2

−
2 ) branching ratio α/

and its γ width assuming that γ (19F) = γ (19Ne). Such an
assumption is not always valid.

For 11B-11C, RPM
 agrees very well with the analytical

predictions R0
 and Rθ

 . The two-cluster MCM predictions

also agree with them, expect for the 5
2

−
2 state with lα = 2,

where a 10% increase in the ratio of mirror widths can
be seen. The three-cluster MCM increases this ratio, which
could be due to the 8Be+t and 8Be+3He clustering effects.
Both the two- and three-cluster predictions agree with the
ratioRexp

 = 2140 ± 970 of experimentally determined widths
taken from Ref. [21]. In all cases, the difference between the
microscopic calculations and the analytical approximations
(40) and (43) does not exceed 10%.

V. SUMMARY AND CONCLUSION

In this article, we have shown that the structureless two-
body bound mirror systems α + X1 and α + X2, with the same
strong nuclear attraction but different Coulomb repulsion,
should have ANCs that are related by a model-independent
analytical approximation (27). This expression involves the
ratio of the regular Coulomb wave functions calculated at
imaginary momentum at some distance a between α and X.
We have demonstrated that if this distance is taken at the
point where the product of the α − X potential and α − X

wave function is the largest, which occurs around RN ≈
(1.1–1.3)(41/3 + X1/3), then deviation from this approxima-
tion should be small provided the nuclear wave functions of
these mirror systems are similar to each other in the region that
gives most contribution to the ANC in Eq. (3). The analytical
approximation (27) remains valid for mirror systems with a
many-body internal structure if mirror spectroscopic factors
are approximately the same and if the cores X1 and X2 are

not too strongly deformed and/or do not have easily excited
low-lying states.

The isospin symmetry between mirror α decays extends to
bound-unbound and unbound mirror pairs. In the first case,
a link between the α-particle ANC of a bound state and the
width of its mirror unbound analog is given by the formula
(38). In the second case, the link between the widths of mirror
resonances can be given by a new formula (40) that at the
energies well below the combined Coulomb and centrifugal
barrier complements the old formula (43) obtained using
the concept of the penetrability of the Coulomb barrier and
assuming equality of the reduced widths of mirror resonances.
The deviations from these formulas are expected due to
deformation and excitations of the core, however, a state lying
above a higher threshold in one channel and below in the other
one, might lead to strong deviations too.

The comparison of the approximations (27), (38), and
(40) to the results of exact calculations either in a two-body
potential model or in a microscopic cluster model for three
mirror pairs, 7Li-7Be, 11B-11C, and 19F-19Ne, have confirmed
their validity for many mirror nuclear states. The deviations
from these approximations are smaller than those seen in
mirror nucleon decays in Ref. [2,3] because the difference
in mirror α-particle wave functions are much smaller than
the differences in mirror proton and neutron wave functions,
especially for loosely bound states. The largest deviations from
analytical estimates have been seen for three-cluster 11B-11C
mirror states with excited 7Li and 7Be cores. Also, a noticeable
deviation has been seen for the second 7

2
−

state in 19F-19Ne.
This state has tiny spectroscopic factors for the decay channels
α+15Ng.s. and α+15Og.s. (about 0.001) and the probability of
symmetry breaking in such week components is always large.

The ANCs and α-widths calculated in our microscopic
approach are sensitive to the model assumptions. In particular,
they change within a factor of four for different choices
of the effective NN potential and oscillator parameters,
the smallest values being produced by combining the MN
potential with the oscillator parameter b = 1.36 fm and
the largest values predicted by V2 with b = 1.6 fm. The
variation of ANCs and α-widths with model assumptions
can be even stronger if mirror states have specific structure,
for example, the t + 8Be and 3He+8Be configurations in
11B and 11C. However, as predicted by Eqs. (27), (38)
and (40), the calculated in the MCM ratios R,R , and
R do not change much with different choices of unput
model parameters. This fact can be used to predict unknown
ANCs or α widths if the corresponding mirror quantities
have been measured. Such predictions can be beneficial
for nuclear astrophysics. Many low-energy (α, γ ), (α,N ),
and (N,α) reactions proceed via the population of isolated
α-particle narrow resonances the widths of which determine
the corresponding reaction rates. It is not always possible to
measure such widths because of the very small reaction cross
sections involved. In this case, using isospin symmetry in
mirror α decays may be helpful. For unbound mirror states
this symmetry has already been used. For another class of
mirror pairs, when the mirror analogs of the resonances are
bound, α widths can be determined by measuring the ANCs
of bound states in α-transfer reactions and using the relation
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α = RC2
α . As an example, we can point out that the

widths of the astrophysically important resonance 19Ne( 3
2

+
2 )

at 4.033 MeV could be detemined if the ANC of its mirror
analog in 19F was known. Unfortunately, available data on
the 15N(6Li,d)19F∗( 3

2
+
2 ) reaction do not allow the extraction

the ANC of interest because of strong sensitivity to optical
potentials and to the geometry of the bound-state potential well
that arises due to angular momentum mismatch. An alternative
possibility to measure this ANC with a high precision is to
use the reaction 15N(19F,15N)19F∗. This reaction involves the
same optical potentials in the entrance and exit channels and
would not suffer the angular momentum mismatch.
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APPENDIX

We prove here that BW2/aφ
(1)
l is small with respect to

A0(a). The coefficients A and B that are found from the
continuity of φ̃

(2)
l (r) and its derivative at r = a can alternatively

be presented as follows:

A = (W2/a)′φ(2)
l − (W2/a)φ′(2)

l

(W2/a)′φ(1)
l − (W2/a)φ′(1)

l

, (A1)

B = − φ
′(1)
l φ

(2)
l − φ

(1)
l φ

′(2)
l

φ
′(1)
l (W2/a) − φ

(1)
l (W2/a)′

, (A2)

where the prime symbol means differentiation with respect
to a. When expressed in terms of F1, F2, and W2 we find

B = −exp(ıδ2)

κ2

F2F
′
1 − F ′

2F1

W2F
′
1 − W ′

2F1
, (A3)

where δ2 = −(l + 1 + ıη2)π/2. Therefore the quantity
BW2/[aφ

(1)
l A0(a)] is

BW2/(aφl(1)A0(a)) = − F ′
1/F1 − F ′

2/F2

F ′
1/F1 − W ′

2/W2
. (A4)

We can get a good idea about the magnitude of this term
by using semiclassical expressions for the Fi and W2. For our
purposes we can write

W2(a) = W2(b) exp
[ − ∫ a

b
drp2(r)

]
√

p2(a)/p2(b)
, (A5)

Fi(a) = Fi(b) exp
[+ ∫ a

b
drpi(r)

]
√

pi(a)/pi(b)
, (A6)

where the local wave numbers pi(r) are given by

pi(r) =
√

2ηiκi

r
+ l(l + 1)

r2
+ κ2

i , (A7)

and b is an arbitrary point in the region where the semiclassical
approximation is valid. We also assume that a and b lie in the
region where the exponentially decreasing components of the
Fi can be ignored.

Using these expressions and evaluating the derivatives in a
way that consistently respects the semiclassical approximation
(see Ref. [22], pp. 23–24) we find

BW2
/[

aφ
(1)
l A0(a)

] = p2(a) − p1(a)

p2(a) + p1(a)
. (A8)

For values of a in the nuclear surface the difference p2(a) −
p1(a) tends to be very small fraction of p2(a) + p1(a). Note
that the condition p1(a) − p2(a) = 0 is exactly the condition
(in the semiclassical approximation) that A0(a) be a stationary
function of a.
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