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Nucleon-antinucleon interaction from the modified Skyrme model
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We calculate the static nucleon-antinucleon interaction potential from the modified Skyrme model with an
additional BµBµ term using the product ansatz. The static properties of the single baryon are improved in the
modified Skyrme model. State mixing is taken into account by perturbation theory, which substantially increases
the strength of the central attraction. We obtain a long- and mid-range potential which is in qualitative agreement
with some phenomenological potentials.
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I. INTRODUCTION

The Skyrme model, which is considered to be the low
energy limit of quantum chromodynamics (QCD), models
QCD in the classical or large number of colors (NC) limit and
regards baryon as the soliton in the pion field [1–4]. Upon
quantizing a slowly rotating Skyrmion, workers calculated
the static property of nucleons and �, and their results
agreed with experimental data within 30% [3,4]. Recently, the
model has been widely used to discuss exotic hadrons [5–7].
The minimal version of the model consists of the following
Lagrangian terms: the nonlinear sigma term with chiral order
O(p2) and the Skyrme term with O(p4). Even though the
minimal version of the Skyrme model (Min-SKM) can be
regarded as a successful phenomenological model in spite
of its simplicity, it cannot be used to study the problem of
quark spin contents of proton or EMC (The European Muon
Collaboration) effects [8–10] which are important QCD effects
in baryon physics. This is a very unsatisfactory defect for
Min-SKM. To remove this shortcoming, additional terms with
O(p6) or higher orders have to be added into the model’s
Lagrangian to construct modified Skyrme models. Among
them, the simplest one is the model with the Min-SKM
Lagrangian plus only one additional BµBµ term [9], where
Bµ is the baryon current (or Goldstone-Wilczek current).
Hereafter, we will call this simplest modified Skyrme model as
Mod-SKM. It is expected that Mod-SKM will be more realistic
than Min-SKM. To discuss this issue and to fix the parameters
in Mod-SKM are two of the aims of this paper. Moreover,
the Mod-SKM can be obtained by considering the infinite
ω mass limit of the vector meson ω term of the chiral
Lagrangian studied in Ref. [11].

An interesting application of the Skyrme model is the
investigation of the baryon-baryon interaction, especially
the nucleon-nucleon (NN) interaction [12–17]. The Skyrme
picture gives us a qualitative understanding of the principal
features of the NN interaction: it has the correct long-range
one-pion-exchange potential which dominates the tensor
force, there is a strong short-range repulsion, and there
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is a pronounced central attraction at intermediate range,
albeit weakly attractive compared with the phenomenological
potential. However, the recent development of obtaining the
NN interaction from the Skyrme model has shown that the
combined effect of the careful treatment of the nonlinear
equations and the configuration mixing is to give substantial
central mid-range attraction for the NN system which is in
qualitative agreement with the data [16].

The NN and NN̄ potentials have been investigated by means
of the Min-SKM and the algebraic methods in Refs. [18–20].
The phenomenon and puzzles in the baryon-antibaryon physics
have attracted much attention recently thanks to the remarkable
discovery of baryon-antibaryon enhancements in the J/ψ

and B decays [21–26]. The NN̄ interaction and the possible
nucleon-antinucleon bound states have been investigated from
the constituent quark model [27–29]. In the Skyrme model, the
interactions between classical Skyrmion and anti-Skyrmion,
i.e., SS̄, were explored in Refs. [6,7]. In the present paper, we
will study the NN̄ potential using the Mod-SKM and following
the methods developed in Refs. [16,18,19].

It is well known that phenomenologically the NN̄ potential
is not as well established as the NN potential. At a distance of
less than about 1 fm, the interaction is dominated by annihila-
tion. However, at larger distances, a meaningful potential can
be defined and studied either by G-parity transformation on
the NN meson-exchange potential or phenomenologically.

We will compare our Mod-SKM results to some phe-
nomenological potentials. The BµBµ term in Mod-SKM
reflects the effect of ω meson exchange [11,30,31]. We will see
that at large distances, where the product ansatz makes the best
sense, the potentials based on the Skyrme model agree qualita-
tively and, in most cases, quantitatively with the phenomeno-
logical interactions. At intermediate and short distances, the
model does less well, but at these distances the product ansatz
is not valid. However, the results are still suggestive.

In the following section, we give the Mod-SKM
Lagrangian, then reproduce a number of static properties of the
single baryon which are both qualitatively appealing and quan-
titatively satisfactory. In Sec. III, we study the Skyrmion-anti-
Skyrmion interactions in Mod-SKM and project them to
the nucleon space by algebraic methods [18–20]. We also
consider the effects of rotational excitations by including the
intermediate states � and �̄, and evaluate the corrections to
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the NN̄ potential in perturbation theory. Sec. IV closes this
paper with some discussions related to the present study.

II. MODIFIED SKYRME MODEL AND STATIC
PROPERTIES OF SINGLE BARYON

The Skyrme model Lagrangian is generalized to include an
additional BµBµ term which simulates the effects of ω meson.
This modified Skyrme model Lagrangian provides a better
description of both the single-baryon static properties and the
low-energy NN interaction [30,31]. This Lagrangian has the
form

L = F 2
π

16
Tr(∂µU∂µU †) + 1

32e2
Tr([U †∂µU,U †∂νU ]2)

+1

8
m2

πF 2
πTr(U − 1) − 3π2NC

5m2
BµBµ, (1)

where U is an SU(2) valued field U = exp[2iτaπa/

Fπ ], Bµ is the topological current Bµ =
1

24π2 ε
µναβTr[(U †∂νU )(U †∂αU )(U †∂βU )], and e, Fπ, and

m are parameters to be determined. The first term is the
Lagrangian of meson fields in the nonlinear sigma model, and
the second term is the so-called Skyrme term which stabilizes
the soliton. The third term is the pion mass term, and the
fourth term is the additional BµBµ term. U transforms as
U → U ′ = LUR† under the chiral group SU(2)L × SU(2)R ,
where both L and R are SU(2) matrices.

The chiral soliton model [11], where, as an alternative to
the Skyrme term, the vector meson ω term βωµBµ stabilizes
the soliton, provides support for the interpretation of the BµBµ

term which emerges in the limit mω → ∞. Traditional nuclear
interaction theories within the potential framework, which are
mainly based on the single meson exchange, show that the
NN̄ system is more attractive than the NN system, because
in those theories there is a strong ω exchange, so inclusion of
this term which models the effect of the ω meson could help
provide a better description of the NN̄ system. Furthermore,
the study of the quark spin content also supports the notion
that we should add this six-derivative term in order to yield
a spin content consistent with the present experiment [8,32].
Generally, terms in L with more than two time derivatives
can lead to pathological runaway solutions when the adiabatic
approximation is relaxed, and they present obvious difficulties
in quantizing the theory. But the Lagrangian of Mod-SKM has,
at most, two time derivatives; hence, there is no such difficulty.

For the case with the single static Skyrmion, we use the
so-called hedgehog ansatz,

U0(r) = exp[iτar̂aF (r)], (2)

where F (r) is the chiral angle which minimizes the static
soliton energy subject to the boundary condition F (0) = π

and F (∞) = 0. From Eqs. (1) and (2), the mass of the classical

soliton is obtained as

Ms = π

2

Fπ

e

∫ ∞

0

{
x2F ′2 + 2S2 + 4S2

(
2F ′2 + S2

x2

)

+ 2µ2x2(1 − C) + ν2 S4

x2
F ′2

}
, (3)

with

x = eFπr, µ2 = m2
π

e2F 2
π

, F ′ = dF

dx
,

ν2 = 18e4F 2
π

5π2m2
, S = sinF, C = cosF.

(4)

In Eq. (3), the term proportional to ν2 comes from the
BµBµ term and is absent in the conventional Skyrme model.
Minimizing Ms with respect to F, δMs = 0, we have the
following equation for F :

(
x2

4
+ 2S2 + ν2

4

S4

x2

)
F ′′ +

(
ν2

2

S3C

x2
+ 2SC

)
F ′2

+
(

x

2
− ν2

2

S4

x3

)
F ′ −

(
1

2
SC + 2S3C

x2
+ 1

4
µ2x2S

)
= 0.

(5)

From this equation, we can see that the chiral angle F

asymptotically tends to the following expression when r goes
to infinity:

F (r) → A
(

1

mπeFπr2
+ 1

eFπr

)
e−mπ r , r → ∞. (6)

The coefficient A is related to the pion-nucleon coupling
constant gπNN through [3]

gπNN = 4πMNA
3emπ

. (7)

Associated with the chiral symmetry, the vector current J
µa

V

and axial vector current J
µa

A can be obtained from the Skyrme
Lagrangian Eq. (1) following the standard procedure,

J
µa

V = iF 2
π

8
Tr

[
τa

2
(∂µUU† + ∂µU †U )

]

− i

8e2
Tr

{[
τa

2
, ∂νUU†

]
[∂µUU†, ∂νUU†]

+
[
τa

2
, ∂νU

†U

] [
∂µU †U, ∂νU †U

] }

− 3NCi

20 m2
εµναβBνTr

[
τa

2
(∂αUU†∂βUU†

− ∂αU †U∂βU †U )

]
, (8)
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J
µa

A = iF 2
π

8
Tr

[
τa

2
(∂µUU† − ∂µU †U )

]

− i

8e2
Tr

{[
τa

2
, ∂νUU†

]
[∂µUU†, ∂νUU†]

−
[
τa

2
, ∂νU

†U

]
[∂µU †U, ∂νU †U ]

}

− 3NCi

20 m2
εµναβBνTr

[
τa

2
(∂αUU†∂βUU†

+ ∂αU †U∂βU †U )

]
. (9)

The classical field configuration of the hedgehog form does not
have definite spin and isospin. However, nucleons carry both
spin and isospin, and in any reasonable model of nucleons
the appropriate spin and isospin states must appear. Following
the conventional way, we perform the collective coordinate
quantization. We make a time-dependent SU(2) rotation of
our static soliton solution,

U (x) = A(t)U0(x)A†(t), (10)

then
L = −Ms + ITr[∂0A

†(t)∂0A(t)], (11)

where A(t) ∈ SU(2) matrix is the collective coordinate, and
I is the moment of inertia, which is given by

I = 1

Fπe3

2π

3

∫ ∞

0
dx{S2[x2 + 4(x2F ′2 + S2)] + ν2S4F ′2}.

(12)

If the SU(2) matrix A(t) is parametrized by A(t) = a0 + iτnan,
with a2

0 + ∑3
n=1a

2
n = 1, the Hamiltonian is

H = Ms − 1

8I

3∑
n=0

(
∂

∂an

)2

= Ms + S2

2I
= Ms + I2

2I
. (13)

Noting that the I in the denominator is the moment of inertia,
S and I are the spin and isospin operators, respectively. As in
Ref. [3], we can calculate the static properties of the single
baryon. In going from the classical results to the quantum
results for rotation operators, we must symmetrize them [32],
i.e., we perform the Weyl order of these operators.

From Eq. (13) the masses of the nucleon and �, respec-
tively, are

MN = Ms + 3

8I
, M� = Ms + 15

8I
. (14)

The isoscalar and isovector mean square electric radii are

〈r2〉E,I=0 = 1

(eFπ )2

∫ ∞

0
dx

−2

π
x2S2F ′, (15)

〈r2〉E,I=1 = 1

(eFπ )2

1

Ie3Fπ

∫ ∞

0
dx

{
2π

3
x4S2

×
[

1 + 4

(
F ′2 + S2

x2

)]
+ 2π

3
ν2x2S4F ′2

}
.

(16)

The corresponding proton and neutron mean square charge
radii are

〈r2〉E,p = 1
2 (〈r2〉E,I=0 + 〈r2〉E,I=1),

〈r2〉E,n = 1
2 (〈r2〉E,I=0 − 〈r2〉E,I=1).

(17)

After somewhat tedious but rather straightforward calcula-
tions, we can obtain the proton and neutron magnetic moments,
which are, respectively,

µp = 2MN

(
1

12I
〈r2〉E,I=0 + I

6

)
,

µn = 2MN

(
1

12I
〈r2〉E,I=0 − I

6

)
.

(18)

In the above, we have symmetrized the rotation operators, and
the proton and neutron magnetic momenta are defined through

〈p, 1/2|µ3|p, 1/2〉 = 1

2MN

µp,

〈n, 1/2|µ3|n, 1/2〉 = 1

2MN

µn.

(19)

After some lengthy calculations, we can also get the axial
coupling constant [3]

gA = − 2π

9e2

∫ ∞

0
dxx2

{
2CS

x

[
1 + 4

(
F ′2 + S2

x2

) ]

+F ′
(

1 + 8S2

x2

)}
− 12

5πm2

∫ ∞

0
dxS2F ′

{
(eFπ )2

×
(

2CS

3x
F ′ + S2

3x2

)
− (4xCSF′ + S2)

1

18I 2

}
. (20)

There are three parameters in the modified Skyrme model,
i.e., e, Fπ , and m; the pion mass is mπ = 138 MeV, and
the number of color NC = 3. In the conventional Skyrme
model, there is always a conflict between the e and Fπ

data input settings used to give the correct nucleon and �

masses and those used to give the correct strength of the pion
tail [14,16,19]. But a satisfactorily simultaneous description
of the nucleon, � mass, and strength of the pion tail is
possible by properly choosing the parameters e, Fπ , and m

in Mod-SKM. Throughout our calculation, we choose the
three parameters as e = 19.48, Fπ = 129.11 MeV, and
m = 420 MeV; this parameter setting gives gπNN ≈ 13.5
through Eq. (7), which leads to the correct one-pion-exchange
potential of NN̄ interaction as the distance tends to infinity.
The connection between the Mod-SKM and the chiral soliton
model including ω meson [11] allows us to relate the parameter

m to the coupling β, i.e., m =
√

2
5

3πmω

β
; and the best fit of the

parameters in Ref. [11] gives m ≈ 298.8 MeV, which is not too
far from the value of m in this work. The static single-baryon
properties are summarized in the Table I, along with the results
of the conventional Skyrme model [4] and experimental values.

In Table I, we can see that the Mod-SKM predictions are
closer to the experimental values than those of the conventional
Skyrme model [4], so we expect that Mod-SKM provides
a better description of other static properties of baryons
including the low-energy NN̄ interaction.
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TABLE I. Static properties of single baryon in Mod-SKM model
compared with those in the conventional one [4] and experimental
results.

Physical
quantity

Mod-SKM Conventional
Skyrme

Experiment

MN 938.9 MeV(input) 938.9 MeV(input) 938.9 MeV
M� 1232 MeV(input) 1232 MeV(input) 1232 MeV
Mπ 138 MeV(input) 138 MeV(input) 138 MeV
e 19.48 4.84 –
Fπ 129.11 MeV 108 MeV 186 MeV

〈r2〉1/2
E,I=0 0.71 fm 0.68 fm 0.72 fm

〈r2〉1/2
E,I=1 1.04 fm 1.04 fm 0.88 fm

µp 2.01 1.97 2.79
µn −1.20 −1.23 −1.91
gA 0.82 0.65 1.24

III. ADIABATIC N N̄ INTERACTION

A. Formulation

We now study, in the product ansatz, the interaction
energy of the Skyrmion-anti-Skyrmion (SS̄) system, which
is a function of the separation between S and S̄ and the
relative orientation. This interaction energy can be calculated
numerically. We rotate the two solitons independently in SU(2)
space,

U0(r − R/2) → AU0(r − R/2)A†,

U
†
0 (r + R/2) → BU†

0(r + R/2)B†,
(21)

where both A and B are SU(2) matrices. To obtain the static
NN̄ interaction, we describe the NN̄ configuration with the
product ansatz (exact in the large R limit) as

U (r) = AU0(r − R/2)A†BU†
0(r + R/2)B†, (22)

where one baryon is located at R/2 and the antibaryon at
−R/2. Retaining only the potential energy density in the
modified Skyrme Lagrangian (1), the energy in the field of
Eq. (22) is the same as in

U (r) = U0(r − R/2)CU†
0(r + R/2)C†, (23)

where C = A†B = c4 + iτ · c is an SU(2) matrix, too.
Discarding nonstatic terms containing time derivatives, the
static NN̄ potential is defined by

V (R, C) = −
∫

d3xL[U (r)] − 2Ms. (24)

V (R, C) can be written in the notation of Vinh Mau et al. [13]
as

V (R, C) = V1(R) + V2(R)c2
4 + V3(R)(c · R̂)2 + V4(R)c4

4

+V5(R)c2
4(c · R̂)2 + V6(R)(c · R̂)4, (25)

where Vi(i = 1−6) are functions of R. Generally, for SS̄, the
symmetry R → −R is broken by the product ansatz, and we

need three additional terms for a consistent expansion,

V (R, C) = V1(R) + V2(R)c2
4 + V3(R)(c · R̂)2 + V4(R)c4

4

+V5(R)c2
4(c · R̂)2 + V6(R)(c · R̂)4

+V7(R)c4(c · R̂) + V8(R)c3
4(c · R̂)

+V9(R)c4(c · R̂)3. (26)

These terms odd in R are artifacts of the symmetry of the
product ansatz and should be discarded. One can use the
symmetrized energy V (R,C)+V (−R,C)

2 to extract V1(R) to V6(R),
since the V7(R) to V9(R) terms drop out in this combination.

Next, we have to map the Skyrmion-anti-Skyrmion (SS̄)
interaction to the nucleon-antinucleon (NN̄ ) interaction. This
problem has been tackled in various ways by various groups for
the NN case [12,13,18]. Each of the forms used in these works
can always be cast in the form of the algebraic model [18].
So we will also use the algebraic method for mapping the
SS̄ interaction to the NN̄ interaction [16,18,19]. This method
allows us to both study both the large NC limit and include
the finite NC effects explicitly in a systematic way. Most of
the formulas given below can be found in Refs. [16,18,19];
however, for the sake of completeness, we recall here the
important ones.

The algebraic model consists of two sets of U (4) algebras,
one for each Skyrmion (or anti-Skyrmion), as well as the radial
coordinate R. This method was developed in Refs. [16,18] for
the NN system and also generalized to the NN̄ system in
Refs. [19,20]. In large NC limit, the SS̄ interaction can be
expanded in terms of three operators: the identity, operator W,

and operator Z,

W = T α
piT

β

pi/N
2
C,

Z = T α
piT

β

pj [3R̂iR̂j − δij ]/N2
C.

(27)

Here α and β label two different sets of bosons, used to realize
the U(4) algebra, and T is a one-body operator with spin and
isospin 1. The semiclassical (large NC) limit of these operators
can be given in terms of R̂ and C = c4 + iτ · c as [18]

Wcl(A,B) = 3c2
4 − c2 = 4c2

4 − 1,

Zcl(A,B, R̂) = 6(c · R̂)2 − 2c2 = 2c2
4 − 2 + 6(c · R̂)2.

(28)

The SS̄ interaction can be expressed as

V (R, C) = υ1(R) + υ2(R)Wcl + υ3(R)Zcl + υ4(R)W 2
cl

+υ5(R)WclZcl + υ6(R)Z2
cl.

(29)
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FIG. 1. (Color online) Various terms of the Skyrmion-anti-
Skyrmion potential, Eq. (29).

in the semiclassical limit. We can obtain the relations between
Vi and υi(i = 1−6) by comparing Eqs. (25) and (29), that is,

V1(R) = υ1(R) − υ2(R) − 2υ3(R) + υ4(R) + 2υ5(R)

+ 4υ6(R),

V2(R) = 4υ2(R) + 2υ3(R) − 8υ4(R) − 10υ5(R) − 8υ6(R),

V3(R) = 6υ3(R) − 6υ5(R) − 24υ6(R),

V4(R) = 16υ4(R) + 8υ5(R) + 4υ6(R),

V5(R) = 24υ5(R) + 24υ6(R),

V6(R) = 36υ6(R).

(30)

Six independent choices of the matrix C can yield enough
independent linear equations to determine υi(R)(i = 1–6) or
equivalently Vi(R)(i = 1–6) through Eq. (30); the numerical
results for υi(R)(i =1–6) coming from the Mod-SKM are
shown in Fig. 1. There we can see that the first three terms
υ1(R), υ2(R), and υ3(R) are dominant. It seems a good
approximation to neglect the interaction terms which are
nonlinear in the expansion of operators W and Z. In the
following discussion, we will mostly concentrate on the first
three terms, then the leading term in this expansion is given by

V (R, C) = υ1(R) + υ2(R)W + υ3(R)Z. (31)

The algebraic operators W and Z have simple expectation
values for the nucleons [18]

〈N |T α
pi |N〉 = −NC

3
PN 〈N |τα

p σα
i |N〉,

〈NN̄ |W |NN̄〉 = 1
9P 2

N 〈NN̄ |σ 1 · σ 2τ 1 · τ 2|NN̄〉,
〈NN̄ |Z|NN̄〉 = 1

9P 2
N 〈NN̄ |(3σ 1 · R̂σ 2 · R̂ − σ 1 · σ 2)

× τ 1 · τ 2|NN̄〉.

(32)

Here PN is the finite NC correction factor PN = 1 + 2
NC

.

By using Eq. (32), we take the NN̄ matrix element of the

interaction and evaluate the NN̄ potential, which only contains
three independent multipole components, i.e., the central part
Vc, the spin-spin part Vs , and the tensor term Vt :

V (0)(R) = Vc(R) + Vs(R)σ 1 · σ 2τ 1 · τ 2 + Vt (R)

× (3σ 1 · R̂σ 2 · R̂ − σ 1 · σ 2)τ 1 · τ 2, (33)

with

Vc = υ1, Vs = υ2P
2
N

9
, Vt = υ3P

2
N

9
. (34)

The NN̄ potential in the above is calculated by projecting
Eq. (31) to the nucleon degrees of freedom only, and this
is the correct procedure for large separation. However, at
short distances, the nucleons may deform or excite as they
interact, and they can be virtually whatever the dynamics
requires, for example, �(or�̄). This means that we need to
consider the state mixing effect. For the NN interaction, we
saw that state mixing plays an important role in obtaining
the phenomenologically correct potential. We expect the state
mixing effect to be very important in the NN̄ interaction as
well. State mixing comes into effect at the distance where the
product ansatz no longer makes sense, so our results at short
and intermediate distances should be suggestive, although we
include state mixing. As a guide, we study the effects of the
intermediate states N�̄,�N̄, and ��̄ perturbatively; then to
second order, the NN̄ interaction is given by

V (R) = 〈NN̄ |V (R, C)|NN̄〉

+
∑

s

′ 〈NN̄ |V (R, C)|s〉〈s|V (R, C)|NN̄〉
ENN̄ − Es

. (35)

Here ENN̄ is the two-nucleon energy, and Es is the energy
of the relevant excited state. The first term on the right
is the direct nucleon-antinucleon projection of V (R, C),
and it is exactly the expression V (0)(R). The second term
is the correction due to rotational or excited states. It is
clear from the energy denominator that the second term is
attractive. We need to evaluate the three sets of matrix elements
〈NN̄ |V (R, C)|N�̄〉〈N�̄|V (R, C)|NN̄〉, 〈NN̄ |V (R, C)|�N̄〉
〈�N̄ |V (R, C)|NN̄〉, and 〈NN̄ |V (R, C)|��̄〉〈��̄|V (R, C)
|NN̄〉; and the final result for the first-order correction to the
NN̄ interaction is [16,19]

V
(1)

PT (R) = −Q2
N

δ

{[
1

3
Q2

NP τ
0 +

(
16

27
P 2

N + 5

27
Q2

N

)
P τ

1

]

× [
υ2

2 (R) + 2υ2
3 (R)

] + (σ 1 · σ 2)

[
− 1

18
Q2

NP τ
0

+
(

16

81
P 2

N − 5

162
Q2

N

)
P τ

1

][
υ2

2 (R) − υ2
3 (R)

]

+ (3σ 1 · R̂σ 2 · R̂ − σ 1 · σ 2)

[
− 1

18
Q2

NP τ
0

+
(

16

81
P 2

N − 5

162
Q2

N

)
P τ

1

]

× [
υ2

3 (R) − υ2(R)υ3(R)
]}

. (36)
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Here QN is another finite NC correction factor, QN =√
(1 − 1/NC)(1 + 5/NC). δ is the N − � energy difference,

which is about 300 MeV, and P τ
T (T = 0, 1) is a projection

operator onto the isospin T , P τ
0 = 1

4 (1 − τ 1 · τ 2), P τ
1 =

1
4 (3 + τ 1 · τ 2).

B. Results

For each total isospin T = 0, 1 we parametrize the NN̄

interaction potential by

V T

NN̄
= V T

c + V T
s σ 1 · σ 2 + V T

t (3σ 1 · R̂σ 2 · R̂ − σ 1 · σ 2).

(37)

We now calculate V T
c , V T

s , and V T
t for each isospin T (T =

0,1) following the methods outlined above. Such a calculation
requires considerable computing time. We would like to com-
pare the Skyrmion model potentials with the realistic nucleon-
antinucleon interaction potentials. However, we cannot relate
our results to the modern NN̄ interaction potential such as the
Paris potential [33] and the Julich potential [34], since their
central parts contain explicit momentum-dependent terms. For
that reason, we compare our results with the phenomenological
potentials of Bryan and Phillips [35] and the Nijmegen group
[36]. These potentials provide successful descriptions of both
the NN̄ scattering experiments data and the spectrum of
resonances, and they are not qualitatively different from each
other. At large distances, all these potentials can be correctly
described by the one-boson-exchange mechanism, and the NN̄

potential can be obtained by G-parity transformation of the
corresponding parts of the NN interaction potential. Using
the equation of motion and the asymptotic form Eq. (6) of
the chiral angle F (r), we see that the NN̄ interaction based
on the Mod-SKM tends to one-pion-exchange potential in the
long-distance region [17],

V NN̄ (r) → −1

4π

(
gπNN

2MN

)2

(τ 1 · τ 2)(σ 1 · ∇)

× (σ 2 · ∇)
e−mπ r

r
, r → ∞. (38)

The parameters e, Fπ , amd m are properly chosen to guarantee
that the long-distance tail of the NN̄ interaction agrees with
the phenomenology. To model the annihilation effect at short
distances, various cutoffs have been used in the Bryan-Phillips,
Nijmegen, and other similar potentials. At short distances, the
interaction is dominated by the strong absorptive potential
of order of 1 GeV, and it is significantly different from the
meson-exchange potential. Furthermore, the Skyrme model
at short distances is no longer meaningful. So we should
not take seriously the comparison of our results with the
phenomenological potentials at 1 fm and less; however, the
results are still indicative at short distances. We find that
the principal feature of the phenomenological NN̄ interaction
emerges from the careful calculation of that interaction based
on the Mod-SKM, i.e., the strong central attraction.

Figures 2 and 3 show the central potential V T
C calculated

from Eq. (35) and from only the first term of the right-hand

FIG. 2. (Color online) Central potential V T
c as a function of

distance R for the T = 0 channel, showing the nucleon-only result,
the result of the states mixing by perturbation theory, the nucleon-only
potential (no B2) in the conventional Skyrme model [19], and the
Bryan-Phillips and Nijmegen phenomenological potentials based on
meson exchange.

side of Eq. (35). To keep the figures clear, we plot the potential
curves of T = 0 and T = 1 separately. For the case with the
nucleon only, the results of V T

C are independent of the isospin
T and less attractive than the phenomenological potentials.
When the perturbation corrections due to the effects of the
intermediate states N�̄,�N̄, and ��̄ (i.e., � mixing effects)
are taken into account, the results of V T

C show significant
attraction effects explicitly and are closer to the Bryan-Phillips
and Nijmegen potential. These perturbation results are rather
realistic. The effects of �(�̄) mixing are so striking in the case
of T = 1 that the perturbation result is more attractive than
the phenomenological potential for T = 1. Furthermore, we
would like to mention that because of isospin conservation,
the N� transition is missing in the T = 0 channel, which
differentiates then the effect of the perturbation result between
the T = 0 and the T = 1 channels. As a cross-check of our
numerical calculation, we reproduce the results of Ref. [19];

FIG. 3. (Color online) Same as Fig. 2, but for the T = 1 channel.
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FIG. 4. (Color online) Spin-dependent potential V T
s as a function

of distance R for the T = 0 channel.

FIG. 5. (Color online) Same as Fig. 4, but for T = 1.

FIG. 6. (Color online) Tensor potential V T
t as a function of

distance R for the T = 0 channel.

FIG. 7. (Color online) Same as Fig. 6, but for T = 1.

the nucleon-only results of Ref. [19] are also shown in Figs. 2
and 3 to illustrate the role of the BµBµ term. From these fig-
ures, we can see that the central potentials from the Mod-SKM
are in better agreement with the phenomenology potentials.

In Figs. 4 and 5, we show the T = 0 and T = 1 spin-
dependent potentials. In these cases, the nucleon-only potential
and the perturbative results are quite similar. From 1 fm to
about 1.5 fm, the potentials from the modified Skyrme model
are not so close to the phenomenological potentials. Especially
in the T = 0 case, both the nucleon-only and perturbative
analysis give a positive spin-spin potential, in contrast to
the negative values of the phenomenological potentials. It is
important to see if the more complete Skyrme calculations
can repair this disagreement. However, the smallness of the
potential is reproduced. In our calculation, that small value
arises from the cancelations of large terms.

Figures 6 and 7 show the tensor potential V T
t . Being similar

to case of the spin-dependent potential, the nucleon-only
potential and the perturbative results are also quite similar.
Particularly at large distances, these results agree with the
phenomenological potential, but the agreement is not so good
at intermediate distances. However, the difference between the
theoretical and the phenomenological results is of the order of
10 MeV, compared to the static soliton mass or the nucleon
mass which is about 1 GeV, the difference is small enough.
Here again, an improved Skyrme model dynamical calculation
that goes beyond the product ansatz, uses diagonalization for
state mixing, and includes explicitly the vector meson (ρ, ω)
and some high derivative terms in the Lagrangian might lead
to a better agreement.

IV. CONCLUSION AND DISCUSSION

We have shown that the modified Skyrme model with
product ansatz can give an NN̄ interaction that is in quali-
tative agreement with the phenomenological potential, and it
provides a description of the static properties of the single
baryon that is better than that given by the minimal version
Skyrme model. We see that it is very important to include
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configuration mixing, and we roughly estimate this effect
by perturbation theory. A more sophisticated method of
considering the state mixing effect is the Born-Oppenheimer
approximation. The potential curves in the Born-Oppenheimer
approximation are similar to the perturbative results, especially
for the spin-dependent and the tensor potential [16,19].

To go from this work to a theory that can be confronted with
experiment in detail is a difficult challenge, i.e, predicting the
nucleon-antinucleon scattering cross section, the polarization,
the spectra of the nucleon-antinucleon system, etc. There are
nonadiabatic effects that are particularly important at small R,
and there are other mesons which should be included in the
Skyrme Lagrangian. The effects due to vector mesons may be
particularly important at small distances. Obtaining the static
nucleon-antinucleon interaction from a Skyrme model based

on large NC QCD can be a promising approach. We expect
that we can further discuss whether there exists a nucleon-
antinucleon bound state (baryonium) in this framework.
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