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Threshold effects in multichannel coupling and spectroscopic factors in exotic nuclei
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In the threshold region, the cross section and the associated overlap integral obey the Wigner threshold law that
results in the Wigner-cusp phenomenon. Due to flux conservation, a cusp anomaly in one channel manifests itself
in other open channels, even if their respective thresholds appear at a different energy. The shape of a threshold
cusp depends on the orbital angular momentum of a scattered particle; hence, studies of Wigner anomalies in
weakly bound nuclei with several low-lying thresholds can provide valuable spectroscopic information. In this
work, we investigate the threshold behavior of spectroscopic factors in neutron-rich drip-line nuclei using the
Gamow shell model, which takes into account many-body correlations and the continuum effects. The presence
of threshold anomalies is demonstrated and the implications for spectroscopic factors are discussed.
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In 1948, based on general principles, Wigner predicted [1]
a characteristic behavior (a cusp) of scattering and reaction
cross sections in the vicinity of a reaction threshold. This
particular behavior (often referred to as the Wigner’s threshold
law or the Wigner-cusp phenomenon) was given a quantitative
explanation a decade later [2–7]. In particular, it has been
noted [3–6,8] that, due to the unitarity of the scattering
matrix and the resulting flux conservation, the presence of a
threshold anomaly in an opening reaction channel can trigger
an appearance of Wigner cusps in other open channels with
lower thresholds. As the shape of the cusp strongly depends
on orbital angular momentum (is strongest in s and p waves),
it was early realized that the presence of cusp anomaly could
provide structural information about reaction products [3,4,9].

The Wigner-cusp phenomenon has been studied experimen-
tally and theoretically in various areas of physics: pion-nucleus
scattering [9,10], electron-molecule scattering [11], electron-
atom scattering [12], and ultracold atom-diatom scattering
[13]. In low-energy nuclear physics, threshold effects have
been investigated in, e.g., charge-exchange reactions [14],
neutron elastic scattering [15], and deuteron stripping [16].
Abramovich et al. [17] reviewed threshold phenomena in
nuclear reactions, including those with the light neutron-rich
systems such as 6He, 10Be, and 10Li (see also Ref. [18]) that are
of particular interest in the context of this work. The influence
of threshold effects on the cross section and the strength
function, hence the spectroscopic factor (SF) of a threshold
state was pointed out in Refs. [8,19].

The purpose of this study is many-fold. Firstly, we
investigate whether the Wigner-cusp phenomenon appears
naturally in a microscopic many-body approach rooted in an
effective internucleon interaction. The second goal is to inves-
tigate the influence of threshold effects and the coupling to
the nonresonant continuum on overlap integrals, or spectro-
scopic factors. We demonstrate that the energy dependence
of SFs caused by an opening of a reaction channel can be

described at the shell-model level only if nucleon-nucleon
correlations involving scattering states are treated properly.
Finally, we emphasize the importance of experimental studies
of cusp phenomena in weakly bound, neutron-rich nuclei
in which low-lying one-neutron and two-neutron thresholds
appear.

The traditional shell model (SM) of nuclear structure views
the nucleus as a closed quantum system (CQS) in which
nucleons occupy bound orbits. While such an assumption
may be somehow justified for well-bound nuclei having high
particle-emission thresholds, it can no longer be applied to
weakly bound or unbound systems in the vicinity of drip lines,
where the coupling to the particle continuum (both resonances
and the nonresonant scattering states) becomes important. This
coupling can be considered in the open quantum system (OQS)
extension of the SM, the so-called continuum SM (see Ref. [20]
for a recent review). In this work, we apply the complex-energy
implementation of the continuum SM, the so-called Gamow
shell model (GSM) [21,22] in the version of Refs. [21,23].
GSM is a multiconfigurational SM with a single-particle (s.p.)
basis given by the Berggren ensemble [24] which consists
of Gamow (bound and resonance) states and the nonresonant
continuum. For a given Hamiltonian, the number of particles
occupying states of the nonresonant continuum is a result
of GSM variational calculations. The resonant states of the
GSM are the generalized eigenstates of the time-independent
Schrödinger equation which are regular at the origin and satisfy
purely outgoing boundary conditions. The GSM can thus be
viewed as a quasistationary many-body OQS formalism. (An
alternative microscopic approach, successfully applied to the
structure of weakly bound or unbound nuclei, is the complex
scaling method that is capable of treating different kinds of
reaction channels and continuum states starting from different
thresholds [25].) Since the Wigner-cusp phenomenon is most
pronounced for low-� waves and for neutrons (no Coulomb
barrier), as an illustrative example we choose the case of the
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one-neutron (1n) channel in the model two- and three-neutron
systems outside the inert core: 6He and 7He. Our aim is not to
fit the actual experimental data, but rather to accomplish the
physics goals as stated above.

The starting point of GSM is the Berggren one-body
completeness relation [24] allowing the expansion of both
bound and unbound states. The Berggren ensemble consists
of resonant and scattering states generated by a finite-depth
potential V (r). Resonant states are solutions of the Schrödinger
equation with purely outgoing asymptotics. Their energies and
wave functions are in general complex. The resonant states
of the GSM have either bound or decaying character; they
form the so-called pole subspace. Scattering states entering
the Berggren ensemble are also defined in the complex
energy/momentum plane. For a given partial wave (�, j ), the
scattering states are distributed along a contour L

�j

+ in the
complex momentum plane. The set of all bound and decaying
states |un〉 enclosed between L

�j

+ and the real k-axis, and

scattering states |uk〉 in L
�j

+ is complete [24]:∫∑
B

|uB〉〈ũB| = 1, (1)

where |B〉 is either a discrete resonant state or a scattering
continuum state (L

�j

+ part). The tilde symbol above bra vectors
in Eq. (1) signifies that the complex conjugation arising in the
dual space affects only the angular part and leaves the radial
part unchanged [24]. The continuous part of the completeness
relation (1) has to be discretized in numerical applications. For
that purpose, scattering states are discretized and renormalized
in order to obtain a discrete completeness relation [24]:

N∑
B=1

|uB〉〈ũB| � 1; |uB〉 = √
ωB |ukB 〉, (2)

where {kB, ωB} is the set of discretized momenta and as-
sociated weights provided by a Gauss-Legendre quadrature.
The many-body GSM basis corresponds to Slater determi-
nants (SD) spanned by one-body Berggren states: |SDi〉 =
|ui1 · · · uiA〉 where |SDi〉 is the i-th SD in the A-body basis
and uij is the j -th one-body state occupied in |SDi〉. The
many-body completeness relation is built from Eq. (2) by
forming all possible SDs generated by the Gamow one-body
states: ∑

i

|SDi〉〈S̃Di | � 1. (3)

The completeness in Eq. (3) is not exact as the one-body
completeness relation (2) is approximate due to the discretiza-
tion. In the basis (3), the GSM Hamiltonian H becomes a
complex symmetric matrix. Moreover, many-body bound and
resonant states are embedded in the background of nonresonant
scattering eigenstates, so that one needs a criterion to isolate
them. The overlap method [21] has proven to be very efficient
to solve this problem. For this, one diagonalizes first H in the
pole subspace to generate a zeroth-order vector |�0〉. In the
second step, |�0〉 is used as a pivot to generate a Lanczos
subspace of the full GSM space. Its diagonalization provides
eigenvectors of H in the total GSM space, and the requested

bound or decaying eigenstate of H is the one which maximizes
the overlap |〈�0|�〉|.

The definition of observables in GSM follows directly from
the mathematical setting of quantum mechanics in the rigged
Hilbert space rather than the usual Hilbert space [26,27].
Modified definition of the dual space, embodied by the tilde
symbol above bra states, implies that observables in many-
body resonances become complex. In this case, the real part
of a matrix element corresponds to the expectation value, and
the imaginary part can be interpreted as the uncertainty in the
determination of this expectation value due to the possibility
of decay of the state during the measuring process [24,28].

In this Rapid Communication, the s.p. basis (1) is generated
by a Woods-Saxon (WS) potential with the radius R0 = 2 fm,
the diffuseness d = 0.65 fm, the spin-orbit strength Vso =
7.5 MeV, and the depth of the central potential V0 = 47 MeV
(the “5He” parameter set). This potential reproduces experi-
mental energies and widths of the s.p. resonances 3/2−

1 and
1/2−

1 in 5He. The GSM Hamiltonian is a sum of the one-body
WS potential, representing the effect of an inert 4He core, and
of the two-body interaction among valence particles, given
by a finite-range surface Gaussian interaction (SGI) [23] with
the range µ = 1 fm and the coupling constants depending on
the total angular momentum J of the neutron pair: V

(0)
0 =

−403 MeV fm3 and V
(2)

0 = −392 MeV fm3. These constants
are fitted to reproduce the experimental ground state (g.s.)
binding energies of 6He and 7He with the “5He” WS potential.
The valence space for neutrons consists of the p3/2 and
p1/2 partial waves. The p3/2 wave functions include a 0p3/2

resonant state and p3/2 nonresonant scattering states along a
complex contour enclosing the 0p3/2 resonance in the complex
k-plane. For a p1/2 part, we take nonresonant scattering states
along the real-k axis (the broad 0p1/2 resonant state plays a
negligible role in the g.s. wave function of 6He). For both
contours, the maximal momentum value is kmax = 3.27 fm−1.
The contours have been discretized with up to 60 points and
the attained precision on energies and widths is better than
0.1 keV. In the subsequent analysis, parameters of the GSM
Hamiltonian are varied in order to change positions of 1n
thresholds in various isotopes.

In order to illuminate the continuum coupling effects in
GSM, we have introduced a simplified harmonic oscillator SM
(HO-SM) scheme. Here, the radial wave functions are those
of the spherical harmonic oscillator with the frequency h̄ω =
41A−1/3 MeV. The one-body part of the HO-SM Hamiltonian
is given by the real energies of the one-body part of the GSM
Hamiltonian. The HO-SM scheme is supposed to illustrate the
“standard” CQS SM calculations in which only bound valence
shells are considered in the s.p. basis.

SFs are useful indicators of the configuration mixing in the
many-body wave function. Extensive attempts have been made
to deduce SFs using direct reactions, such as single-nucleon
transfer, nucleon knockout, and elastic break-up reactions,
using hadronic and leptonic probes. These analyses often
reveal model- and probe-dependence [29–31] raising concerns
about the possibility of their precise experimental determi-
nation. (For an extensive study of spectroscopic factors in
exotic nuclei from nucleon-knockout reactions, see Ref. [32].)
Studies of (e, e′p) reactions in closed-shell nuclei [33]
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demonstrated that the SFs are reduced with respect to the
standard SM predictions, mainly due to the coupling to
high-momentum states and long-range correlations [34]. In
this work, we point out that additional difficulties in extracting
and interpreting SFs from the measured cross sections using
the standard SM lie in the neglect of particle continuum,
channel coupling, and strength fragmentation.

Single-nucleon overlap integrals and the associated spec-
troscopic factors (SFs) are basic ingredients of the theory of
direct reactions (single-nucleon transfer, nucleon knockout,
elastic breakup) [35,36]. Experimentally, SFs can be deduced
from measured cross sections; they are useful measures of the
configuration mixing in the many-body wave function. The
associated reaction-theoretical analysis often reveals model-
and probe-dependence [29–31] raising concerns about the
accuracy of experimental determination of SFs. In our study
we discuss the uncertainty in determining SFs due to the
two assumptions commonly used in the standard SM studies,
namely (i) that a nucleon is transferred to/from a specific s.p.
orbit (corresponding to an observed s.p. state), and (ii) that
the transfer to/from the continuum of non-resonant scattering
states can be disregarded. In this work, we define SFs in a usual
way, through the radial overlap functions u�j (r) [36–38]:

u�j (r) = 〈
�

JA

A

∣∣[∣∣�JA−1
A−1

〉 ⊗ |�, j〉]JA
〉
, (4)

where |�JA

A 〉 and |�JA−1
A−1 〉 are wave functions of nuclei A and

A − 1, respectively, and |�, j〉 is the angular-spin part of the
channel function. The angular-spin degrees of freedom are
integrated out in Eq. (4) so that u�j depends only on the
relative radial coordinate of the transferred particle r = |�r|.
The spectroscopic factor, denoted by S2, is defined as usual
through the norm of the overlap function [36–38]. Using a
decomposition of the (�, j ) channel function in the complete
Berggren basis, one obtains

u�j (r) =
∫∑
B

〈
�̃

JA

A

∣∣∣∣a+
�j (B)

∣∣∣∣�JA−1
A−1

〉 〈r�j |B〉, (5)

S2 =
∫∑
B

〈
�̃

JA

A

∣∣∣∣a+
�j (B)

∣∣∣∣�JA−1
A−1

〉2
, (6)

where a+
�j (B) is a creation operator associated with a s.p.

Berggren state |B〉. Since Eqs. (5) and (6) involve summation
over all discrete Gamow states and integration over all
scattering states along the contour L

�j

+ , the final result is
independent of the s.p. basis assumed. This is in contrast
to standard SF experimental extraction and SM calculations
where model-dependence enters through the specific choice
of a s.p. state a+

n�j , with Eq. (6) reducing to the sole matrix

element 〈�JA

A ||a+
n�j ||�JA−1

A−1 〉2. This can lead to sizeable errors
if the states of A − 1 and/or A lie close to a channel threshold.

The GSM results for 6He g.s. SF in the channel:
[5He(g.s.) ⊗ p3/2]0+

are shown in Fig. 1(a) as a function of
one-neutron separation energy S1n in 6He. To this end, we have
fixed the depth of the WS potential so that 0p3/2 and 0p1/2 are
both bound with respective energies −5 and −0.255 MeV,
and we have varied the SGI monopole coupling constant
V

(J=0)
0 so that the 1n separation energy of 6He goes through
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FIG. 1. The real part of the overlap integral as a function of
one-neutron separation energy S1n as indicated. Top and middle:
〈6He(g.s.)|[5He(g.s.) ⊗ p3/2]0+〉; bottom: 〈7He(g.s.)|[6He(g.s.) ⊗
p3/2]0+〉. Solid line: GSM results; dashed line: the SM-like approxi-
mation (HO-SM) where the SGI matrix elements are calculated in the
HO basis {0p3/2, 0p1/2}. The 1n thresholds in 6He (top and bottom)
and 5He are marked by arrows. The results displayed in the middle
panel are plotted as a function of the energy of the 0p3/2 resonant
state, which, in our model, is negative of S1n[5He]. For more details,
see the discussion in the text.

zero. At S1n = 0 (1n-emission threshold), the calculated SF
exhibits behavior consistent with the Wigner threshold law: the
quickly varying component of SF behaves as (−S1n)�−1/2 (� =
1) below the 1n threshold and follows the (S1n)�+1/2 rule
above the threshold. It is worth noting that the parameters
of the GSM Hamiltonian and the associated S-matrix poles
do not show any discontinuities around S1n = 0. This result
constitutes an excellent test of the GSM formalism: the
Wigner limit is reached precisely at the 1n threshold obtained
from many-body calculations. It is interesting to see that the
HO-SM results are depressed by about 25% as compared to
GSM. Indeed, in the HO-SM s.p. basis, the configurations
[0p3/2 ⊗ 0p3/2]0+

and [0p1/2 ⊗ 0p1/2]0+
are strongly mixed

by the SGI residual interaction; hence, the value of p3/2 SF in
the g.s. of 6He is significantly reduced. Moreover, the s.p.
basis in HO-SM calculations comprises HO states whose
radial form factors are independent of the depth of the WS
potential. Hence, no threshold effect can be seen in HO-SM
SFs.

As discussed above, when a new channel opens at energy
Et , there appears a flux redistribution in other open channels
with lower thresholds. This flux redistribution may be affected
by the presence of the Wigner cusp in the new channel; hence,
the reaction cross-sections in all open channels may exhibit
the threshold anomaly at Et . To illustrate the phenomenon
of channel coupling, Fig. 1(b) shows again the SF for the
[5He(g.s.) ⊗ p3/2]0+

channel but this time as a function of the
0p3/2 s.p. state energy (or negative S1n of 5He). This calculation
was carried out by varying the depth of the WS potential so
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that the p3/2 pole of the S-matrix (which is also the g.s. of 5He
in our model space), would change its character from a bound
state to an unbound decaying Gamow state. At S1n[5He] = 0,
the 1n and 2n thresholds in 6He become degenerate, i.e.,
the two channels of 5He + n, namely 6He and 4He + 2n
couple. As seen in Fig. 1, the SF in the [5He(g.s.) ⊗ p3/2]0+

channel exhibits the Wigner cusp at S1n[5He] = 0, i.e., at a
2n threshold. At this point, the first derivative ∂S2/∂e0p3/2 of
the SF becomes infinite, consistent with the Wigner law for
� = 1. The SF in HO-SM varies very little in the whole studied
range of 0p3/2 energies. (Let us mention that the competition
between bound and unbound states in 6He, and the 5He + n
and 4He + 2n reaction channels has been studied within the
coupled cluster method [25].)

In the case shown in Fig. 1(b) the GSM Hamiltonian
changes at S1n[5He] = 0 as at this point the 0p3/2 pole
becomes unbound. It is, therefore, instructive to investigate
the situation at which the Hamiltonian behaves smoothly
around the threshold. Figure 1(c) illustrates the case of 7He
g.s. in the channel [6He(g.s.) ⊗ p3/2]3/2−

. In order to avoid
secondary open-channel mixing effects, we have adjusted the
WS potential depth so that the 5He g.s. is bound by 5 MeV
and cannot play any role in the anomalous energy dependence
of the studied SF. The 0p1/2 state is weakly bound with an
energy of −0.255 MeV. In order to control the binding energy
of 6He, the V

(J=0)
0 coupling constant is varied so that 7He g.s.

is always bound while S1n of 6He goes through zero. The GSM
space is the same as in the previous cases, except that the 0p1/2

state is now included in the GSM basis as it is bound. A cusp in
the calculated SF for 7He is clearly seen at S1n[6He] = 0. The
threshold anomaly shown in Fig. 1(c) can only result from the
cross-channel couplings. Again, the SF in HO-SM smoothly
varies in the whole energy region considered.

The anomalies in the spectroscopic factors when the
total energy of the system varies through the threshold of
an opening channel are discussed within the many-body
OQS formalism of the GSM. The main conclusions of this
work can be summarized as follows: (i) Many-body OQS
calculations correctly predict the Wigner-cusp and channel-
coupling threshold effects. This constitutes a very strong

theoretical check for the GSM approach; (ii) The spectroscopic
factors defined in the OQS framework through the norm of
the overlap integral, exhibit strong variations around particle
thresholds. Such variations cannot be described in a standard
CQS SM framework that applies a ‘one-isolated-state’ ansatz
and ignores the coupling to the decay and scattering channels.
In our model calculations, the contribution to SF from a
non-resonant continuum can be as large as 25%; (iii) Any
theoretical model aiming at a meaningful description of SFs
of low-� states in weakly bound nuclei must meet certain
minimal conditions. Namely, it should be able to account
for (a) many-body configuration mixing and the resulting
spreading of the spectroscopic strength due to internucleon
correlations, (b) coupling to the particle continuum that affects
radial properties of wave functions in the neighborhood of
reaction thresholds, and (c) coupling between various reaction
channels.

Considering points (ii) and (iii) above, one should be
careful when extracting spectroscopic information from trans-
fer experiments on drip-line nuclei. The results presented
in this work suggest that, similar to other fields, experi-
mental studies of various aspects of threshold effects could
provide valuable spectroscopic information about the s.p.
structure of weakly bound nuclei. Here, of particular interest
are systems with near-lying 1n and 2n thresholds such as
6,8He or non-Borromean two-neutron halos [39], in which
cusps in SFs are expected to be particularly strong in low-�
(� = 0, 1) neutron channels. Similar features were found in
the analysis of the continuum-coupling correction to the CQS
eigenvalues near the reaction threshold [40]. Finally, let us
note that a threshold anomaly is also expected in proton-rich
nuclei. While the effect is weaker than in the neutron-rich
systems, one still expects anomalous differences in SFs and
other spectroscopic quantities in mirror nuclei. Work along
these lines is in progress.
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