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Proton pairing in neutron stars
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We studied the influence of dispersive self-energy effects, three-body forces, and polarization contributions
to the interaction kernel on the 1S0 proton pairing in neutron star matter. We found that a strong suppression of
the gap by self-energy effects and three-body forces is at low density compensated by the attractive polarization
interaction, shifting the domain of pairing to below ρB ≈ 0.3 fm−3.
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The quantitative knowledge of the different neutron and
proton pairing gaps in neutron stars (NS) is of vital importance
for the understanding and modeling of the various phenomena
that are related to them, namely the occurrence of glitches [1]
and the cooling behavior [2] of the star. At the moment, the only
pairing channel that seems to be theoretically under control is
the 1S0 neutron pairing occurring in the crust of the star, for
which several calculations agree on predicting a suppression
by about a factor of 4 relative to the BCS value, leading to
gaps of the order of not more than 1 MeV, even if the precise
density dependence is still not accurately known [3,4]. This
suppression is mainly due to polarization corrections to the
interaction kernel, which even in the “low-density” subnuclear
domain are substantial. However, corrections to the neutron
self-energy play a minor role in this regime. The 3PF2 pairing
of neutrons and protons in the core of the star is still burdened
with too many theoretical uncertainties even on the pure BCS
level [3,5] and will not be discussed here.

The focus of this article is on the remaining important 1S0

proton pairing extending through the inner crust and outer
core of the star. Even if the relevant partial proton densities
in this environment are evidently the same as the neutron
densities for 1S0 neutron pairing, the presence of a much larger
background neutron density leads to important modifications
of the proton self-energy as well as to strong in-medium
corrections to the proton-proton ( pp) interaction kernel that
both might strongly influence the pairing. The quantitative
investigation of these effects is the purpose of this article.
More precisely, we study the change of the proton gap due to (a)
the influence of the momentum and energy dependence of the
self-energy in Brueckner-Hartree-Fock (BHF) approximation,
(b) the addition of nuclear three-body forces (3BF) to the
two-body potential (2BF), and (c) polarization contributions
to the interaction kernel caused by neutrons and protons in the
environment.

For all calculations presented in the following we use as
basic nucleon-nucleon interaction the Argonne V18 potential
[6], which is supplemented by the Urbana UIX three-body
forces [7] to ensure a realistic saturation point of nuclear
matter within the BHF approach. This interaction is used for
the interaction kernel of the gap equation (comprising direct
and medium-induced contribution) as well as as input to the
BHF calculations of the neutron and proton single-particle
(s.p.) potentials that appear in the gap equation and also
determine the equation of state of nuclear matter and thus

the composition (proton fraction) of beta-stable NS matter [8],
relevant for our calculations. All ingredients of our approach
are thus consistently based on the same realistic interaction.

The microscopic theory of pairing involves in principle a
four-dimensional gap equation incorporating the momentum-
and energy-dependent interaction kernel �(k, ω; k′, ω′) and
self-energy �(k, ω), which reads [3,9–11]

�(k, ω) = −
∫

d3k′

(2π )3

∫
dω′

2πi
�(k, ω; k′, ω′)

�(k′, ω′)
D(k′, ω′)

(1)

with

D(k, ω) = [M(k,+ω) − ω − i0]

× [M(k,−ω) + ω − i0] + �(k, ω)2 (2)

and

M(k, ω) = k2

2m
+ �(k, µ + ω) − µ, (3)

where we define for convenience the energy ω relative to the
chemical potential µ. For realistic systems, � and � cannot
be specified in general and significant approximations have
to be performed. The usual BCS approximation amounts to
replacing the interaction kernel by the (energy independent)
bare nucleon-nucleon potential V , and the nucleon self-energy
by some realistic s.p. spectrum, e.g., the BHF values

U (k) = �BHF(k, µ + ek), ek = M(k, ek). (4)

In our case the proton chemical potential is to a very good
approximation given by µ = k2

F /2m + U (p)(kF ), where kF =
(3π2ρp)1/3 is the proton Fermi momentum.

As shown in detail in Ref. [10], taking into account the
energy dependence of the self-energy while still remaining
with a static interaction kernel, �(k, ω; k′, ω′) = V (k, k′),
leads to the gap equation

�(k) = −
∑
k′

V (k, k′)Z(k′)

2
√

Ms(k′)2 + �(k′)2
�(k′), (5)

with the “symmetrized” s.p. energy

Ms(k) ≡ Re

[
M(k,+ek) + M(k,−ek)

2

]
(6)
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FIG. 1. Momentum dependence of the BHF proton self-energies
U and Us (upper panel) and effective mass m∗/m and spectral factor Z

(lower panel) for ρB = 0.2 fm−3. The vertical line shows the position
of the proton Fermi momentum.

appearing in the denominator and an interaction kernel
modified by the spectral factor

Z(k) ≡
√

Ms(k)2 + �(k)2
2

π

∫ ∞

0
dω Im

(
1

D(k, ω)

)
. (7)

In principle Z(k) should be calculated self-consistently with
the gap function [11]. However, it is a good approximation to
use the normal spectral function instead of the full one. No
quasiparticle approximation is used.

We consider now the self-energy effects on the pp pairing
under the physical conditions present in NS. The knowledge
of the BHF self-energy allows the computation of the relevant
s.p. energy ek , Eq. (4), and Ms(k), Eq. (6), as well as the
spectral factor Z(k), Eq. (7), and then the solution of the gap
equation (5). To illustrate, Fig. 1 shows for a typical baryon
density ρB = 0.2 fm−3 (the proton fraction here is x ≈ 0.06)
the BHF proton s.p. spectrum U (k) and the symmetrized
quantity Us(k), as well as the momentum-dependent proton
effective mass m∗(k)/m = [1 + (m/k)(dU (k)/dk)]−1 and the
Z factor, Eq. (7). One notes typical values close to the Fermi
surface of Z ≈ 0.6 and m∗/m ≈ 0.8, which hint already at a
strong reduction of the gap.

In Fig. 2 we summarize the key results of our calculations
in beta-stable matter as a function of total baryon density,
namely (a) the Fermi momenta of neutrons and protons,
(b) their effective masses m∗ ≡ m∗(kF ), and (c) their quasipar-
ticle factors Z ≡ Z(kF ). Panel (d) compares the gap resulting
from Eq. (5) within the simplest approximation using a kinetic
s.p. spectrum (m∗/m = Z = 1) with the one including the
BHF s.p. spectrum but neglecting the energy dependence, i.e.,
setting Z(k) = 1. One notes a strong reduction from about 3
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FIG. 2. Neutron and proton Fermi momenta (a), effective masses
(b), and Z factors (c) in beta-stable matter. (d) Proton 1S0 gap with
kinetic (solid curve) and BHF s.p. spectrum (dashed curve) using
only 2BF in the interaction kernel and including 3BF (dotted curve).

to 1 MeV at maximum in the latter case, because the proton
effective mass is small due to strong pn correlations. Adding
also 3BF to the interaction kernel leads to a further reduction
of the gap, increasing with density, since 3BF are repulsive in
the 1S0 channel [12]. Attempting to include also the energy
dependence via the calculated value of the quasiparticle factor
Z(k), Eq. (7), no solution of the gap equation is found anymore
with or without 3BF.

For comparison, in pure neutron matter superfluidity is also
suppressed by self-energy effects [10], but the reduction is not
so strong (less than 50%) because it occurs at a lower baryon
density, where both the effective mass and Z factor are close
to unity. In addition, screening by polarization of the medium
further reduces the gap, but superfluidity still survives with a
gap value around 1 MeV [3,4]. If for proton pairing under NS
conditions screening would be repulsive, no pp pairing could
be present. However, it turns out that screening in this case
is strongly attractive due to strong pn correlations [13] such
that it can counterbalance the suppression due to self-energy
effects.

Concerning the quantitative evaluation of polarization
effects on the pairing interaction, unfortunately at present
an accurate solution cannot be given. We therefore present
in the following a simplified treatment involving several
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FIG. 3. Weak-coupling parameter λ (top panels) and gap �

(bottom panels), Eq. (8), in several approximations (see text). The
solid curves show BCS results without any in-medium effects, the
dashed curves include the modification of the effective mass m∗,
and the dotted curves take account of Z-factor and polarization
corrections in addition. The left panels show results with only 2BF in
the interaction kernel, and the right panels include 3BF.

approximations but that we think is reliable enough to allow
our main conclusion that the pp polarization interaction is
attractive due to the strong pn coupling.

As a first step, we introduce the weak-coupling approx-
imation, where the effective particle-particle interaction at
the Fermi momentum, Veff(kF , kF ), determines the gap value
according to the well-known exponential formula [3,9,14,15]

� = cµ exp

(
1

λ

)
, λ = VeffkF m∗Z2. (8)

Notice that we define the interaction matrix element including
the usual prefactor of the density of states, N = m∗kF /2π2. To
show the degree of accuracy of this approximation, we report in
Fig. 3 (left plots, solid curves) the values of the parameter λ and
the gap calculated with a free s.p. spectrum (m∗/m = Z = 1)
using Eq. (8). For Veff we use a suitable low-momentum
effective interaction, Ṽ (k, k′) [4,14,16], with k, k′ being the
relative initial and final momenta of the two particles. This
potential is obtained by projecting out the momenta larger
than a cutoff kc,

Ṽ (k, k′) = V (k, k′) −
∑
k′′>kc

V (k, k′′)Ṽ (k′′, k′)
2Ek′′

. (9)

The gap equation, restricted to momenta k < kc and with the
original interaction V replaced by Ṽ is exactly equivalent to
the original gap equation. The discrepancy of the results with
the full calculations is then solely due to the weak-coupling
approximation, which is justified by the smoothness of Ṽ and

due to the replacement Ek′′ → ek′′ − µ that we perform in
Eq. (9). We use a cutoff value kc = √

2kF , which is compatible
with the constant c = 8 exp (

√
2 − 2)/(

√
2 + 1) ≈ 1.845 in

the weak-coupling formula. Other values of kc do not change
the results in an appreciable way. One observes that this
procedure leads to deviations of less than 10% relative to the
solution of the full gap equation [solid curve in Fig. 2(d)].

If the calculated effective mass m∗ is introduced, the gap
is suppressed and the weak-coupling formula predicts a 50%
overestimate with respect to the full calculations [cf. dashed
curves in Fig. 2(d) and Fig. 3 (left plot)], due to the extreme
sensitivity of the gap to the inadequacy of the effective mass
approximation. The same is true including 3BF [dotted curve
in Fig. 2(d) and dashed curve in Fig. 3 (right plot)]. If the Z

factor is also used in Eq. (8), the gap is further suppressed
to an extremely small value, in agreement with the full
calculations. The weak-coupling formula can thus be used
in first approximation as an (over-)estimate of the gap.

We will now use the same Ṽ to estimate the effect of
screening at the Fermi surface. In addition to the direct term the
polarization of the medium introduces the so-called induced
interaction, Veff = Ṽ + W , with

Wik(k′, k) =
∑
j,l

∑
p

〈k′, p|F̃ij |k, p + q〉�jl( p, q)

×〈 p + q,−k′|F̃lk| p,−k〉, (10)

where the indices i, j, k, l stand for neutron (n) or proton
(p). Here F̃ij are the effective scattering amplitudes, including
exchange, and q = k′ − k is the momentum transfer. The
polarization propagator �jl satisfies an RPA-type equation,
which can be schematically written as

� = �0 + �0

(
Fnn Fnp

Fpn Fpp

)
�, (11)

and yields

�nn =
(
1 − Fpp�0

p

)
�0

n

D
, (12)

�np = Fnp�0
n�

0
p

D
, (13)

with

D = 1 − Fnn�
0
n − Fpp�0

p + (FnnFpp − FnpFpn)�0
n�

0
p,

(14)

where �0
i are the free gas polarizations (in the static limit) and

Fij are the effective particle-hole interactions.
The key quantity in the weak-coupling formula is the

effective particle-particle interaction at the proton Fermi
momentum kp ≡ k

(p)
F . The induced interaction will therefore

be estimated at kp. We first consider the dominant pn coupling
in Eq. (10). Because in the relevant density range the proton
fraction is only a few percentages, we neglect kp with respect to
kn, i.e., the initial and final (relative) momenta can be identified
with kn/2. The interaction vertex F̃pn is then just the forward
scattering amplitude and will be estimated by Ṽpn(kn/2, kn/2).
The pp coupling gives only a small correction, justifying the

025802-3



M. BALDO AND H.-J. SCHULZE PHYSICAL REVIEW C 75, 025802 (2007)

following approximation: The involved momenta are all of
the order of kp, small enough to restrict the interaction vertex
F̃pp to s-wave scattering and to perform an average over the
momenta k, k′ between 0 and 2kp, which turns out to be very
close to Ṽpp(kp, kp). The loop integral

∑
p in Eq. (10) is then

factorized.
After projection on the 1S0 proton pairing channel the final

expression for the pp polarization interaction reads

Wpp =
∑

i,j=n,p

W ij
pp,

(15)
Wij

pp =
∑
s=0,1

(−1)s(2s + 1)F̃ (s)
pi �

(s)
ij F̃

(s)
jp ,

which gives the well-known combination of density exchange
(s = 0) and spin-density exchange (s = 1), with

F̃ (s)
pn =

∑
S,T ,L,J

(2J + 1)

8π

{
1
2

1
2 S

1
2

1
2 s

}
Ṽ ST LJ

(
kn

2
,
kn

2

)
, (16)

where the effective interaction has been expanded in the
two-body channels (partial waves) with spin S, isospin T ,
orbital angular momentum L, and total angular momentum J .
It has to be noticed that the tensor component of the
NN force is included in calculating Ṽ from the integral
equation (9). However, in the calculation of F̃ (s)

pn only the
matrix elements diagonal in the total spin projection are
considered, in agreement with Eq. (16). A similar expression
holds for F̃ (s)

pp , with the restriction to L = 0 only. The inclusion
in the expansion of the exchange gives simply a factor
of 2.

Finally, the polarization propagators �ij are evaluated in
the Landau limit, neglecting Landau parameters higher than
the L = 0 component. The Landau parameters F0 and G0

representing the particle-hole interactions Fij in Eqs. (11)–(14)
are evaluated from Ṽ as effective particle-hole interaction,
including in-medium modifications of the effective mass and
Z factor. The off-diagonal np Landau parameters are defined
by multiplying the effective forces with

√
NnNp, with Nn and

Np being the neutron and proton densities of state [17]. In the
free neutron polarization function �0

n(q) the Landau limit is
well justified, because the momentum transfer q is proportional
to kp 
 kn. In �0

p(q) the dependence on q is still weak, and
we take an average over 0 < q < 2kp.

Two observations are in order: (i) The full polarization �

is used instead of, e.g., the free polarization �0 (one bubble),
to take into account the complete response of the medium.
The use of �0 would seriously underestimate medium effects.
(ii) In principle, a well-defined relationship should hold
between particle-particle and particle-hole interactions [18,19]
and we will check to which extent it could affect the present
estimate.

In Fig. 4 we report the neutron Landau parameters F0

(density response) and G0 (spin-density response) in pure
neutron matter in the domain of interest for the proton
pairing calculated from our Ṽ , appropriately including the
effective masses and the Z factors. We compare with various
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FIG. 4. (Color online) Neutron matter Landau parameters F0 and
G0 (solid green curves) in comparison with the results of Refs. [4,20]
(broken curves).

previously published results [4,20] using different many-body
schemes.

Given the scarse agreement of the different results in
particular for the Landau parameter F0, we proceed for the
calculation of beta-stable matter in the following way: In
the neutron polarization propagator we use constant values
of the Landau parameters, G0nn

= 0.7 and either F0nn
= −0.6

or F0nn
= −0.4, where the last value serves to establish a lower

bound on the pairing gap. This also implies that we neglect the
influence of the small proton fraction on the neutron Landau
parameter. For the proton Landau parameters F0pp

and G0pp
we

find small values in the relevant proton density range, due to the
strong reduction of the proton effective mass and Z factor. For
simplicity we neglect them together with higher-order Landau
parameters.

The resulting induced pp interaction at the Fermi momen-
tum is strongly attractive and the corresponding weak-coupling
parameters and gap values are shown in Fig. 3, where the
upper dotted curves represent the results with F0 = −0.6 and
the lower dotted curves those with F0 = −0.4, for calculations
both with (right plots) and without (left plots) 3BF. The values
of the gaps are also listed in Table I. One observes that in all
cases the attractive polarization interaction is strong enough to

TABLE I. Values of the gaps (in MeV) including all medium
effects, corresponding to the dashed curves in Fig. 3.

ρB (fm−3) 2BF 2BF+3BF

F0 = −0.4 F0 = −0.6 F0 = −0.4 F0 = −0.6

0.05 0.05 0.57 0.21 0.79
0.10 0.53 1.97 0.65 2.20
0.15 1.33 3.38 0.68 2.76
0.20 0.41 2.03 0.01 0.95
0.25 0.03 0.68 0 0
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TABLE II. Contributions (in MeV fm3) to the effective polar-
ization interaction Wpp , Eq. (15), at ρB = 0.2 fm−3. The upper part
corresponds to the full calculation and the lower part to the one
without tensor force. The Landau parameter F0nn

= −0.4 and no
3BF were used. At this density, Ṽ = −31.6 MeV fm3.

Wnn
pp Wpp

pp Wnp+pn
pp Total

s = 0 −78.5 −15.1 +32.8 −60.7
s = 1 −3.0 −10.0 −1.2 −14.2
Total −69.4 +14.8 +36.3 −18.3
s = 0 −8.7 −12.5 +3.4 −17.8
s = 1 −0.1 −11.5 −0.1 −11.7
Total −8.3 +22.1 +3.6 +17.4

overcome the complete suppression of the gaps due to the Z

factor discussed before.
To clarify the origin of the attractive polarization in-

teraction, we list in Table II the different contributions
Wnn

pp ,W
pp
pp ,W

np
pp + W

pn
pp appearing in Eq. (15), at ρB =

0.2 fm−3, F0nn
= −0.4, and without 3BF. One notes that the

major part of the attraction arises from the nn polarization,
which couples to the protons via two np interactions F̃np.
The strong medium polarizability can be expected on physical
grounds, because NS matter at neutron Fermi momenta below
∼1.2 fm−1 is known to be unstable for density fluctuations,
i.e., the compressibility is negative [21]. Repulsive contribu-
tions arise both from the pp polarization (due to the dominance
of exchange diagrams [22]) and the np polarization (which is
of second order in �0).

The np interaction is dominated by the tensor force.
Therefore, neglecting it in the calculation, the nn (and np)

polarization contributions become much weaker, and the total
interaction is dominated by the repulsive pp polarization,
which is only weakly affected by the tensor force. Thus the
attractive overall effect of the full calculations is inverted
to repulsion, as in pure proton matter. This is in line with
Ref. [19], where the screening effect in pp pairing was
calculated with an effective force without tensor interaction,
and indeed repulsion was found.

In conclusion, we studied proton 1S0 pairing in asymmetric
NS matter, taking into account a rather complete set of
many-body effects, although in an approximate manner. We
found that the strong (actually complete) suppression of the
proton gap due to the energy dependence of the self-energy
(Z factor) and 3BF is at low density compensated by the
attractive screening caused by the polarizability of the neutron
component and mediated by the strong pn interaction. This is
at variance with nn pairing in pure neutron matter (and likely
in NS matter), where both self-energy and screening tend to
reduce the gap. The resulting domain of pairing is reduced to
below ρB ≈ 0.3 fm−3 compared to the BCS pairing obtained
without medium effects extending up to ρB >∼ 0.5 fm−3.

The maximum value of the gap must be considered
uncertain due to the strong sensitivity mainly to the value
of the neutron Landau parameter F0 but also to the various
other approximations made in our approach. Our estimate of
the induced interaction is not self-consistent; however, the
adopted approximate scheme is able to produce values of the
Landau parameters in pure neutron (or proton) matter that
are consistent with other calculations based on more refined
many-body theory. Only drastically different absolute values
of the neutron Landau parameter F0 would modify the main
conclusions, but look unlikely.
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