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Sum rule for the polarized structure function g2 corresponding to the moment at n = 0
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In the small Q2 region, the sum rule for the polarized structure function g2 corresponding to the moment at
n = 0 is derived. This sum rule shows that there is a tight connection among the resonances, the elastic and the
continuum in the g2. Further, the Born term contribution in this sum rule is proportional to Q2 and very small
compared with that in the corresponding sum rule for the polarized structure function g1. However, the Born
term contribution divided by Q2/2 which also appears in the Schwinger sum rule for the g2 corresponding to the
moment at n = 1 has a very similar behavior with that in the sum rule for the g1 corresponding to the moment at
n = 0.
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The polarized structure functions g1 and g2 at low energy
in the small Q2 region attract great interest recently. The
�(1232) gives the large negative contribution in this region
and it can explain the sign difference between Ellis-Jaffe
sum rule [1] and Gerasimov-Drell-Hearn sum rule [2,3]. This
�(1232) contribution also invalidate a naive application of
Bloom-Gilman duality to the small Q2 region [4]. Now, in
this region, we also have the continuum contribution and the
large elastic contribution. Recently, the sum rule for the g1 in
the small Q2 region has been derived, and it has been shown
that there exists the tight connection among the resonances,
the elastic and the continuum in the g1 [5,6]. In this paper we
show that a similar sum rule exists for the g2.

According to Ref. [7], fixed-mass sum rules based on the
canonical quantization on the null-plane gives us∫ 1

0

dx

x
g

[ab]
1 (x,Q2) = − 1

16
fabc

∫ ∞

−∞
dα

[
A5

c(α, 0) + αĀ5
c(α, 0)

]
,

(1)

and∫ 1

0

dx

x
g

[ab]
2 (x,Q2) = − 1

16
fabc

∫ ∞

−∞
dαε(α)αĀ5

c(α, 0), (2)

where x = Q2/2ν and ν = p · q, and A
5β
c (x|0) (x in this

expression is the space-time variable) is the antisymmetric
bilocal current, and its matrix element is defined as

〈p, s|A5β
c (x|0)|p, s〉c = sµA5

c(p · x, x2)

+pµ(x · s)Ā5
c(p · x, x2)

+ xµ(x · s)Ã5
c(p · x, x2). (3)

Similar sum rules can be derived from the current anticommu-
tation relation on the null-plane [6]. These sum rules are for the
symmetric combination under the interchange of superscript a

and b. The basic difference between the sum rules based on the
current commutation relation and the current anticommutation
relation is that the former ones are based on the operator
relation while the latter ones are based on the connected matrix
element between the one particle stable hadron. In this sense,
the former sum rules are more general than the latter ones.
However, in the latter case, the sum rules are directly applied

to the structure functions in the electroproduction, while in
the former case, it is for the isovector photon. The sum rules
for the g1 are given in Refs. [5,6] based on the fact that the
right-hand side of Eq. (1) is Q2 independent. The sum rule for
the g2 can be derived by the same kind of reasoning that the
right-hand side of Eq. (2) is Q2 independent as∫ 1

0

dx

x
gab

2 (x,Q2) =
∫ 1

0

dx

x
gab

2

(
x,Q2

0

)
, (4)

where the superscript ab is kept. In the current commutator
case, it takes the ones corresponding to the charged photon as
in Ref. [5], and in the current anticommutator case, it takes the
ones corresponding to the usual electromagnetic current as in
Ref. [6]. Now since we have

�σab(ν,Q2) = σab
3/2(ν,Q2) − σab

1/2(ν,Q2)

= −8π2αem

K

(
gab

1 (x,Q2)

ν
− m2

NQ2gab
2 (x,Q2)

ν3

)
,

(5)

where K = (1 − Q2

2ν
), we have the following relation at

Q2 = 0:

gab
1 (x, 0)

ν
= − 1

8π2αem

�σab(ν, 0). (6)

Thus the method to use the photoreaction as the regularization
point cannot be applied directly to the g2. Though we can
take one particular reaction at small Q2 as a regularization
point, the relation with the real photon reaction is interesting
in itself, since the real and the virtual photon is essentially
different. Further, if we can derive a similar sum rule as the g1,
we can consider the g1 and the g2 at the same footing. Now if
we differentiate Eq. (5) by Q2 and take the limit Q2 → 0, we
obtain the relation

gab
2 (x, 0)

ν
= gab

1 (x, 0)

2m2
N

+ ν

m2
N

∂gab
1 (x,Q2)

∂Q2

∣∣∣∣
Q2=0

+ ν2

8π2m2
Nαem

∂�σab(ν,Q2)

∂Q2

∣∣∣∣
Q2=0

. (7)
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All the quantities on the right-hand side are experimen-
tally measurable. Hence we can relate gab

2 (x, 0)/ν to the
experimentally measurable quantity. Then, by setting Q2 = 0
on the right-hand side of Eq. (4), we can rewrite the sum rule (4)
by the same method as in the sum rule for the gab

1 [6]. We first
separate the Born term contribution and then cut off the integral
of the continuum part at some value in E where E is defined
in the laboratory frame as ν = p · q = mNE. We denote this
cutoff value as Ec. Then we define the threshold value for
the continuum as E0, and E0(Q) = E0 + Q2/2mN,Ec(Q) =
Ec + Q2/2mN, xc(Q) = Q2/(2mNEc(Q)), and take Ec =
2 (GeV). In this way, we obtain the sum rule∫ 1

xc(Q)

dx

x
gab

2 (x,Q2) = Bab
2 (Q2) +

∫ Ec

E0

dE

E
gab

2 (x, 0)

+Kab
2 (Ec,Q

2), (8)

where Bab
2 (Q2) is the Born term at Q2 = 0 minus the Born

term at Q2 and Kab
2 (Ec,Q

2) is given as

Kab
2 (Ec,Q

2) =
∫ ∞

Ec

dE

E
gab

2 (x, 0) −
∫ ∞

Ec(Q)

dE

E
gab

2 (x,Q2),

(9)
and the quantities on the right-hand side in Eq. (7) is substituted
for gab

2 (x, 0)/E in Eqs. (8) and (9). Further, through the
regularization of the sum rule explained in Ref. [6], the
integral in Eq. (9) is taken after the subtraction of the high
energy behavior. Note that the integral on the left hand side
of Eq. (8) is restricted below x0(Q) = Q2/2mNE0(Q) since
the Born term is separated out, where E0(Q) is determined by
the threshold of the pion electroproduction as 2mNE0(Q) =
(mN + mπ )2 − m2

N + Q2.
Now, in case of the proton target, the sum rule for the

current commutation relation with a = (1 + i2)/
√

2, b = a†

is given by taking gab
2 (x,Q2) and Bab

2 (Q2) which we denote
g+−

2 (x,Q2) and B+−
2 (Q2) respectively as

g+−
2 (x,Q2) = 2g

1/2
2 (x,Q2) − g

3/2
2 (x,Q2), (10)

where the superscript 1/2 or 3/2 means the quantity in the
reaction (isovector photon) + (proton) → (states of isospin I)
where I = 1/2, 3/2, and

B+−
2 (Q2) = Q2

16m2
p

1

1 + Q2

4m2
p

G+
M (Q2)(G+

M (Q2) − G+
E(Q2)),

(11)
where

G+
E(Q2) = G

p

E(Q2) − Gn
E(Q2),

(12)
G+

M (Q2) = G
p

M (Q2) − Gn
M (Q2),

and Sachs form factors G
p

E(Q2),Gp

M (Q2) are normalized as
G

p

E(0) = 1,G
p

M (0) = µp = 2.793. It should be noted that the
Born term contribution is proportional to Q2, and hence its
contribution is zero at Q2 = 0. Further,we denote Kab

2 (Ec,Q
2)

as K+−
2 (Ec,Q

2).
In case of the current anticommutation relation for the

proton target, we get the sum rules for the structure function
in the electroproduction, hence we denote gab

2 (x,Q2) and
Bab

2 (Q2) in this case as g
ep

2 (x,Q2) and B
ep

2 (Q2), respectively.

Further, we denote Kab
2 (Ec,Q

2) in this case as K
ep

2 (Ec,Q
2).

The explicit form of the Born term contribution is

B
ep

2 (Q2) = Q2

8m2
p

1

1 + Q2

4m2
p

G
p

M (Q2)
(
G

p

M (Q2) − G
p

E(Q2)
)
.

(13)
Combined with a similar sum rule for the g

ep

1 in the previous
paper [6] given as∫ 1

xc(Q)

dx

x
g

ep

1 (x,Q2) = B
ep

1 (Q2) − mp

8π2αem

∫ Ec

E0

dE
{
σ

γp

3/2

− σ
γp

1/2

} + K
ep

1 (Ec,Q
2), (14)

where B
ep

1 (Q2) is given as

B
ep

1 (Q2) = 1

2

{
F

p

1 (0)
[
F

p

1 (0) + F
p

2 (0)
]

−F
p

1 (Q2)
[
F

p

1 (Q2) + F
p

2 (Q)
]}

= 1

2

{
µp − 1

1 + Q2

4m2
p

[
G

p

M (Q2)

(
G

p

E(Q2)

+ Q2

4m2
G

p

M (Q2)

)]}
, (15)

and K
ep

1 (Ec,Q
2) as

K
ep

1 (Ec,Q
2) = mp

8π2αem

∫ ∞

Ec

dE
{
σ

γp

1/2 − σ
γp

3/2

}
−

∫ ∞

Ec(Q)

dE

E
gab

1 (x,Q2), (16)

we obtain the sum rule for the (gep

1 + g
ep

2 ) as∫ 1

xc(Q)

dx

x

(
g

ep

1 (x,Q2) + g
ep

2 (x,Q2)
)

= B
ep

1 (Q2) + B
ep

2 (Q2) +
∫ Ec

E0

dE

E

(
g

ep

1 (x, 0)

+ g
ep

2 (x, 0)
) + K

ep

1 (Ec,Q
2) + K

ep

2 (Ec,Q
2). (17)

The explicit form of the Born term is

B
ep

1 (Q2) + B
ep

2 (Q2) = 1
2

(
µp − G

p

M (Q2)Gp

E(Q2)
)
. (18)

The magnitude of the Born term contributions in the moment
at n = 0 for the g

ep

1 and the (gep

1 + g
ep

2 ) are very similar, but
that of the g

ep

2 is very small compared with these since it is
proportional to Q2. However, if this Born term is divided by
Q2/2, it has a finite limit as Q2 → 0, and has an interesting
behavior. These quantities are the ones which appear in the
Schwinger sum rule for the g

ep

2 given as [8]

−1

4m2
p + Q2

G
p

M (Q2)
(
G

p

M (Q2) − G
p

E(Q2)
)

+
∫ ∞

ν0(Q)
dνG

ep

2 (ν,Q2) = 0, (19)

where we separate the Born term in this sum rule. At large Q2,
because of the Burkhart-Cottingham (BC) sum rule [9] for the
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inelastic reaction, we have the relation

I (Q2) =
∫ ∞

ν0(Q)
dνG

ep

2 (ν,Q2) = 2

Q2

∫ 1

0
dxg

ep

2 (x,Q2) = 0.

(20)
Thus we can consider the main contribution in the continuum
part in the Schwinger sum rule (19) comes from a relatively
low energy region. Therefore, in the sum rule given as∫ ∞

ν0(Q)
dνG

ep

2 (ν,Q2) −
∫ ∞

ν0

dνG
ep

2 (ν, 0) = B
ep

S (Q2), (21)

where

B
ep

S (Q2) = 1

4m2
p + Q2

G
p

M (Q2)
(
G

p

M (Q2) − G
p

E(Q2)
)

− µp(µp − 1)

4m2
p

, (22)

the main contribution on the left hand side comes from the low
Q2 region. Since the Born term contribution BS(Q2) changes
rapidly in this region, the left hand side of the sum rule also
changes rapidly. Since we have the relation ν = Q2/2 at the
elastic point, B

ep

S (Q2) is related to B
ep

2 (Q2) as

B
ep

S (Q2) = 2

Q2
B

ep

2 (Q2) −
{

2

Q2
B

ep

2 (Q2)

}∣∣∣∣
Q2=0

. (23)

Now the contribution to the quantity∫ 1

xc(Q)

dx

x
g

ep

2 (x,Q2) −
∫ 1

xc

dx

x
g

ep

2 (x, 0) (24)

in the sum rule (8) comes from the low energy region and
we can expect it roughly given by B

ep

2 (Q2). Thus the sum
rule (8) and the Schwinger sum rule gives us the same picture
that the rapid behavior of the elastic is compensated by the
rapid behavior of the resonance and the continuum. Now if
we plot the Born term contributions B

ep

1 (Q2), Bep

1 + B
ep

2 (Q2),
and −B

ep

S (Q2), we find that these three functions behave very
similarly. As is shown in Fig. 1 the difference between B

ep

1 (Q2)
and −B

ep

S (Q2) is very small and moreover the difference is
almost constant.

Though the moments which give B
ep

S (Q2) and B
ep

1 (Q2)
are different, we see that the behavior of the integral
of {−2g

ep

2 (x,Q2)/Q2 + (2g
ep

2 (x,Q2)/Q2)|Q2=0} and that of
{gep

1 (x,Q2)/x − (gep

1 (x,Q2)/x)|Q2=0} in the small Q2 region
is very similar. Since the latter is related to the sign change
of the generalized Gerasimov-Drell-Hearn sum, this fact may
suggest that the g

ep

2 is related to this phenomena [10]. However,
in our approach, we have no direct relation between the g

ep

1
and the g

ep

2 .
Concerned with this, we should point out that the seeming

relation between the gab
1 and the gab

2 in Eq. (7). This relation
does not mean that the gab

1 is related to the gab
2 . However,

if we substitute the experimental values for the quantities on
the right-hand side of Eq. (7), the gab

2 (x, 0) determined by this
relation depends on these values. In this sense, the dependence
on the gab

1 enters. Since the relation (7) depends on the Q2

dependence of K , and since we can extract an experimental
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FIG. 1. The various Born term contributions. (A) is the B
ep

1 (Q2)
given in Eq. (15); (B) is the B

ep

1 (Q2) + B
ep

2 (Q2) given in Eq. (18); and
(C) is the −B

ep

S (Q2) given in Eq. (22). (D) is the difference between
B

ep

1 (Q2) and (−B
ep

S (Q2)).

value even if we modify this flux factor, we can have another
sum rule by changing this factor. For example, let us take
K̄ as

K̄ = 1 + b · m2
NQ2

ν2
, (25)

where b is an arbitrary dimensionless number, and K̄ must be
1 at Q2 = 0 since �σ̄ ab(ν,Q2) defined through K̄

�σ̄ ab(ν,Q2) = σ̄ ab
3/2(ν,Q2) − σ̄ ab

1/2(ν,Q2)

= −8π2αem

K̄

(
gab

1 (x,Q2)

ν
− m2

NQ2gab
2 (x,Q2)

ν3

)
,

(26)

must becomes quantity in the photoproduction. Then Eq. (7)
changes as

gab
2 (x, 0)

ν
= −bgab

1 (x, 0)

ν
+ ν

m2
N

∂gab
1 (x,Q2)

∂Q2

∣∣∣∣
Q2=0

+ ν2

8π2m2
Nαem

∂�σ̄ ab(ν,Q2)

∂Q2

∣∣∣∣
Q2=0

. (27)

In this case, gab
1 (x, 0)/ν appears instead of gab

1 (x, 0). Then by
using the sum rule (8) and the sum rule for the gab

1 given in
Eq. (14) we obtain the sum rule for the (bgab

1 + gab
2 ). This sum

rule looks different from the sum rule (14) even if we take
b = 1. This seeming difference is the artifact of the difference
of the definition of �σ̄ ab(ν,Q2) and �σab(ν,Q2). Then we
see that how we reach the Q2 = 0 point we have many different
forms of the sum rule which are essentially the same one.

In conclusion, in the small Q2 region, we have derived the
sum rule for the polarized structure function g2 corresponding
to the moment at n = 0, which is similar to the corresponding
sum rule for the g1. The g2 at Q2 = 0 is related to the
experimentally measurable quantity, and it is shown that the
sum rule in appearance depends on how we reach the Q2 = 0
point but that these seeming different sum rules are essentially
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the same one. Then, independent of the g1, we show that there
is a tight connection among the resonances, the elastic and
the continuum in the g2. Since the Born term contribution is
proportional to Q2 and very small compared with that in the
corresponding sum rule for the g1, the change of the sum of
the resonances and the continuum is small in this sum rule.
However, if we divide the Born term contribution in the sum

rule for the g2 by Q2/2, which also appears in the Schwinger
sum rule for the g2 corresponding to the moment at n = 1, the
quantity obtained has a very similar behavior with the Born
term contribution in the sum rule for the g1 corresponding
to the moment at n = 0. Whether this similarity is a mere
happening or has a deep physical meaning is not yet clear and
needs a further study.
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