
PHYSICAL REVIEW C 75, 025202 (2007)

Axial, induced pseudoscalar, and pion-nucleon form factors in
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We calculate the nucleon form factors GA and GP of the isovector axial-vector current and the pion-nucleon
form factor GπN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order
O(p4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector
meson a1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization
scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy
coupling constant that we determine by a fit to the data for GA. The inclusion of the axial-vector meson results
in an improved description of the experimental data for GA, while the contribution to GP is small.
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I. INTRODUCTION

The electroweak form factors are sets of functions that
are used to parametrize the structure of the nucleon as
seen by the electromagnetic and the weak probes. While
a wealth of data and theoretical predictions exist for the
electromagnetic form factors (see, e.g., [1–3] and references
therein), the nucleon form factors of the isovector axial-vector
current, the axial form factor GA(q2) and, in particular, the
induced pseudoscalar form factor GP (q2), are not as well
known (see, e.g., [4,5] for a review). However, there are
ongoing efforts to increase our understanding of these form
factors. The value of the axial form factor at zero momentum
transfer is defined as the axial-vector coupling constant gA

and is quite precisely determined from neutron beta decay.
The q2 dependence of the axial form factor can be obtained
either through neutrino scattering or pion electroproduction
(see [4] and references therein). The second method makes
use of the so-called Adler-Gilman relation [6] which provides
a chiral Ward identity establishing a connection between
charged pion electroproduction at threshold and the isovector
axial-vector current evaluated between single-nucleon states
(see, e.g., [7] for more details). The induced pseudoscalar form
factor GP (q2) is even less known than GA(q2). It has been
investigated in ordinary and radiative muon capture as well as
pion electroproduction. Analogous to the axial-vector coupling
constant gA, the induced pseudoscalar coupling constant is
defined through gP = mµ

2mN
GP (q2 = −0.88 m2

µ), where q2 =
−0.88 m2

µ corresponds to muon capture kinematics and the
additional factor mµ

2mN
stems from a different convention

used in muon capture. For a comprehensive review on the
experimental and theoretical situation concerning GP (q2)
see for example [5]. A discrepancy between the results
in ordinary and radiative muon capture has recently been
addressed in [8]. Theoretical approaches to the axial and
induced pseudoscalar form factors include the early current
algebra and PCAC calculations [6,9,10], various quark model
(see, e.g., [11–17]) and lattice calculations [18]. For a recent
discussion on extracting the axial form factor in the timelike

region from p̄ + n → π− + �− + �+ (� = e or µ) see [19].
Chiral perturbation theory (ChPT) [20–23] is the low-energy
effective theory of the standard model and as such allows
model-independent calculations of nucleon properties (see
[24,25] for an introduction). The axial form factor has been
addressed in the framework of heavy-baryon ChPT [26–29].
In principle, when considering a charged transition there is
a third form factor, the induced pseudotensorial form factor
GT (q2). As will be explained below, this form factor vanishes
when combining isospin symmetry and charge-conjugation
invariance and therefore is not considered in this work [30].
Experimentally the induced pseudotensorial form factor is
found to be small [31,32]. Finally, defining the pion-nucleon
form factor in terms of the pseudoscalar quark density and
using the partially conserved axial-vector current (PCAC)
relation allows one to determine the pion-nucleon form factor,
once the axial and induced pseudoscalar form factors are
known.

In this paper we calculate the axial, the induced pseu-
doscalar, and the pion nucleon form factors of the nucleon
in manifestly Lorentz-invariant ChPT up to and including
order O(p4). The renormalization procedure is performed in
the framework of the infrared renormalization of [33]. In its
reformulated version [34], this renormalization scheme allows
for the inclusion of further degrees of freedom. In the following
we will include the a1 axial-vector meson as an explicit degree
of freedom. It needs to be pointed out that in a strict chiral
expansion up to order O(p4) the results will not differ from the
ones obtained in the standard framework. However, explicitly
keeping all terms generated from the considered diagrams
involving the axial-vector meson amounts to a resummation of
higher-order contributions. This phenomenological approach
has shown an improved description of the electromagnetic
form factors of the nucleon [35,36] when the ρ, ω, and
φ mesons are included.

This paper is organized as follows. In Sec. II the definitions
and some important properties of the relevant form factors are
given. Section III contains the effective Lagrangians used in the
present calculation. We present and discuss the results for the
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form factors with and without the inclusion of the axial-vector
meson a1 in Sec. IV. Section V contains a short summary.

II. DEFINITION AND PROPERTIES OF
THE ISOVECTOR AXIAL-VECTOR CURRENT

In QCD, the three components of the isovector axial-vector
current are defined as

Aµ,a(x) ≡ q̄(x)γ µγ5
τ a

2
q(x), q =

(
u

d

)
, a = 1, 2, 3.

(1)

The operators Aµ,a(x) satisfy the following properties relevant
for the subsequent discussion:

(i) Hermiticity:

Aµ,a†(x) = Aµ,a(x). (2)

(ii) Equal-time commutation relations with the vector
charges:[

Qa
V (t), Aµ,b(t, �x)

] = iεabcAµ,c(t, �x). (3)

(iii) Transformation behavior under parity:

Aµ,a(x)
P�→ −Aa

µ(x̃), x̃µ = xµ. (4)

(iv) Transformation behavior under charge conjugation:

Aµ,a(x)
C�→ Aµ,a(x), a = 1, 3,

Aµ,2(x)
C�→ −Aµ,2(x). (5)

(v) Partially conserved axial-vector current (PCAC)
relation:

∂µAµ,a = iq̄γ5

{
τ a

2
,M

}
q, (6)

where M = diag(mu,md ) is the quark mass matrix.

Assuming isospin symmetry, mµ = md = m̂, the most
general parametrization of the isovector axial-vector current
evaluated between one-nucleon states in terms of axial-vector
covariants is given by

〈N (p′)|Aµ,a(0)|N (p)〉 = ū(p′)
[
γ µγ5GA(q2)

+ qµ

2mN

γ5GP (q2)

]
τ a

2
u(p), (7)

where qµ = p′
µ − pµ and mN denotes the nucleon mass.

GA(q2) is called the axial form factor and GP (q2) is the
induced pseudoscalar form factor. From the Hermiticity of
Eq. (2), we find that GA and GP are real for space-like
momenta (q2 � 0). In the case of perfect isospin symmetry the
strong interactions are invariant under G conjugation, which
is a combination of charge conjugation C and a rotation by
π about the two axis in isospin space (charge symmetry
operation),

G = C exp
(
iπQ2

V

)
. (8)

The presence of a third so-called second-class structure [30]
of the type iσµνqνγ5 in the charged transition would indicate
a violation of G conjugation. As there seems to be no clear
empirical evidence for such a contribution [31,32] we will
omit it henceforth.

Similarly, the nucleon matrix element of the pseudoscalar
density P a(x) = iq̄(x)γ5τ

aq(x) can be parametrized as

m̂〈N (p′)|P a(0)|N (p)〉 = M2
πFπ

M2
π − q2

GπN (q2)iū(p′)γ5τ
au(p),

(9)

where Mπ is the pion mass and Fπ the pion decay constant.
Equation (9) defines the form factor GπN (q2) in terms of the
QCD operator m̂P a(x). The operator m̂P a(x)/(M2

πFπ ) serves
as an interpolating pion field and thus GπN (q2) is also referred
to as the pion-nucleon form factor for this specific choice of
the interpolating pion field [24]. The pion-nucleon coupling
constant gπN is defined through GπN (q2) evaluated at q2 =
M2

π . As a result of the PCAC relation, Eq. (6), the three form
factors GA,GP , and GπN are related by

2mNGA(q2) + q2

2mN

GP (q2) = 2
M2

πFπ

M2
π − q2

GπN (q2). (10)

III. EFFECTIVE LAGRANGIAN AND POWER COUNTING

The calculation of the isovector axial-vector current form
factors of the nucleon requires both the purely mesonic as well
as the one-nucleon part of the chiral effective Lagrangian up
to order O(p4),

Leff = L2 + L4 + L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + · · · . (11)

Here, p collectively stands for a “small” quantity such as the
pion mass, a small external four-momentum of the pion or of
an external source, and an external three-momentum of the
nucleon.

The pion fields are contained in the 2 × 2 matrix U ,

U (x) = u2(x) = exp

(
i�(x)

F

)
, (12)

� = �τ · �φ =
(

π0
√

2π+
√

2π− −π0

)
, (13)

and the purely mesonic Lagrangian at order O(p2) is given
by [21]

L2 = F 2

4
Tr[DµU (DµU )†] + F 2

4
Tr[χU † + Uχ †]. (14)

The covariant derivative DµU with a coupling to an external
axial-vector field aµ = τ aaa

µ/2 only is given by

DµU = ∂µU − iaµU − iUaµ,

while χ is defined as

χ = 2B(s + ip),

with s and p the scalar and pseudoscalar external sources,
respectively. F denotes the pion decay constant in the chiral
limit, Fπ = F [1 + O(m̂)] = 92.42(26) MeV [37]. We work
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in the isospin-symmetric limit mu = md = m̂, and the lowest-
order expression for the squared pion mass is M2 = 2Bm̂,
where B is related to the quark condensate 〈q̄q〉0 in the chiral
limit [21,38], 〈ūu〉0 = 〈d̄d〉0 = −F 2B.

For the mesonic Lagrangian at order O(p4) we only list the
term that contributes to our calculation

L4 = · · · + l4

8
Tr [DµU (DµU )†] Tr [χU † + Uχ †] + · · · .

(15)

The complete list for the SU (2) case can be found in [23].
The lowest-order pion-nucleon Lagrangian is given by [23]

L(1)
πN = �̄

(
iD/ − m + gA

2
γ µγ5uµ

)
�, (16)

with m the nucleon mass and gA the axial-vector coupling
constant both evaluated in the chiral limit.

For the nucleonic Lagrangians of higher orders we only
display those terms that contribute to our calculations. A
complete list of terms at orders O(p2) and O(p3) can be found
in [23,39]. At second order the Lagrangian reads

L(2)
πN = c1Tr(χ+)�̄� − c2

4m2
[�̄Tr(uµuν)DµDν� + h.c.]

+c3

2
�̄Tr(uµuµ)� − c4

4
�̄γ µγ ν[uµ, uν]� + · · · ,

(17)

while at order O(p3) we need

L(3)
πN = d16

2
�̄γ µγ5Tr(χ+)uµ�+d22

2
�̄γ µγ5[Dν, F

−
µν]�+ · · ·

+ i
d18

2
�̄γ µγ5[Dµ, χ−]�. (18)

There are no contributions from L(4)
πN in our calculation. The

Lagrangians contain the building blocks

Dµ� = (∂µ + �µ)�,

�µ = 1
2 [u†(∂µ − iaµ)u + u(∂µ − iaµ)u†],

uµ = i[u†∂µu − u∂µu† − i(u†aµu + uaµu†)],

χ± = u†χu† ± uχ †u

F−
µν = u†(∂µaν − ∂νaµ − i[aµ, aν])u

+u(∂µaν − ∂νaµ + i[aµ, aν])u†,

where we only display the external axial-vector source aµ.
In order to include axial-vector mesons as explicit degrees

of freedom we consider the vector-field formulation of [40]
in which the a1(1260) meson is represented by Aµ = Aa

µτa .
The advantage of this formulation is that the coupling of the
axial-vector mesons to pions and external sources is at least of
orderO(p3). A complete list of possible couplings at this order
can be found in [40]. The calculation of the contributions to
the isovector axial-vector form factors only requires the term

L(3)
πA = fA

4
Tr(AµνF

µν
− ), (19)

where

Aµν = ∇µAν − ∇νAµ

with

∇µAν = ∂µAν + [�µ,Aν].

The coupling of the axial-vector meson to the nucleon starts
at order O(p0). The corresponding Lagrangian reads

L(0)
NA = ga1

2
�̄γ µγ5Aµ�. (20)

A calculation up to orderO(p4) would in principle also require
the Lagrangian of order O(p). However, there is no term at
this order that is allowed by the symmetries.

In addition to the usual counting rules for pions and
nucleons (see, e.g., [25]), we count the axial-vector meson
propagator as order O(p0), vertices from L(3)

πA as order O(p3)
and vertices from L(0)

AN as order O(p0), respectively [41].

IV. RESULTS AND DISCUSSION

A. Results without axial-vector mesons

The axial form factor GA(q2) only receives contributions
from the one-particle-irreducible diagrams of Fig. 1. The
unrenormalized result reads

GA0(q2) = gA + 4M2d16 − d22q
2 − gA

F 2
Iπ

+ 2
gA

F 2
M2IπN

(
m2

N

) + 8
gA

F 2
mN

{
c4

[
M2IπN

(
m2

N

)
− I

(00)
πN

(
m2

N

)] − c3I
(00)
πN

(
m2

N

)}
− g3

A

4F 2

[
Iπ − 4m2

NI
(p)
πN

(
m2

N

)
+ 4m2

N (n − 2)I (00)
πNN (q2) + 16m4

NI
(PP )
πNN (q2)

+ 4m2
NtI

(qq)
πNN (q2)

]
. (21)

The definition of the integrals can be found in the Appendix.
To renormalize the expression for GA(q2) we multiply
Eq. (21) by the nucleon wave function renormalization

FIG. 1. One-particle-irreducible diagrams contributing to the
nucleon matrix element of the isovector axial-vector current.
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constant Z [33],

Z = 1 − 9g2
AM2

32π2F 2

[
1

3
+ ln

(
M

m

)]
+ 9g2

AM3

64πF 2m
, (22)

and replace the integrals with their infrared singular parts.
The axial-vector coupling constant gA is defined as gA =

GA(q2 = 0) = 1.2695(29) [37] and we obtain for its quark-
mass expansion

gA = gA + g(1)
A M2 + g(2)

A M2 ln

(
M

m

)
+ g(3)

A M3 + O(M4),

(23)

with

g(1)
A = 4d16 − g3

A

16π2F 2
,

g(2)
A = − gA

8π2F 2

(
1 + 2g2

A

)
, (24)

g(3)
A = gA

8πF 2m

(
1 + g2

A

) − gA

6πF 2
(c3 − 2c4),

where all coefficients are understood as IR renormalized
parameters. These results agree with the chiral coefficients
obtained in HBChPT [42,43] as well as the IR calculation
of [44]. It is worth noting that an agreement for the analytic
term g(1)

A cannot be expected in general. For example, when
expressed in terms of the renormalized couplings of the
extended on-mass-shell (EOMS) renormalization scheme of
[45], the g(1)

A coefficient is given by [44]

4dEOMS
16 − gA

16π2F 2

(
2 + 3g2

A

) + c1gAm

4π2F 2

(
4 − g2

A

)
.

Such a difference is not a surprise, because the use of different
renormalization schemes is compensated by different values
of the renormalized parameters. For a similar discussion
regarding the chiral expansion of the nucleon mass, see [45].

The axial form factor can be written as

GA(q2) = gA + 1

6
gA

〈
r2
A

〉
q2 + g3

A

4F 2
H (q2), (25)

where 〈r2
A〉 is the axial mean-square radius and H (q2)

contains loop contributions and satisfies H (0) = H ′(0) = 0.
The low-energy coupling constants (LECs) d16 and d22 are
thus absorbed in the axial-vector coupling constant gA and the
axial mean-square radius 〈r2

A〉. The numerical contribution of
H (q2) is negligible which can be understood by expanding
H in a Taylor series in q2. Such an expansion generates
powers of q2/m2 where the individual coefficients have a chiral
expansion similar to Eq. (23).

For the analysis of experimental data, GA(q2) is conven-
tionally parametrized using a dipole form as

GA(q2) = gA(
1 − q2

M2
A

)2 , (26)

where the so-called axial mass MA is related to the axial
root-mean-square radius by 〈r2

A〉 1
2 = 2

√
3/MA. The global

average for the axial mass extracted from neutrino scattering
experiments given in [46] is

MA = (1.026 ± 0.021) GeV, (27)

whereas a recent analysis [47] taking account of updated
expressions for the vector form factors finds a slightly smaller
value

MA = (1.001 ± 0.020) GeV. (28)

On the other hand, smaller values of (0.95 ± 0.03) GeV and
(0.96 ± 0.03) GeV have been obtained in [48] as world aver-
ages from quasielastic scattering and (1.12 ± 0.03) GeV from
single pion neutrino production. Finally, the most recent result
extracted from quasielastic νµn → µ−p in oxygen nuclei
reported by the K2K Collaboration, MA = (1.20 ± 0.12) GeV,
is considerably larger [49].

The extraction of the axial mean-square radius from charged
pion electroproduction at threshold is motivated by the current
algebra results and the PCAC hypothesis. The most recent
result for the reaction p(e, e′π+)n has been obtained at MAMI
at an invariant mass of W = 1125 MeV (corresponding to
a pion center-of-mass momentum of |�q∗| = 112 MeV) and
photon four-momentum transfers of −k2 = 0.117, 0.195, and
0.273 GeV2 [46]. Using an effective-Lagrangian model an
axial mass of

M̄A = (1.077 ± 0.039) GeV

was extracted, where the bar is used to distinguish the result
from the neutrino scattering value. In the meantime, the
experiment has been repeated including an additional value
of −k2 = 0.058 GeV2 [50] and is currently being analyzed.
The global average from several pion electroproduction exper-
iments is given by [4]

M̄A = (1.068 ± 0.017) GeV. (29)

It can be seen that the values of Eqs. (27) and (28) for
the neutrino scattering experiments are smaller than that of
Eq. (29) for the pion electroproduction experiments. The
discrepancy was explained in heavy baryon chiral perturbation
theory [26]. It was shown that at order O(p3) pion loop
contributions modify the k2 dependence of the electric dipole
amplitude from which M̄A is extracted. These contributions
result in a change of

�MA = 0.056 GeV, (30)

bringing the neutrino scattering and pion electroproduction
results for the axial mass into agreement.

Using the convention Q2 = −q2 the result for the ax-
ial form factor GA(q2) in the momentum transfer region
0 GeV2 � Q2 � 0.4 GeV2 is shown in Fig. 2. The parameters
have been determined such as to reproduce the axial mean-
square radius corresponding to the dipole parametrization with
MA = 1.026 GeV (dashed line). The dotted and dashed-dotted
lines refer to dipole parametrizations with MA = 0.95 GeV
and MA = 1.20 GeV, respectively. As anticipated, the loop
contributions from H (q2) are small and the result does not
produce enough curvature to describe the data for momentum
transfers Q2 � 0.1 GeV2. The situation is reminiscent of the
electromagnetic case [35,51] where ChPT at O(p4) also fails
to describe the form factors beyond Q2 � 0.1 GeV2.
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FIG. 2. The axial form factor GA in manifestly Lorentz-invariant
ChPT at O(p4). Full line: result in infrared renormalization with
parameters fitted to reproduce the axial mean-square radius cor-
responding to the dipole parametrization with MA = 1.026 GeV
(dashed line). The dotted and dashed-dotted lines refer to dipole
parameterizations with MA = 0.95 GeV and MA = 1.20 GeV, re-
spectively. The experimental values are taken from [4].

The one-particle-irreducible diagrams of Fig. 1 also con-
tribute to the induced pseudoscalar form factor GP (q2),

Girr
P (q2) = 4m2

Nd22 + 8m4
N

g3
A

F 2
I

(qq)
πNN (q2). (31)

Furthermore, GP (q2) receives contributions from the pion pole
graph of Fig. 3. It consists of three building blocks: The
coupling of the external axial source to the pion, the pion
propagator, and the πN -vertex, respectively. We consider each
part separately.

The renormalized coupling of the external axial source to a
pion up to order O(p4) is given by

εA · qFπδij , (32)

where the diagrams in Fig. 4 have been taken into account and
the renormalized pion decay constant reads

Fπ = F

[
1 + M2

F 2
lr4 − M2

8π2F 2
ln

(
M

m

)
+ O(M4)

]
. (33)

We have used the pion wave function renormalization constant

Zπ = 1 − 2M2

F 2

[
lr4 + 1

24π2

(
R − ln

(
M

m

))]
, (34)

with lr4 the renormalized coupling of Eq. (15) and R = 2
n−4 +

γE − 1 − ln(4π ).

FIG. 3. Pion pole graph of the isovector axial-vector current.

FIG. 4. Diagrams contributing to the coupling of the isovector
axial-vector current to a pion up to order O(p4).

The renormalized pion propagator is obtained by simply
replacing the lowest-order pion mass M by the expression for
the physical mass Mπ up to order O(p4),

M2
π = M2 + �

(
M2

π

)
= M2

[
1 + 2M2

F 2

(
lr3 + 1

32π2
ln

(
M

m

))]
. (35)

The πN vertex evaluated between on-mass-shell nucleon
states up to order O(p4) receives contributions from the
diagrams in Fig. 5 and the unrenormalized result for a pion
with isospin index i is given by

�(q2)γ5τi =
(

−gA

F
mN + 2

M2

F
mN (d18 − 2d16) + gA

3F 2
mNIπ

− 2
gA

F 3
M2mNIπN

(
m2

N

) − 8
gA

F 2
m2

N

× {
c4

[
M2IπN

(
m2

N

) − I
(00)
πN

(
m2

N

)]
− c3I

(00)
πN

(
m2

N

)}+ g3
A

4F 3
mN

[
Iπ + 4mN2INN (q2)

+ 4m2
NM2IπNN (q2)

])
γ5τi . (36)

To find the renormalized vertex one multiplies with Z
√

Zπ

and replaces the integrals with their infrared singular parts.
However, the renormalized result should not be confused
with the pion-nucleon form factor GπN (q2) of Eq. (9). In
general, the pion-nucleon vertex depends on the choice of the
field variables in the (effective) Lagrangian. In the present
case, the pion-nucleon vertex is only an auxiliary quantity,
whereas the “fundamental” quantity (entering chiral Ward

FIG. 5. Diagrams contributing to the pion-nucleon vertex up to
order O(p4).
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identities) is the matrix element of the pseudoscalar density.
Only at q2 = M2

π , we expect the same coupling strength, since
both m̂P a(x)/(M2

πFπ ) and the field φi of Eq. (12) serve as
interpolating pion fields. After renormalization, we obtain for
the pion-nucleon coupling constant the quark-mass expansion

gπN = gπN +g(1)
πNM2 +g(2)

πNM2ln

(
M

m

)
+g(3)

πNM3+O(M4),

(37)

with

gπN = gAm

F
,

g(1)
πN = −gA

lr4m

F 3
− 4gA

c1

F
+ 2(2d16 − d18)m

F
− g3

A

m

16π2F 3
,

g(2)
πN = −g3

A

m

4π2F 3
, g(3)

πN = gA

4 + g2
A

32πF 3
− gA

(c3 − 2c4)m

6πF 3
,

(38)

where all coefficients are understood as IR renormalized
parameters. These results agree with the chiral coefficients
obtained in [52]. In the chiral limit, Eq. (37) satisfies the
Goldberger-Treiman relation gπN = gAm/F [53]. The numer-
ical violation of the Goldberger-Treiman relation as expressed
in the so-called Goldberger-Treiman discrepancy [54],

� = 1 − mNgA

FπgπN

, (39)

is at the percent level, � = (2.44+0.89
−0.51)% for mN =

(mp + mn)/2 = 938.92 MeV, gA = 1.2695(29), Fπ =
92.42(26) MeV, and gπN = 13.21+0.11

−0.05 [55]. Using different
values for the pion-nucleon coupling constant such as
gπN = 13.0 ± 0.1 [56], gπN = 13.3 ± 0.1 [57], and gπN =
13.15 ± 0.01 [58] results in the GT discrepancies � =
(0.79 ± 0.84)%,� = (3.03 ± 0.81)%, and � = (1.922 ±
0.363)%, respectively. The chiral expansions of gA, etc., may
be used to relate the parameter d18 to � [52],

� = −2d18M
2

gA

+ O(M4). (40)

Note that � of Eq. (39) and �GT of [52,55] are related by
�GT = �/(1 − �). In particular, the leading order of the
quark mass expansions of � and �GT is the same.

The induced pseudoscalar form factor GP (q2) is obtained
by combining Eqs. (31), (33), (35) and the renormalized
expression for Eq. (36). With the help of Eqs. (39) and (40) it
can entirely be written in terms of known physical quantities
as [59]

GP (q2) = −4
mNFπgπN

q2 − M2
π

− 2

3
m2

NgA

〈
r2
A

〉 + O(p2). (41)

The 1/(q2 − M2
π ) behavior of GP is not in conflict with

the book-keeping of a calculation at chiral order O(p4),
because the external axial-vector field aµ counts as O(p), and
the definition of the matrix element contains a momentum
(p′ − p)µ and the Dirac matrix γ5 so that the combined order
of all ingredients in the matrix element ranges from O(p) to
O(p4). The terms that have been neglected in the form factor
GP are of order M2, q2/m2 and higher.

Using the above values for mN,gA, Fπ as well as
gπN = 13.21+0.11

−0.05,MA = (1.026 ± 0.021) GeV, M = Mπ+ =
139.57 MeV and mµ = 105.66 MeV [37] we obtain for the
induced pseudoscalar coupling

gP = 8.29+0.24
−0.13 ± 0.52, (42)

which is in agreement with the heavy-baryon results 8.44 ±
0.23 [59] and 8.21 ± 0.09 [28], once the differences in
the coupling constants used are taken in consideration. The
first error given in Eq. (42) stems only from the empirical
uncertainties in the quantities of Eq. (41). As an attempt to
estimate the error originating in the truncation of the chiral
expansion in the baryonic sector we assign a relative error of
0.5k , where k denotes the diffence between the order that has
been neglected and the leading order at which a nonvanishing
result appears. Such a (conservative) error is motivated by,
e.g., the analysis of the individual terms of Eq. (23) as well
as the determination of the LECs ci at O(p2) and to one-loop
accuracy O(p3) in the heavy-baryon framework [60]. For gP

we have thus added a truncation error of 0.52.
Figure 6 shows our result for GP (q2) in the momentum

transfer region −0.2 GeV2 � Q2 � 0.2 GeV2. One can clearly
see the dominant pion pole contribution at q2 ≈ M2

π which is
also supported by the experimental results of [61].

Using Eq. (10) allows one to also determine the pion-
nucleon form factor GπN (q2) in terms of the results for GA(q2)
and GP (q2). When expressed in terms of physical quantities,
it has the particularly simple form

GπN (q2) = mNgA

Fπ

+ gπN�
q2

M2
π

+ O(p4). (43)

We have explicitly verified that the results agree with a direct
calculation of GπN (q2) in terms of a coupling to an external
pseudoscalar source. Observe that, with our definition in
terms of QCD bilinears, the pion-nucleon form factor is, in
general, not proportional to the axial form factor. The relation
GπN (q2) = mNGA(q2)/Fπ which is sometimes used in PCAC
applications implies a pion-pole dominance for GP (q2) of the
form GP (q2) = 4m2

NGA(q2)/(M2
π − q2). However, as can be

seen from Eq. (43), there are deviations at O(p2) from such a
complete pion-pole dominance assumption.

The difference between GπN (q2 = M2
π ) and GπN (q2 = 0)

is entirely given in terms of the GT discrepancy [24]

GπN

(
M2

π

) − GπN (0) = gπN�. (44)

-0.1 0 0.1 0.2
Q2�GeV2�

-150

-100

-50
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100
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�

�

FIG. 6. The induced pseudoscalar form factor GP in manifestly
Lorentz-invariant ChPT at O(p4).
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FIG. 7. Diagram containing axial-vector meson (double line)
contributing to the form factors GA and GP .

Parametrizing the form factor in terms of a monopole,

Gmono
πN (q2) = gπN

�2 − M2

�2 − q2
, (45)

Eq. (44) translates into a mass parameter � = 894 MeV for
� = 2.44%.

B. Inclusion of the axial-vector meson a1(1260)

The contributions of the axial-vector meson to the form
factors GA and GP at order O(p4) stem from the diagram
in Fig. 7. We do not consider loop diagrams with internal
axial-vector meson lines that do not contain internal pion lines,
as these vanish in the infrared renormalization employed in this
work. With the Langrangians of Eqs. (19) and (20) the axial
form factor receives the contribution

GAVM
A (q2) = −fAga1

q2

q2 − M2
a1

, (46)

while the result for the induced pseudoscalar form factor reads

GAVM
P (t) = 4m2

NfAga1

1

q2 − M2
a1

. (47)

The Lagrangians for the axial-vector meson contain two new
LECs, fA andga1

, respectively. However, we find that they only
appear through the combination fAga1

, effectively leaving only
one unknown LEC. Performing a fit to the data of GA(q2) in
the momentum region 0 GeV2 � Q2 � 0.4 GeV2 the product of
the coupling constants is determined to be

fAga1
≈ 8.70. (48)

Figure 8 shows our fitted result for the axial form fac-
tor GA(q2) at order O(p4) in the momentum region
0 GeV2 � Q2 � 0.4 GeV2 with the a1 meson included as an
explicit degree of freedom. As was expected from phenomeno-
logical considerations, the description of the data has improved
for momentum transfers Q2 >∼ 0.1 GeV2. We would like to
stress again that in a strict chiral expansion up to order O(p4)
the results with and without axial vector mesons do not differ
from each other. The improved description of the data in the
case with the explicit axial-vector meson is the result of a
resummation of certain higher-order terms. While the choice
of which additional degree of freedom to include compared to
the standard calculation is completely phenomenological, once
this choice has been made there exists a systematic framework

0.1 0.2 0.3 0.4

Q2�GeV2�

0.2

0.4

0.6

0.8

1

G
A
Q
2
�
G
A
0

�
�

�

FIG. 8. The axial form factor GA in manifestly Lorentz-invariant
ChPT at O(p4) including the axial-vector meson a1 explicitly.
Full line: result in infrared renormalization, dashed line: dipole
parametrization. The experimental values are taken from [4].

in which to calculate the corresponding contributions as well
as higher-order corrections.

It can be seen from Eq. (46) that in our formalism the
axial-vector meson does not contribute to the axial-vector
coupling constant gA. The pion-nucleon vertex also remains
unchanged at the given order, while the axial mean-square
radius receives a contribution. The values for the LECs d16

and d18 therefore do not change, while d22 can be determined
from the new expression for the axial radius using the value of
Eq. (48) for the combination of coupling constants. In Fig. 9 we
show the result for GP (q2) in the momentum transfer region
−0.2 GeV2 � Q2 � 0.2 GeV2. Also shown for comparison
is the result without the explicit axial-vector meson. One sees
that the contribution of the a1 to GP (q2) for these momentum
transfers is rather small and that GP (q2) is still dominated by
the pion pole diagrams.

The form factors GA and GP are related to the pion-
nucleon form factor via Eq. (10). For the contributions of the

-0.1 0 0.1 0.2
Q2�GeV2�

-150

-100

-50

0

50

100

150

200

G
P
Q
2
�

�

FIG. 9. The induced pseudoscalar form factor GP in manifestly
Lorentz-invariant ChPT at O(p4) including the axial-vector meson
a1 explicitly. Full line: result with axial-vector meson, dashed line:
result without axial-vector meson.
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axial-vector meson we find

2mNGAVM
A (q2) + q2

2mN

GAVM
P (q2) = 0, (49)

so that the pion-nucleon form factor is not modified by the
inclusion of the a1 meson.

V. SUMMARY

We have discussed the nucleon form factors GA and GP

of the isovector axial-vector current in manifestly Lorentz-
invariant baryon chiral perturbation theory up to and including
order O(p4). The main features of the results are similar to the
case of the electromagnetic form factors at the one-loop level.

As far as the axial form factor is concerned, ChPT can
neither predict the axial-vector coupling constant gA nor the
mean-square axial radius 〈r2

A〉. Instead, empirical information
on these quantities is used to absorb the relevant LECs d16 and
d22 in gA and 〈r2

A〉. Moreover, the use of a manifestly Lorentz-
invariant framework does not lead to an improved description
in comparison with the heavy-baryon framework, because the
resummed higher-order contributions are negligible.

The induced pseudoscalar form factor GP is completely
fixed from O(p−2) up to and including O(p), once the
LEC d18 has been expressed in terms of the Goldberger-
Treiman discrepancy. UsinggπN = 13.21 for the pion-nucleon
coupling constant, we obtain for the induced pseudoscalar
coupling gP = 8.29+0.24

−0.13 ± 0.52. The first error is due to the
error of the empirical quantities entering the expression for gP

and the second error represents our estimate for the truncation
in the chiral expansion.

Defining the pion field in terms of the PCAC relation allows
one to introduce a pion-nucleon form factor which is entirely
determined in terms of the axial and induced pseudoscalar
form factors. Assuming this pion-nucleon form factor to be
proportional to the axial form factor leads to a restriction for
GP which is not supported by the most general structure of
ChPT.

In addition to the standard treatment including the nucleon
and pions, we have also considered the axial-vector meson
a1 as an explicit degree of freedom. This was achieved
by using the reformulated infrared renormalization scheme.
The inclusion of the axial-vector meson effectively results
in one additional low-energy coupling constant which we
have determined by a fit to the data for GA. The inclusion

of the axial-vector meson results in a considerably improved
description of the experimental data for GA for values of Q2

up to about 0.4 GeV2, while the contribution to GP is small.
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APPENDIX: DEFINITION OF LOOP INTEGRALS

For the definition of the loop integrals in the expressions
for the form factors we use the notation

P µ = p
µ

i + p
µ

f , qµ = p
µ

f − p
µ

i .

Using dimensional regularization [62] the loop integrals with
one or two internal lines are defined as

Iπ = i

∫
dnk

(2π )n
1

k2 − M2 + iε
,

IN = i

∫
dnk

(2π )n
1

k2 − m2 + iε
,

INN (q2)

= i

∫
dnk

(2π )n
1

[k2 − m2 + iε][(k + q)2 − m2 + iε]
,

IπN (p2)

= i

∫
dnk

(2π )n
1

[k2 − M2 + iε][(k + p)2 − m2 + iε]
,

pµI
(p)
πN (p2)

= i

∫
dnk

(2π )n
kµ

[k2 − M2 + iε][(k + p)2 − m2 + iε]
,

gµνI
(00)
πN (p2) + pµpνI

(pp)
πN (p2)

= i

∫
dnk

(2π )n
kµkν

[k2 − M2 + iε][(k + p)2 − m2 + iε]
.

For integrals with three internal lines we assume on-shell
kinematics, p2

f = p2
i = m2

N ,

IπNN (q2) = i

∫
dnk

(2π )n
1

[k2 − M2 + iε][(k + pi)2 − m2 + iε][(k + pf )2 − m2 + iε]
,

P µI
(P )
πNN (q2) = i

∫
dnk

(2π )n
kµ

[k2 − M2 + iε][(k + pi)2 − m2 + iε][(k + pf )2 − m2 + iε]
,

gµνI
(00)
πNN (q2) + P µP νI

(PP )
πNN (q2) + qµqνI

(qq)
πNN (q2) = i

∫
dnk

(2π )n
kµkν

[k2 − M2 + iε][(k + pi)2 − m2 + iε][(k + pf )2 − m2 + iε]
.
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The tensorial loop integrals can be reduced to scalar ones
[63] and we obtain

I
(p)
πN (p2)

= 1

2p2
[Iπ − IN − (p2 − m2 + M2)IπN (p2)],

I
(00)
πN (p2)

= 1

2(n − 1)

[
IN + 2M2IπN (p2)

+ (p2 − m2 + M2)

p2
I

(p)
πN (p2)

]
,

I
(P )
πNN (q2)

= 1

4m2
N − q2

[
IπN

(
m2

N

) − INN (q2) − M2IπNN (q2)
]
,

I
(00)
πNN (q2)

= 1

n − 2

{[
IπNN (q2) + I

(P )
πNN (q2)

]
M2 + 1

2
INN (q2)

}
,

I
(PP )
πNN (q2)

= 1

(n − 2)
(
4m2

N − q2
) {[

(n − 1)I (P )
πNN (q2) + IπNN (q2)

]

×M2 − n − 2

2
I

(p)
πN

(
m2

N

) − n − 3

2
INN (q2)

}
,

I
(qq)
πNN (q2)

= − 1

(n − 2)q2

{[
I

(P )
πNN (q2) + IπNN (q2)

]
M2

+ n − 2

2
I

(p)
πN

(
m2

N

) + 1

2
INN (q2)

}
.

Defining

λ̄ = mn−4

16π2

{
1

n − 4
− 1

2

[
ln(4π ) + �′(1) + 1

]}
,

and

� = p2 − m2 − M2

2mM
,

the scalar loop integrals are given by [45]

Iπ = 2M2λ̄ + M2

8π2
ln

(
M

m

)
,

IN = 2m2λ̄,

Iππ (q2) = 2λ̄ + 1

16π2

[
1 + 2 ln

(
M

m

)
+ J (0)

(
q2

M2

)]
,

INN (q2) = 2λ̄ + 1

16π2

[
1 + J (0)

(
q2

m2

)]
,

IπN (p2) = 2λ̄ + 1

16π2

[
−1 + p2 − m2 + M2

p2
ln

(
M

m

)

+ 2mM

p2
F (�)

]
,

where

J (0)(x) =
∫ 1

0
dz ln[1 + x(z2 − z) − iε]

=




−2 − σ ln
(

σ−1
σ+1

)
, x < 0,

−2 + 2
√

4
x

− 1 arccot
(√

4
x

− 1
)

, 0 � x < 4,

−2 − σ ln
(

1−σ
1+σ

) − iπσ, 4 < x,

with

σ (x) =
√

1 − 4

x
, x /∈ [0, 4],

and

F (�) =



√

�2 − 1 ln
(
−� − √

�2 − 1
)

, � � − 1,√
1 − �2 arccos (−�), −1 � � � 1,√
�2 − 1 ln

(
�+ √

�2 − 1
)

− iπ
√

�2 − 1, 1 � �.

Integrals with three propagators were analyzed numerically
using a Schwinger parametrization.

For purely mesonic integrals only the terms proportional to
λ̄ have to be subtracted. To determine the infrared regular parts
R of the scalar loop integrals, we use the method described
in [34]. On-shell-kinematics are assumed for the subtraction
terms. Note that we also list divergent terms, as they might
give finite contributions in the expressions for tensor integrals.

RN = IN ,

RNN = INN,

RπN = λ̄

[
2 − M2

m2
(1 − 8c1m) + 3g2

AM3

16πF 2m

]
− 1

16π2

− M2

32π2m2
(3 + 8c1m) − 3g2

AM3

512π3F 2m
+ O(p4),

RπNN = λ̄

m2

[
1 + q2

6m2
+ 8c1

M2

m
+ 3g2

AM3

16πF 2m

]
+ 1

32π2m2

− M2

32π2m4
(1 − 16c1m) + 3g2

AM3

256π3F 2m3
+ O(p4).
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