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Recoil polarization measurements for neutral pion electroproduction
at Q2 = 1 (GeV/c)2 near the � resonance
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We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization
for neutral pion electroproduction at Q2 = 1.0 (GeV/c)2 in 10 bins of 1.17 � W � 1.35 GeV across the �

resonance. A total of 16 independent response functions were extracted, of which 12 were observed for
the first time. Comparisons with recent model calculations show that response functions governed by real
parts of interference products are determined relatively well near the physical mass, W = M� ≈ 1.232 GeV,
but the variation among models is large for response functions governed by imaginary parts, and for
both types of response functions, the variation increases rapidly with W > M�. We performed a multipole
analysis that adjusts suitable subsets of �π � 2 amplitudes with higher partial waves constrained by baseline
models. This analysis provides both real and imaginary parts. The fitted multipole amplitudes are nearly
model independent—there is very little sensitivity to the choice of baseline model or truncation scheme. By
contrast, truncation errors in the traditional Legendre analysis of N → � quadrupole ratios are not negligible.
Parabolic fits to the W dependence around M� for the multiple analysis gives values for Re(S1+/M1+) =
(−6.61 ± 0.18)% and Re(E1+/M1+) = (−2.87 ± 0.19)% for the pπ 0 channel at W = 1.232 GeV
and Q2 = 1.0 (GeV/c)2 that are distinctly larger than those from the Legendre analysis of the same data.
Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 ± 0.8)% at W = 1.232 GeV, consistent with recent
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models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite
severe.

DOI: 10.1103/PhysRevC.75.025201 PACS number(s): 24.70.+s, 14.20.Gk, 13.60.Le, 13.40.Gp

I. INTRODUCTION

The electroexcitation of a nucleon resonance is described
by two transverse form factors A1/2(Q2) and A3/2(Q2) and one
longitudinal or scalar form factor S1/2(Q2), where the subscript
denotes the projection of the resonance spin upon the virtual
photon momentum and where the dependence upon photon
virtuality Q2 describes the spatial structure of the transition.
Measurement of all three transition form factors could provide
stimulating tests of QCD-inspired models of baryon structure
[1]. For example, one might be able to determine the admix-
tures of small components with mixed symmetry or orbital
excitation into wave functions dominated by SU(6) symmetry.
Alternatively, it has been speculated that the Roper resonance
at 1440 MeV could be a hybrid baryon based upon gluonic
excitation [2]. The electromagnetic transition form factors
would be distinctly different for a hybrid baryon or for a radial
single-quark excitation [3]. However, the electroexcitation
of a resonance R by a virtual photon γv in a reaction of
the form γvN → R → Nx, where x could be one or even
several mesons, inevitably is accompanied by nonresonant
contributions and is complicated by final-state interactions.
Furthermore, the nucleon resonances are broad and overlap-
ping. Therefore, measurements of differential cross sections
alone are not sufficient to permit clean, model-independent
determination of the multipole amplitudes for meson electro-
production or, ultimately, the transition form factors.

There has been long-standing interest in deformed com-
ponents of the N and � wave functions [4]. The dominant
amplitude for pion electroproduction at the � resonance is
the M1+ amplitude, but smaller S1+ and E1+ amplitudes arise
from configuration mixing within the quark core [5], often
described as quadrupole deformation, from meson and gluon
exchange currents between quarks [6], or from coupling to the
pion cloud outside the quark core [7,8]. Thus, the quadrupole
deformation is related to the ratios of isospin 3/2 electro-
production multipole amplitudes, R

(3/2)
EM = Re(E(3/2)

1+ /M
(3/2)
1+ )

and R
(3/2)
SM = Re(S(3/2)

1+ /M
(3/2)
1+ ), evaluated at W = M�, where

M� = 1.232 GeV is the physical mass of the resonance. These
quantities are often labeled as EMR and SMR instead, and we
will use both notations interchangeably. It has been argued that
the intrinsic N and � quadrupole moments are small [9] and
that the observed EMR and SMR are dominated by nonvalence
degrees of freedom.

Most previous determinations of EMR and SMR analyzed
differential cross section data using Legendre expansions
truncated according to the assumption of M1+ dominance. The
data prior to 1990 generally suffered from poor statistics, lim-
ited acceptance, and relatively large systematic uncertainties,
leaving even the sign of EMR at low Q2 undetermined [10].
More recent experiments using polarized photons [11,12] now
find REM ≈ −2.5% at Q2 = 0 with relatively little model
dependence [13]. Similarly, recoil polarization for parallel
kinematics gave RSM ≈ −6.4% for Q2 = 0.12 (GeV/c)2 [14].

Furthermore, more precise measurements of the azimuthal de-
pendence of the differential cross section give RSM ≈ −6.1%
at Q2 → 0 [15–17] and have mapped the Q2 dependence up
to 4 (GeV/c)2 [18–20], but these analyses still rely upon M1+
dominance. However, there are several indications that this
truncation may be inadequate. First, at Q2 ≈ 0.13 (GeV/c)2

there is a strong disagreement between the SMR value
obtained at Bonn [21] detecting a forward pion and those
obtained at MIT-Bates [15] and Mainz [14] detecting a forward
proton that might be explained by an unexpectedly large
S0+ amplitude [22]. Second, the dynamical models fail to
reproduce the induced polarization for parallel kinematics at
Q2 <∼ 0.2 (GeV/c)2 where the pion cloud is important [23,24].
Similar problems have also been observed at Q2 = 0.4 and
0.65 (GeV/c)2 [25]. Third, it appears to be difficult to obtain
a consistent description of the real and imaginary parts of the
longitudinal-transverse interference for Q2 <∼ 0.25 (GeV/c)2

and W <∼ 1.23 GeV, where one might expect M1+ dominance to
suffice [16,26], but a multipole analysis is not possible without
more complete angular coverage and sensitivity to phases.

In principle, this model dependence can be reduced con-
siderably by measurement of recoil and/or target polarization
observables that are sensitive to the relative phase between
resonant and nonresonant mechanisms [27–30]. Polarization
often enhances the sensitivity to small amplitudes by in-
terference with a large amplitude. Helicity-dependent recoil
polarization is sensitive to real parts, and helicity-independent
recoil polarization is sensitive to imaginary parts of products
of multipole amplitudes. Furthermore, by measuring the
azimuthal dependencies, one can determine response functions
sensitive to the linear polarization of the virtual photon. Thus,
it may be possible to perform a nearly model-independent mul-
tipole analysis if complete angular distributions are measured
for a comprehensive set of recoil polarization observables.
These multipole amplitudes can then be interpreted with the
aid of dynamical or coupled-channels models that enforce
unitary and relate the complex multipole amplitude to the
real transition form factors. It is important to recognize
that measurement of complex multipole amplitudes requires
polarization data that are sensitive to phases; differential cross
sections alone are not sufficient no matter how complete their
angular coverage.

Note that coarsely binned measurements of asymmetries
with respect to longitudinal target polarization have been made
recently by Biselli et al. [31] for the pπ0 channel and by
De Vita et al. [32] for the nπ+ channel in the resonance region
with 0.35 < Q2 < 1.5 (GeV/c)2. However, those data have
not been resolved into response functions and are not suitable
for detailed multipole analysis.

In this paper, we report the first extensive measurements
of angular distributions for recoil polarization in pion elec-
troproduction. We have measured recoil polarization response
functions for the p(�e, e′ �p)π0 reaction at Q2 ≈ 1 (GeV/c)2

near the � resonance, obtaining angular distributions for a total
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of 16 independent response functions in 10 steps of W covering
1.17 � W � 1.35 GeV; the angular coverage and statistical
precision are best in the central region 1.21 � W � 1.29 GeV.
The data for W = 1.23 GeV were reported in Ref. [33], which
focused upon the quadrupole ratios for the N → � transition.
Twelve of these response functions are observed here for the
first time and provide rigorous tests of reaction models; none of
the available models provides a uniformly accurate description
of the data for previously unavailable response functions. We
compare a traditional truncated Legendre analysis with a more
general multipole analysis of these data. Although the two
analyses are qualitatively consistent, the multipole analysis
shows that truncation errors in the traditional Legendre
analysis of the quadrupole ratios are not negligible.

Section II defines the response functions, Sec. III describes
the experiment, and Secs. IV and V describe the cross section
and polarization analyses, respectively. We compare the results
with selected models in Sec. VI A and present Legendre and
multipole analyses in Secs. VI B and VI C. Further discussion
of the relationship between the two analyses is given in
Sec. VII. Finally, Sec. VIII summarizes our conclusions.

II. RESPONSE FUNCTIONS

A. Definitions

The differential cross section for recoil polarization in the
pion electroproduction reaction p(�e, e′ �N )π can be expressed
in the form

d5σ

dkf d�ed�∗ = �γ σ̄ [1 + hA + � · S] , (1)

where σ̄ is the unpolarized cross section, h the electron
helicity, S the spin direction for the recoil nucleon, A the
beam analyzing power, � = P + hP ′ the recoil polarization,

�γ = α

2π2

kf

ki

kγ

Q2

1

1 − ε
(2)

the virtual photon flux for initial (final) electron momenta
ki(kf ), ε = (1 + 2 q2

Q2 tan2 θe

2 )−1 the transverse polarization of
the virtual photon, θe the electron scattering angle, and
kγ = (W 2 − m2

p)/2mp the laboratory energy a real photon
would need to excite the same transition. Note that electron
kinematics and solid angle d�e are normally expressed in the
laboratory frame, while hadron kinematics and nucleon solid
angle d�∗ are expressed in the πN center-of-mass frame.
Figure 1 illustrates the kinematics of this reaction and the
definitions for polarization vectors.

It is convenient to express polarization vectors in a basis
where �̂ is along the nucleon momentum in the c.m. frame,
n̂ ∝ q̂ ∧ �̂ is normal to the reaction plane, and t̂ = n̂ ∧ �̂. The
azimuthal dependence can then be extracted, and the observ-
ables can be decomposed into kinematic factors να , which
depend only upon electron kinematics and response functions,
Rα(x,W,Q2), which carry the hadronic information, such
that

σ̄ = ν0[νLRL + νT RT + νLT RLT sin θ cos φ

+ νT T RT T sin2 θ cos 2φ], (3a)

FIG. 1. Kinematics of p(�e, e′ �p)π 0 reaction and polarization basis
vectors.

Aσ̄ = ν0[ν ′
LT R′

LT sin θ sin φ], (3b)

Pt σ̄ = ν0
[
νLT Rt

LT sin φ + νT T Rt
T T sin θ sin 2φ

]
, (3c)

Pnσ̄ = ν0
[(

νLRn
L + νT Rn

T

)
sin θ + νLT Rn

LT cos φ

+ νT T Rn
T T sin θ cos 2φ

]
, (3d)

P�σ̄ = ν0
[
νLT R�

LT sin θ sin φ + νT T R�
T T sin2 θ sin 2φ

]
, (3e)

P ′
t σ̄ = ν0

[
ν ′

LT R′t
LT cos φ + ν ′

T T R′t
T T sin θ

]
, (3f)

P ′
nσ̄ = ν0

[
ν ′

LT R′n
LT sin φ

]
, (3g)

P ′
�σ̄ = ν0

[
ν ′

LT R′�
LT sin θ cos φ + ν ′

T T R′�
T T

]
, (3h)

where the response functions depend upon W,Q2, and
x = cos θ, where θ is the pion angle relative to �q in the
πN c.m. frame. The azimuthal angle φ also refers to the
pion momentum. The overall factor ν0 permits phase-space
factors to be extracted from the response functions, thereby
simplifying multipole expansions. This factor is usually taken
as the ratio between the c.m. momentum in the final state and
the c.m. momentum a real photon needs for the same transition,
such that ν0 = k/q0 where

k2 =
(
W 2 + m2

π − m2
p

)2

4W 2
− m2

π , (4a)

q0 = W 2 − m2
p

2W
. (4b)

Regrettably, no single convention for the signs and normal-
izations of the response functions has gained wide acceptance.
We chose

νT = 1, (5a)

νT T = ε, (5b)

ν ′
T T =

√
1 − ε2, (5c)

νL = εS, (5d)

νLT =
√

2εS(1 + ε), (5e)

ν ′
LT =

√
2εS(1 − ε), (5f)

where

εS = Q2

q2
ε, (6)
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and we use the azimuthal angle for the pion in Eq. (3). Note that
although ε is invariant, εS is not and that Eq. (6) is evaluated
in the πN c.m. frame. When there is insufficient information
to perform a Rosenbluth separation, we employ ε-dependent
combinations

νT RL+T = νLRL + νT RT , (7a)

νT Rn
L+T = νLRn

L + νT Rn
T . (7b)

In many of the figures to follow, we use a simplified notation
to label response functions and related quantities. These labels
distinguish L, T ,LT , T T , and L + T contributions to the
unpolarized (0) cross section and to transverse (t), normal
(n), and longitudinal (l) components of recoil polarization.
Helicity dependence is indicated by h. For example, RLT is
labeled LT(0), Rn

LT is labeled LT(n), and R′�
T T is labeled TTh(l).

B. Legendre expansions

Legendre expansions often provide the most efficient rep-
resentation of the angular dependence of a response function.
Each of the response functions can be represented by a
Legendre expansion of the form

Rη(x,W,Q2) =
∞∑

m=0

Aη
m(W,Q2)Pm(x), (8)

where η represents all of the labels needed to identify a particu-
lar response function, and x = cos θ . Notice that by extracting
the leading dependencies upon sin θ , the response functions
defined by Eq. (3) reduce to polynomials in x that are expected
to be of low order for modest W and Q2. This convention
should also improve the accuracy of acceptance averaging
within bins of x. The Legendre coefficients A

η
m(W,Q2) can be

obtained by fitting response-function angular distributions for
each (W,Q2). Alternatively, often the most efficient method
for extracting the x dependence of response functions for
a particular (W,Q2) bin is to perform a two-dimensional
fit of the (x, φ) dependencies of the appropriate observable,
cross section or polarization, with the aid of the Legendre
expansion. This type of analysis can be used to extrapo-
late response functions to parallel or antiparallel kinematics
where interesting symmetry relations have been developed but
where the experimental acceptance vanishes [34,35].

III. EXPERIMENT

The experiment was performed in Hall A of the Continuous
Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab-
oratory in three periods between May and August 2000 using
standard equipment described in detail in Ref. [36]. Details
of the design and performance of the focal-plane polarimeter
(FPP) can be found in Ref. [37]. Further information specific
to this experiment may be found in Refs. [38–40]. Here we
summarize the salient features.

The beam energy of 4531 ± 1 MeV was measured by two
independent methods and the results were in agreement. The
arc method uses wire scanners to measure the beam deflection
angle between the accelerator and the experimental beam lines.

The eP method measures electron and proton angles for elastic
scattering from hydrogen using silicon strip detectors placed
symmetrically in the vertical plane of a dedicated instrument.

The beam current was monitored by a pair of resonant rf
cavities that were periodically calibrated with respect to an
Unser monitor. The Unser monitor is a parametric current
transformer that provides absolute current measurements and
is calibrated with respect to a precision current source, but
it suffers from a variable offset. The rf cavities are much
more stable and can be used as continuous monitors. The
calibration procedure alternates between beam off and current
ramping between about 10 and 100 µA in about five steps,
using the beam off periods to determine the drift of the Unser
offset and the current steps to determine the rf gains. This
procedure was repeated several times during the experiment,
with negligible differences between calibrations. The accuracy
of these monitors is better than 0.5% [36].

The beam position and direction were measured by beam
position monitors (BPMs) located 7.524 and 1.286 m upstream
of the target. Each BPM is a four-wire antenna array tuned to
the fundamental rf frequency of the beam and provides the
relative position to within 100µm. The absolute positions of
the BPMs are calibrated with respect to wire scanners that are
surveyed regularly.

The polarized electron beam was produced by circularly
polarized light from a 780 nm diode laser, pulsed at 1497 MHz,
illuminating a strained gallium arsenide wafer. A Pockels
cell was used to reverse the laser polarization at 30 Hz. The
beam polarization was measured nearly continuously using a
Compton polarimeter, with systematic uncertainties estimated
to be about 1% [40]. In addition, periodic measurements
were also made with a Moller polarimeter, with systematic
uncertainties of about 2.4%. Statistical uncertainties were
negligible for both methods. Figure 2 summarizes the polar-
ization measurements, where the vertical dashed lines indicate
movement of the laser spot needed to maintain high current.

FIG. 2. (Color online) Beam polarization measurements: gray
boxes indicate Moller measurements, and points Compton measure-
ments, with systematic uncertainties included for both. Note the
suppressed zero. Vertical dashed lines mark movements of the laser
spot. The solid red vertical line makes the change of polarized source.
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The polarization averaged about 72% for the first two running
periods, but for the third it was necessary to use a different
source with lower polarization, about 65%. Figure 2 shows
that the time dependence of the beam polarization is minimal
between spot changes. Moller results were used during the few
occasions when the Compton measurements were unavailable.
A comparison between the five beam polarimeters at Jefferson
Lab [41] indicates that Compton measurements in Hall A
are consistent with Mott measurements at the injector but
that the ratio between beam polarizations obtained with the
Hall A Moller and Compton polarimeters is approximately
1.034 ± 0.028, which is qualitatively consistent with the
observation in Fig. 2 that the Moller results are generally about
3% larger than the Compton results. However, because the
statistical precision of this ratio remains poor and relatively
few runs rely on the Moller polarimeter, a correction for the
relative normalization of the two polarimeters was not applied.

The production target was a cryogenic loop for liquid
hydrogen operating at 19 K and 0.17 MPa with a density
of 0.723 g/cm3. The beam passes through a cylindrical
aluminum cell that is 15 cm long and 6.35 cm in diameter with
sidewall thickness of 178 µm and entrance and exit windows
approximately 71 and 102 µm thick, respectively. To avoid
damage to the target cell and to minimize luminosity variations
due to local heating or boiling, the beam was rastered over
a 4 × 4 mm2 pattern. Measurements of rates versus current
demonstrate that the average target density decreases by less
than 2% for rastered currents in the range 20–60 µA relevant
to the cross section measurements [39]. Furthermore, the
electron singles rate provided a continuous luminosity monitor
because the electron spectrometer remained fixed throughout
the experiment.

Additional data were taken with about 5 µA of unrastered
beam on a thin carbon foil and on dummy targets consisting
of aluminum foils separated by 4, 10, or 15 cm that mimic
the windows of a cryogenic cell. These data were used
to determine the mispointing of the spectrometers, and the
data for the 15 cm dummy cell were used to determine the
contribution of the cell walls for the production data.

Particles were detected by a pair of high-resolution QQDQ
spectrometers of identical design, with electrons observed in
the left and protons in the right spectrometer. These spectrom-
eters have a central bend angle of 45◦ and nominal acceptances
of ±4.5% in momentum, ±60 mr in vertical angle, and
±30 mr in horizontal angle. The cross section data taken during
the first of three running periods were taken with 80 mm tung-
sten collimators at distances of 1.109 m for the left or 1.100 m
for the right with nominal apertures of 6 msr. Polarization data
taken in the next two running periods were acquired with open
apertures. The entrance windows were 178 µm Kapton while
the exit windows were 100 µm titanium.

The position of the electron spectrometer was determined
by survey. The initial position of the proton spectrometer was
also determined by survey for each run period, and subsequent
angles were measured using accurately placed floor marks
observed through a closed-circuit television camera mounted
on a linear translation stage without parallax. These raw
angle measurements were then corrected for roll and pitch
as measured by bi-axial inclinometers. However, because the

spectrometers do not rotate about a fixed pivot, it is necessary to
correct for possible mispointing. Corrections for mispointing
were deduced from scattering data for the carbon target. The
spectrometer offsets deduced for the electron arm, which was
stationary for each run period, were consistent with constant
values that were less than 2 mm and consistent with survey.
The offsets for the hadron arm varied between about −4 and
+1.5 mm with the motion of the spectrometer, but were
reproducible without motion [38].

Both arms use two vertical drift chambers (VDCs) for
tracking that are inclined by ±45◦ with respect to the central
trajectory and are separated by 50 cm. Each chamber contains
two planes of sense wires inclined at ±45◦ with respect to the
midplane (uv configuration). Valid tracks typically produce
signals on three to five sense wires. These detectors typically
provide intrinsic resolutions of σx,y = 100 µm for positions
and σθ,φ = 0.5 mrad for angles. Further details about the VDCs
are provided in Ref. [42].

Both arms also use two trigger planes, S1 and S2, consisting
of six plastic scintillator paddles that are 5 mm thick, overlap
by about 0.5 cm, and are viewed by photomultiplier tubes
(PMTs) on both ends. Five types of trigger were produced
by the trigger supervisor module using signals from the two
trigger planes in each spectrometer. A T1 (T3) trigger in the
electron (proton) arm requires coincidence between paddle i of
S1 and paddle j of S2 with |i − j | � 1, with PMT signals above
threshold in both ends of both paddles. A T2 (T4) trigger in the
electron (proton) arm misses one or more of the PMT signals or
fails the directivity requirement. The T5 primary coincidence
trigger requires T1 and T3 within 100 ns of each other, where
T3 and T4 include adjustable delays depending upon hadron
momentum. The time resolution for the coincidence trigger is
typically about σ = 0.3 ns. Events corresponding to any of
these triggers can be recorded, but triggers other than T5 were
generally prescaled to limit computer dead time.

A simple cut on flight time between scintillator planes was
sufficient to identify electrons. For the first running period, a
single large scintillator paddle, labeled S0, was included in the
proton trigger. After the first running period, the S0 scintillator
was replaced with an aerogel Cerenkov detector with n =
1.025, and the aerogel signal was used in the proton trigger
to suppress pion background with momentum greater than
0.63 GeV/c. We could then make polarization measurements
at forward angles with higher beam currents without excessive
dead time.

Recoil polarization measurements were made using the
focal plane polarimeter (FPP) installed in the proton arm.
More complete details of the construction and operation of
the FPP can be found in Refs. [36,37]. The FPP consists of
two front straw chambers, a carbon analyzer of adjustable
thickness, and two rear straw chambers. The front chambers
were separated by 114 cm, and each contains six planes in a
vvvuuu configuration. The rear chambers were separated by
38 cm. Chamber 3 has a uuvvxx and chamber 4 a uuuvvv

configuration, where x denotes sensitivity to the dispersive
direction. The analyzer consisted of five graphite plates with
thicknesses of 1.9, 3.8, 7.6, 15.2, and 22.9 cm separated by
about 1.6 cm that can be deployed in any combination to
optimize the analyzing power for specified proton momentum.
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TABLE I. Settings for the proton spectrometer. Here θp is
the laboratory angle with respect to the beam, pp is the central
momentum, and θpq is the c.m. angle with respect to �q. The fifth
column lists the 12C thickness used for the FPP, and the final column
lists the nominal precession angle for the central momentum.

θpq θp pp charge 12C thickness χ0

(deg) (deg) (GeV/c) (Coulomb) (cm) (deg)

0 42.31 1.378 25.9 49.5 143.3
25 38.12 1.350 7.9 49.5 141.3

−25 46.33 1.350 4.6 49.5
50 34.29 1.270 18.9 34.3 135.7

−50 50.18 1.270 12.9 34.3
90 29.81 1.066 15.5 22.9 122.1

−90 54.79 1.066 20.1 22.9
135 30.81 0.819 14.6 11.4 107.1

−135 53.64 0.819 27.6 11.4
155 34.71 0.742 13.9 11.4 102.8

−155 49.72 0.742 13.6 11.4
180 42.28 0.703 5.0 7.6 100.8

Spectrometer settings were chosen to obtain (W,Q2) =
[1.232 GeV, 1.0 (GeV/c)2] for a nominal beam energy of
4.535 GeV. Thus, the electron spectrometer remained fixed
at 14.095◦ with a central momentum of 3.660 GeV/c. The
nominal settings for the proton spectrometer, with accumulated
charge, are summarized in Table I. It is convenient to define
θpq as the nominal center-of-mass angle between the nucleon
momentum and the momentum transfer in the laboratory
frame with positive (negative) sign corresponding to forward
(backward) angles with respect to the beam direction. The
experiment was divided into three periods. The first period was
used to scan the angular distribution and to obtain differential
cross sections for all settings except θpq = 180◦ using the
6 msr collimator in the hadron arm and relatively low currents
to limit dead time. The second and third periods used the
highest possible currents to obtain adequate statistics for recoil
polarization and used the aerogel detector for forward angles
to suppress dead time due to accidental π+ coincidences.

IV. CROSS SECTION ANALYSIS

A. Acceptance

In each spectrometer, a track is defined by the four
reconstructed target variables (δ, y, θ, φ)tgt; these variables are
defined according to TRANSPORT [43] conventions. Rather than
attempt to visualize the four-dimensional volumes populated
by event coordinates for each spectrometer, one normally
inspects two-dimensional projections. An event that is safely
near the center of the distribution in one projection may be
found near the edge of another where either the experimental
acceptance or the calibration of the magnetic optics may be
suboptimal. Therefore, it is useful to construct a measure Reh

of the distance between event coordinates and the boundary
of a multidimensional acceptance volume that is based upon
two-dimensional projections that are more amenable to visual-
ization. We employ a variation of the R-function method that

was originally developed by V. Rvachev [44,45] and applied
to (e, e′p) reactions by M. Rvachev [46,47]. Further details of
our implementation may be found in [39].

B. Simulation

The differential cross sections for each kinematic bin
were obtained from comparison between experimental and
simulated yields. The simulations used MCEEP [48] to apply
radiative corrections to a theoretical model, resulting in a
six-fold differential cross section, and to integrate the theo-
retical cross section over the experimental acceptance. MCEEP

samples the phase space uniformly, over a volume larger than
the experimental acceptance, and evaluates the yield

Yi = L
∫

Kid
6σ ⊗ R, (9)

where L is the luminosity, Ki represents the acceptance
function for bin i, d6σ represents the model cross section
for each event, ⊗ represents convolution, and R represents
resolution functions for quantities measured in the focal plane.
Here Ki = 1, if Reh > Rcut or 0 otherwise based upon target
variables that are reconstructed from focal-plane coordinates
convoluted with resolution functions.

The model cross section was based upon tabulated mul-
tipole amplitudes for MAID2000 [49]. The kinematics for
each event were used to interpolate the multipole amplitudes
with respect to (W,Q2) and then to compute the five-fold
differential cross section in the laboratory frame.

The radiative corrections include bremsstrahlung in the
target before and after scattering, internal soft-photon pro-
cesses according to the Schwinger prescription, and radiation
of hard photons using the Borie-Drechsel [50] prescription
with the peaking approximation. Multiple scattering within
the target and windows is included also. These corrections
do not account for polarization effects. Further details can be
found in Refs. [39,48].

Figure 3 shows that the simulation reproduces the distribu-
tions for reaction kinematics very well. Note that the exper-
imental acceptance function Reh is shown without applying
the cut. The optimal choice for Rcut is somewhere below
the center of the plateau in the ratio between experimental
and simulated yields. The systematic uncertainty due to the
acceptance function, estimated from the flatness of the plateau,
varies between 0.6% and 2.4%.

The missing mass for this reaction is quite sensitive to
laboratory angles; for example, at θpq = −155◦ the sensitivity
to electron angle is 13 MeV/degree for our kinematics. Thus,
comparing the simulation with data for θpq = −155◦ we
adjusted the electron angle by −0.05◦, which is well within
the survey uncertainty, and then find good agreement with the
missing mass peaks for all other settings as well. Furthermore,
the width of the missing mass peak is underestimated by the
simulation unless resolution functions are applied to the track
coordinates. We found that Gaussian resolutions with σ =
0.5 mm applied to the hit positions in each VDC plane provide
good agreement with those widths. This simple expedient
compensates for deficiencies in the simulation of multiple
scattering, magnetic optics, and/or event reconstruction.

025201-6



RECOIL POLARIZATION MEASUREMENTS FOR NEUTRAL . . . PHYSICAL REVIEW C 75, 025201 (2007)

]2W [MeV/c
1100 1200 1300 1400
0

0.01

0.02

0.03

0.04

]2 [(GeV/c)2Q
0.8 0.9 1 1.1 1.2 1.3

0

0.01

0.02

0.03

 [degree]pφ
0 100 200 300

0

0.01

0.02

0.03

0.04

 [degree]pqθ
0 50 100 150

0

0.02

0.04

ehR
-0.1 0 0.1 0.2 0.3
0

0.02

0.04

0.06

0.08

]2Missing Mass [MeV/c
0 100 200

0

0.05

0.1

0.15

FIG. 3. (Color online) Comparison between observed (solid blue)
and simulated (dotted red) distributions of kinematic variables for
θpq = 0 with Reh > 0.05. The lower left panel shows the uncut
distribution of Reh.

C. Background

The acceptance cut Reh > 0.05 suppresses the background
from the elastic radiative tail quite strongly. The residual
contribution is less than 0.4% at θpq = −90◦ and much smaller
at θpq = −50◦. Hence, no corrections for this background
were needed for the cross section or the unpolarized response
functions. The background due to accidental coincidences
was subtracted using time windows on both sides of the
coincidence peak, applying the same particle identification
and acceptance tests, and normalizing by width.

D. Cross section calculation

The virtual photoproduction cross section σ̄ for a particular
kinematic bin was determined by scaling the model cross
section σ̄model for that bin, evaluated for bin-centered kinemat-
ics, and applying various dead time and efficiency corrections
according to

σ̄ = Y

YMC
σ̄model

fCDTfEDTfabs

εtriggerεtrack
, (10)

where Y and YMC are the observed and simulated yields, fCDT

corrects for computer dead ime, fEDT corrects for electronics
dead time, εtrigger corrects for trigger efficiency, εtrack corrects

for wire chamber and tracking efficiency, and fabs corrects
for proton absorption in materials between the scattering and
detection. No correction was made for variation of luminosity
with current because no systematic variation was observed in
the luminosity monitor for the currents employed in the cross
section measurements (20–60 µA).

The computer dead time was determined by comparing
the coincidence scaler with the number of coincidence events
recorded. In addition, the trigger supervisor has an internal
dead time of approximately 100 ns, such that the electronics
dead time for a 1 MHz rate in the trigger scintillators is about
10%. The electronics dead time was measured by sending
pulser signals to one scintillator paddle in each arm and
comparing the number of pulser signals recorded with the
number counted by a scaler, correcting for computer dead
time. The dependence of the electronic dead time upon strobe
rate was then parametrized. The systematic uncertainty in the
correction for electronic dead time was estimated to be about
1% at the highest rates [51].

The event reconstruction software rejects events with
more than one track in either spectrometer. For the electron
spectrometer, 10–12% of the events contained multiple tracks,
while for the proton spectrometer, 1–12% contained multiple
tracks depending upon the momentum and angle settings. We
assume that the fraction of multiple-track events that contain
a particle that would have satisfied the particle-identification
criteria and other tests is the same as that for single-track
events and apply corrections for each arm independently. In
addition, we required valid tracks to contain three to eight
hits in each VDC plane. The position dependence of tracking
efficiency should be minimal for inelastic events which cover
the spectrometer acceptances fairly uniformly. For the two
settings with significant population by elastic scattering, the
elastic scattering events were excluded from the calculation
of tracking efficiency to minimize position-dependent effects
upon trigger efficiency and to improve factorization of the
tracking efficiencies for the two arms. The variation of
the electron-arm tracking efficiency was used to obtain an
estimated systematic uncertainty of 1.2% in that factor.

The triggers in each arm require coincidence between two
scintillator planes and test the track direction. Thus, the trigger
efficiency compares the total number of valid triggers with the
total number of events with a least one hit in a scintillator.
For the electron arm, we require events in both the numerator
and the denominator to satisfy the Cerenkov test for electrons,
and to contain only one track. For the proton arm, we also
use one-track events but use the S0 scintillator instead of the
Cerenkov detector. The net trigger efficiency of approximately
96.7%, with a systematic uncertainty of about 1%, is then the
product of the efficiencies for the two arms.

Finally, we used a compilation of proton reaction cross
sections to estimate the probability for proton absorption
between scattering and detection. The net correction factor
varied between 1.008 and 1.017 depending upon momentum.

E. Cross section results

We assume that the ratio between observed and simulated
yields over the acceptance for a kinematic bin is very nearly
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FIG. 4. Fits to the φ dependence of unpolarized cross section data with (W,Q2) = (1.23, 1.0). Each panel is labeled by the central x. Solid
curves fit Legendre coefficients to the entire data set shown, while dashed curves fit response functions within each panel independently.

equal to the ratio between actual and model differential
cross sections for the central kinematics of that bin. The
accuracy of this assumption depends, of course, upon the
bin size and the curvature of the differential cross section
with respect to the binned variables. Events were accepted
for Q2 = 1.0 ± 0.2 (GeV/c)2. We used 10 bins in W between
1.17 and 1.35 GeV of width ±0.01 GeV, 20 bins of x between
−0.95 and +0.95 in steps of 0.1, and 12 bins of φ of 30◦ width.
After dropping bins with negligible acceptance, approximately
1140 data were obtained for both differential cross section and
beam analyzing power. These data are reported for central
kinematics.

Figure 4 shows the φ dependence of the differential
cross section for each x bin with (W,Q2) = (1.23, 1.0). The
dashed curves fit RL+T , RLT , and RT T for each (x,W,Q2)
independently to the φ dependence of Eq. (3a). Unfortunately,
this procedure did not permit model-independent separation of
RT T from RL+T for x ≈ 0 because correlations were too large
given the present φ acceptance. The solid curves fit Legendre
coefficients to the (x, φ) dependence, thereby imposing a
smooth x dependence that is not required by the extraction of
unpolarized response functions. Nevertheless, both methods fit
the data well and agree within the uncertainties estimated from
covariances. Similar figures can be made for each (W,Q2) bin,
but are too numerous to display here.

The Legendre coefficients fit to the unpolarized cross
section for Q2 = 1.0 (GeV/c)2 are compared in Figs. 5–7
with expansion coefficients for calculations based upon the
MAID2003, DMT, SAID, and SL models obtained by in-
version of Eq. (8). (More details about model calculations

are given in Sec. VI A.) Although these calculations suggest
that the sp truncation is probably adequate in the immediate
vicinity of the � resonance, it appears that additional terms
may be necessary elsewhere. Therefore, in addition to fits
based upon sp truncation, we show fits with one additional
free parameter for each response function within the the
central W range, where the angular coverage and statistical
precision are best. The models reproduce the even L + T

coefficients relatively well, although the W dependence of
the SAID calculation for AL+T

2 is somewhat too flat. The
models also reproduce the low-order coefficients for RLT

and RT T relatively well. For RLT the additional coefficient
is determined relatively well near the middle of the W range
and is consistent in both sign and magnitude with most model
calculations. The resulting curvature in RLT is small but
definitely visible. Similarly, the data are consistent with the
small negative linear coefficient predicted for RT T but cannot
determine higher-order coefficients. The additional term for
RL+T appears to be rather weak. The extra terms have very
small effects upon the fitted value for lower coefficients of the
same parity, but negligible effect upon those of opposite parity.
Note that AL+T

1 is appreciably stronger than MAID, DMT, or
SL predictions and exhibits an upturn for W >∼ 1.3 GeV that
is absent from those models and that this result is not affected
by the inclusion of terms beyond sp truncation.

Figures 5–7 also show similar results obtained by Joo et al.
[18,52] at Jefferson Laboratory using CLAS. Here we show
their results for the higher beam energy, 2.445 GeV, which
has better statistical precision. However, the two experiments
used different binnings with respect to Q2. For the purposes of
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FIG. 5. (Color online) Legendre coefficients for RL+T fit to
differential cross sections at Q2 = 1.0 (GeV/c)2 compared with
CLAS data. These quantities are defined in Eq. (8), where superscripts
identify the response function and subscripts the degree of the
Legendre polynomial. The filled triangles use the sp truncation, while
in the central W range the filled circles include an extra term for each
response function; the two sets of points often overlap. CLAS results
scaled to Q2 = 1.0 (GeV/c)2 using a dipole form factor are shown as
open green circles for Q2 = 0.9 (GeV/c)2 and open green squares for
Q2 = 1.15 (GeV/c)2; only data for a beam energy of 2.445 GeV are
shown. The CLAS analysis uses the same set of Legendre coefficients
as the filled triangles. These results are compared with MAID2003
(red solid), DMT (green dashed), SAID (blue dash-dotted), and SL
(cyan dotted) calculations.

this comparison, we assume that the Legendre coefficients are
proportional to the square of a dipole form factor and rescale
the CLAS data for Q2 = 0.9 and 1.15 (GeV/c)2 to a common
value of 1.0 (GeV/c)2. Note, however, that for a given W, ε is
higher for Q2 = 0.9 than for 1.15 (GeV/c)2 and that ε for our
experiment is higher than for either of the CLAS data sets. We
observe good qualitative agreement between these data sets,
but there are significant differences in detail. For example, our
AL+T

2 is systematically stronger for low W than in CLAS data.
Nor does the form-factor scaling prescription bring the two
CLAS data sets for LT coefficients in agreement with each
other, but the higher Q2 data also appear to show more scatter.
On the other hand, the curvature we see in the x dependence
of RLT clearly requires at least one term beyond sp truncation;
this is shown in more detail in Sec. VI B. Perhaps the omission
of ALT

2 from the CLAS analysis is partly responsible for
discrepancies in the lower coefficients.

FIG. 6. (Color online) Same as Fig. 5, but for RLT .

FIG. 7. (Color online) Same as Fig. 5, but for RT T .
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FIG. 8. (Color online) Kinematic accep-
tance and binning for the polarization analysis.
Left: angular acceptance for (φN, θN ) in the
c.m. frame. Right: (Q2,W ) acceptance. These
composite figures include several runs from
all spectrometer settings, where the number
of runs for each setting was chosen to dis-
play similar statistics in every region. The left
side includes events in the outer box of the
right side, namely, 1.16 � W � 1.36 GeV and
0.8 � Q2 � 1.2 (GeV/c)2.

V. POLARIZATION ANALYSIS

The kinematic acceptances and binning for the polarization
analysis are illustrated in Fig. 8. Kinematic focusing of the
reaction into a laboratory cone with an opening angle of
about 13◦ and relatively large spectrometer apertures provide
considerable out-of-plane coverage and access to most of
the response functions. In fact, the azimuthal acceptance for
nucleons forward of 50◦ or backward of 150◦ in the c.m.
is practically complete. The angular bins were chosen to
distribute counts fairly uniformly among the populated bins.
The right side shows that the best kinematic coverage and
statistics were obtained for 1.21 � W � 1.29 GeV, but there is
useful acceptance over a broader range.

A. Polarization analysis using likelihood method

Let �T = (Tt , Tn, T�) = �P + hPe
�P ′ represent the proton

recoil polarization at the target in the πN center-of-mass
system, where h denotes the sign of the electron helicity
and Pe is the magnitude of the beam polarization, and let
�F = (Fx, Fy, Fz) represent the polarization at the focal-plane

polarimeter with ẑ along the nucleon momentum and ŷ

leftward with respect to the vertical plane containing the
nucleon momentum. These vectors are related by a spin
transport matrix S, representing a sequence of transformations
from the target c.m. frame to the local FPP coordinate system,
such that F = ST . The spin transport matrix is evaluated for
each event.

The polarization components at the target were extracted
from the azimuthal distribution for scattering by the FPP
analyzer using the method of maximum likelihood [53]. The
likelihood function takes the form

L =
∏

events

1

2π

(
1 + ξ − εx sin φfpp + εy cos φfpp

)
(11)

of a product of the scattering probabilities for each event that
satisfies the selection criteria for a given kinematic bin. The
azimuthal scattering angle φfpp is measured counterclockwise
from the final x̂ axis for each event, and ξ represents the
false (instrumental) asymmetry, discussed in Sec. V E. The ε

coefficients are given by

εα = Ay(θfpp)
∑

β

SαβTβ, (12)

where Ay(θfpp) is the analyzing power for polar scattering angle
θfpp, α ∈ {x, y, z} identifies the polarization components at the
FPP, β ∈ {t, n, �} identifies components of �T at the target in
the πN c.m. frame, and Sαβ are elements of the spin-transport
matrix. Although the scattering probability for each event is
independent of the longitudinal polarization, the variation of
spin transport within the experimental acceptance offers access
to all three components of polarization at the target.

If the asymmetries (εx, εy, ξ ) are small, the problem reduces
to the linear system

V = � · R, (13)

where

R = (Pt , Pn, P�, P
′
t , P

′
n, P

′
�) (14)

is the result vector,

Vα =
∑

i

λiα

1 + ξi

(15)

is an element of the measurement vector, and

�α,β =
∑

i

λiα

1 + ξi

λiβ

1 + ξi

(16)

is an element of the design matrix where the Greek indices
{α, β = 1, 6} correspond to elements of the result vector and
the Latin index i enumerates events that satisfy the selection
criteria for a particular kinematic bin. Elements of the result
vector represent acceptance-averaged components of recoil
polarization that are taken to be constant within each kinematic
bin. Conversely, the elements of the measurement vector and
design matrix accumulate contributions

ξ = a0 sin φfpp + b0 cos φfpp + c0 sin 2φfpp + d0 cos 2φfpp,

λ1 = A(θfpp)(Syt cos φfpp − Sxt sin φfpp),

λ2 = A(θfpp)(Syn cos φfpp − Sxn sin φfpp),

λ3 = A(θfpp)(Sy� cos φfpp − Sx� sin φfpp),

λ4 = hPeλ1,

λ5 = hPeλ2,

λ6 = hPeλ3,

which are evaluated independently for each event, where the
event indices have been suppressed.
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B. Extraction of polarized response functions using likelihood
method

Binning with respect to φ can be avoided by using Eq. (3a)
to express the likelihood function

L =
∏

events

1

2π
(1 + ξ + η · R) (17)

in terms of response functions

R = (
Rt

LT , Rt
T T , Rn

L+T , Rn
LT , Rn

T T , R�
LT , R�

T T ,

R′t
LT , R′t

T T , R′n
LT , R′�

LT , R′�
T T

)
(18)

with coefficients

σ̄ η1 = λ1ν0νLT sin φ,

σ̄η2 = λ1ν0νT T sin θ sin 2φ,

σ̄η3 = λ2ν0νT sin θ,

σ̄ η4 = λ2ν0νLT cos φ,

σ̄η5 = λ2ν0νT T sin θ cos 2φ,

σ̄η6 = λ3ν0νLT sin θ sin φ,

σ̄η7 = λ3ν0νT T sin2 θ sin 2φ,

σ̄η8 = λ4ν0ν
′
LT cos φ,

σ̄η9 = λ4ν0ν
′
T T sin θ,

σ̄ η10 = λ5ν0ν
′
LT sin φ,

σ̄η11 = λ6ν0ν
′
LT sin θ cos φ,

σ̄η12 = λ6ν0ν
′
T T ,

which incorporate the azimuthal dependencies event by event.
This method also permits the leading polar angle dependencies
to be incorporated explicitly event-by-event, such that the
extracted quantities are response functions binned with respect
to x = cos θ .

The coefficients for response functions depend upon the un-
polarized differential cross section for each event, which varies
within the kinematical bin. This cross section was obtained by
scaling the model cross section (MAID2000) calculated at
the event kinematics by the ratio between the sp Legendre
fit to the experimental cross section and the model cross
section for the central kinematics of the bin. This Legendre
fit is discussed in Sec. IV E. The Legendre parametrization
can sometimes produce nonpositive cross sections for some
events with kinematics at the edges of the acceptance; for
those events, we simply use the MAID2000 cross section and
recognize that these extreme kinematics contribute very little
to acceptance-averaged quantities anyway.

C. Track reconstruction and selection

The chambers were aligned with respect to each other, and
the VDCs using straight-through events obtained by removing
the carbon analyzer. The track reconstruction algorithms are
described in Ref. [38]. For our purposes, it is sufficient to note
that the hit multiplicity within the straw chambers is sufficient
to define tracks before and after the carbon analyzer. Thus,
we can impose a requirement that the scattering vertex lie
within the carbon plates used for a particular measurement.

We also require that the polar scattering angle be in the range
5◦ � θfpp � 20◦, where the lower limit enhances the analyzing
power by suppressing unpolarized Coulomb scattering and
the upper limit keeps instrumental asymmetries small. Finally,
to minimize false asymmetries due to the finite size of the
rear chambers, we impose a cone test that demands that the
entire cone subtended by the polar scattering angle for each
track intercepts both rear chambers. The rear chambers are
actually large enough that only a few percent of the events in
the accepted θfpp range fail the cone test.

D. Calibration

We fitted an extension of the McNaughton parametrization
[54] of the p+12C analyzing power using earlier Hall A
data supplemented by new measurements of elastic scattering
by the proton for momenta of 0.818, 1.066, 1.188, and
1.378 GeV/c in order to provide analyzing power data closer
to some of the present kinematic settings. Our measurements
of GEp/GMp at Q2 = 1.0 and 1.4 (GeV/c)2 are in good
agreement with those of Ref. [55].

E. False asymmetry

The one-photon exchange approximation predicts that the
helicity-independent recoil polarization for elastic electron-
proton scattering vanishes. Assuming that the two-photon
contribution is negligible, we used this reaction to measure
the false instrumental asymmetries arising from misalignment,
detector or tracking inefficiencies, variations of path lengths in
the analyzer, and other mechanisms. We express the detection
probability in the form

fh(θfpp, φfpp) = f0(θfpp, φfpp)
1

2π
(1 − hεx sin φfpp

+hεy cos φfpp + a0 sin φfpp + b0 cos φfpp

+ c0 sin 2φfpp + d0 cos 2φfpp), (19)

where the coefficients (a0, b0, c0, d0) parametrize the false
asymmetry, while the coefficients (εx, εy) depend upon the
helicity-dependent recoil polarization and the FPP analyzing
power. Thus, the false asymmetry coefficients are obtained by
Fourier analysis of

f+ + f−
2f0

= 1

2π
(1 + ξ ) = 1

2π
(1 + a0 sin φfpp + b0 cos φfpp

+ c0 sin 2φfpp + d0 cos 2φfpp). (20)

Data for elastic scattering were taken at five proton
momenta between 0.785 and 0.851 GeV/c and at 1.066 and
1.188 GeV/c. The dependence of false asymmetries upon δ

are shown in Fig. 9 for 5◦ < θfpp < 20◦. Only the coefficient
of cos φfpp shows a significant dependence upon δ that can
be attributed, in part, to its correlation with the average path
length of scattered particles in the carbon analyzer. This
dependence was parametrized by a linear function. The other
three coefficients are essentially independent of δ with average
values less than 1%. No significant dependence upon proton
central momentum is apparent over this range.
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FIG. 9. (Color online) Dependence of mea-
sured Fourier coefficients for false asymme-
try upon spectrometer relative momentum are
shown with average values (a0, c0, d0) or a linear
fit (b0) as blue lines.

F. Background subtraction

The polarization response functions were corrected for two
types of background: the elastic radiative tail and accidental
coincidences. Corrections for the unresolved contribution of
the elastic radiative tail were made using the likelihood
function because those contributions varied strongly with both
θ and φ. Thus, we generalize Eq. (12) to

εα = Ay(θfpp)
∑

β

(
f1S

(1)
αβ T

(1)
β + f2S

(2)
αβ T

(2)
β

)
, (21)

where f1 + f2 = 1, and where T (1) is the polarization for �

excitation and T (2) is the polarization for elastic scattering.
Note that the spin transformation matrix S(2) for elastic
scattering differs from S(1) for pion production because
the polarization vectors for the two reactions are normally
evaluated in different frames. Thus, S(2) omits the Wigner
rotation and assumes that the proton emerges parallel to �q. The
relative weights depend upon the (W,Q2, x, φ) bin and were
obtained by fitting the missing-mass distributions for each bin
with appreciable elastic contamination. This contribution is
actually very small and is only visible for the θc.m. = −90◦
setting. Generalization of the likelihood formula, Eq. (17), is
straightforward. The elastic polarizations were computed from
the parametrizations of GEp and GMp found in Refs. [56,57],
but the results are insensitive to the small differences between
models.

Accidental background was subtracted by analyzing both
in-time and out-time events in the same manner. For polariza-
tion we obtain

P = Pp − rPb

1 − r
, (22a)

(δP )2 = (δPp)2 + (rδPb)2

(1 − r)2
, (22b)

where Pp ± δPp is the measurement for the in-time region,
Pb ± δPb is the result for the out-time region, and r is the ratio
between the widths of these regions. Similarly, for response

functions we obtain

R = Rp − rRb, (23a)

(δR)2 = (δRp)2 + (rδRb)2, (23b)

where Rp ± δRp and Rb ± δRb are obtained for in-time
and out-time regions, respectively. The effect of background
subtraction is generally difficult to discern in standard figures
and is always much less than the statistical uncertainty in these
measurements.

G. Pseudodata tests

The analysis procedures were tested using pseudodata. For
each accepted event, response functions and polarizations at
the target were computed based upon the MAID2000 model.
The observed polar scattering angle θfpp was retained but the
azimuthal scattering angle φfpp was sampled randomly. This
value of φfpp was retained if the likelihood L calculated
according to Eq. (11) was greater than the next random number
thrown and rejected otherwise. This procedure was iterated
until a value of φfpp was selected. Contributions to V and �

were then accumulated, and the pseudodata were analyzed in
the same manner as real data.

These tests demonstrate that model input for response
functions is recovered within statistical uncertainties, but that
there are sometimes inconsistencies in the φ dependence of
polarization data. This problem arises because relatively large
bins in φ are needed to obtain useful statistical precision,
but some of the spin-transport matrix elements can exhibit
broad distributions with respect to other variables in part due
to kinematic focusing in the laboratory frame. Under those
conditions, the acceptance-averaged polarization can differ
appreciably from model values for the central kinematics of a
bin. These difficulties are much smaller for response functions
because binning with respect to φ is not necessary; all φ values
contribute to the determination of a response function and their
coefficients are evaluated properly for each event. Explicit
eventwise weighting with the leading factors of sin θ also
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reduces the effects of acceptance averaging on the response
functions as defined in Eq. (3). Therefore, we focus upon
the response-function data and do not consider polarization
binned with respect to φ further. A more detailed report on the
pseudodata analysis is provided in Ref. [58].

H. Acceptance averaging

Multipole amplitudes and Legendre coefficients are func-
tions of (W,Q2), but the acceptance averaged (W,Q2) depend
upon x. Consequently, extraction of these quantities from
angular distributions can be distorted by the x variations of
(W,Q2). Such distortions can artificially enhance terms for
large �π . Two methods for compensating for such distortions
have been tested using both pseudodata and real data. The
additive method is based upon the first-order expansion

R(W,Q2, x̄, ε̄) = R(W,Q2, x̄, ε̄) − ∂R

∂W
(W − W )

− ∂R

∂Q2
(Q2 − Q2), (24)

where overlines indicate acceptance averaging and the deriva-
tives are evaluated at central kinematics using a model such as
MAID. For this experiment, Q2 − Q2 tends to be much more
important than W − W . Additive kinematic corrections have
the advantage that variations of both W and Q2 can be accom-
modated, but this procedure has the disadvantage that it relies
upon a model and we have no model that provides a uniformly
good fit to all of the response functions. While that is not a prob-
lem for pseudodata, the use of an inaccurate model to make

kinematic corrections to real data could introduce more serious
errors than it corrects. Therefore, a second procedure based
upon form factors was tested. Assuming that all response func-
tions share a common form factor, and that kinematic correc-
tions are dominated by the x dependence of Q2, we postulate

R(W,Q2, x̄) = R(W,Q2, x̄)(G(Q2)/G(Q2))2 (25)

and approximate G(Q2) by the usual dipole form factor
GD(Q2) = (1 + Q2/�2)−2 where �2 = 0.71 (GeV/c)2. This
multiplicative procedure does not compensate for variations
of W , but for this experiment these variations are much
smaller than those for Q2.

Figure 10 compares pseudodata with multiplicative kine-
matic corrections with the model for central kinematics. The
open squares show raw response functions extracted from
pseudodata, while open red circles show acceptance-averaged
response functions from MAID2000. The agreement between
these data sets, modulo statistical fluctuations, demonstrates
the internal consistency of the simulation/analysis program.
However, the x dependence of Q2 can produce significant
systematic deviations from the input model (solid curves) eval-
uated at central kinematics, especially for R′t

T T . Recognizing
that Q2 ≈ 0.94 for x > 0.5 or 1.06 (GeV/c)2 for x < −0.5,
we observe that the pseudodata for R′t

T T do cluster around the
model curve for the appropriate Q2. Even the abrupt transition
across x = 0 is reproduced. The solid circles show that “cen-
tered” pseudodata adjusted according to Eq. (25) cluster better
around the model curves for central kinematics. Therefore,
distortion of multipole amplitudes by the x dependence of

FIG. 10. (Color online) Pseudodata data for response functions at W = 1.23 ± 0.01 GeV and Q2 = 1.0 ± 0.2 (GeV/c)2 are compared with
the input model (MAID2000) at the central kinematics (solid curves) and with neighboring values of Q2 representative of the x dependence of
acceptance averaging; dashed curves show Q2 = 0.94 and dashed-dotted curves show Q2 = 1.06 (GeV/c)2. Acceptance-averaged calculations
are shown as red open circles and pseudodata as open squares. Filled circles show pseudodata with multiplicative kinematic corrections based
upon the dipole form factor.
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Q2 should be minimized by fitting centered data. We find
that the multiplicative corrections move the pseudodata in the
directions indicated by ratios between acceptance-averaged
calculations and those for central kinematics. The net effect is
to reduce the scatter in the pseudodata and to remove many
systematic deviations attributable to the x dependence of Q2.
On the other hand, we have the qualitative impression that the
corrections are sometimes a little too large, although no attempt
has been made to quantify that impression. One could reduce
the size of the multiplicative correction by increasing the dipole
mass �, but the N → � form factor is actually steeper (smaller
�) than the standard dipole form factor. Furthermore, changes
to the correction by replacing the dipole with a parametrization
of the N → � form factor are quite small.

Therefore, we adopted the multiplicative correction based
upon the dipole form factor as the standard method for bin
centering. The figures in the remainder of this paper show
recoil polarization response functions plotted at x with bin-
centering corrections for Q2. Legendre and multipole fits were
made to the data in this form.

I. Systematic uncertainties

1. Response functions

There are several types of normalization uncertainty that
affect the response-function data. These include uncertain-
ties in the unpolarized differential cross section used to
normalize the likelihood, the FPP analyzing power, and for
helicity-dependent responses, the beam polarization. Although
these systematic uncertainties do vary to some degree with
spectrometer settings, beam conditions, and time, those vari-
ations are small compared with the statistical uncertainties.
Therefore, we believe it is sufficient to estimate average
systematic uncertainties for those quantities without tracking
the propagation of particular settings through event sorting.

The typical systematic uncertainties in the differential cross
section data are about ±3% point-to-point, so we assume
that the uncertainty in the parametrized cross section used
in the likelihood analysis is also about ±3%. Similarly, the
systematic relative uncertainty for Compton measurements of
beam polarization is estimated to be about 1.4% [40]. Finally,
the relative uncertainties in average analyzing power reported
by Punjabi et al. [37] are in the 1–2% range. Because we
do not consider thickness or momentum variations, we adopt
a fairly conservative estimate of δAy/Ay = 0.02. Therefore,
the normalization uncertainties are approximately ±3.6%
for helicity-independent or ±3.9% for helicity-dependent
response functions.

The evaluation of other types of systematic error requires
replaying the data subject to a perturbation of one of the
analysis parameters. Thus, the uncertainty due to subtraction
of the elastic background was obtained by comparing replays
with and without that subtraction. Because the contamination
fractions binned in φ were difficult to determine, we assumed
their relative uncertainties to be 100% and estimated the
corresponding uncertainties in response functions as

δRα = ∣∣R(2)
α − R(1)

α

∣∣, (26)

where R(1)
α and R(2)

α represent response function α with
and without elastic subtraction. Similarly, the uncertainty in
corrections for false asymmetry were estimated as

δRα = 0.1
∣∣R(2)

α − R(1)
α

∣∣, (27)

where the relative uncertainty in false asymmetry was esti-
mated to be ±10% and is multiplied by the difference in
response functions obtained with and without false asymmetry
in the likelihood function.

A similar procedure was also applied for the spin transport
matrix. The sensitivity of response functions to uncertainties
in the spin rotation matrix is illustrated in Fig. 11 for

FIG. 11. (Color online) Sensitivity of
response functions for W = 1.23 GeV to
uncertainties in the spin rotation matrix.
Open black squares were obtained using
the COSY model, while open green circles
are based upon the Pentchev model; the
two sets overlap almost completely. For
the Pentchev analysis, inner error bars are
statistical while outer error bars include
systematic errors due to uncertainties in
precession angles and optical matrix ele-
ments; however, the systematic errors are
generally too small to see.
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W = 1.23 GeV. The black squares were obtained using the
COSY model, while the green circles were obtained using
a simpler geometrical model by Pentchev in terms of six
parameters consisting of two trajectory angles and four matrix
elements coupling spin components [37,59]. The almost com-
plete overlap between these data sets demonstrates that this
geometrical model accurately reproduces the COSY model.
Therefore, we can estimate systematic errors in response
functions due to uncertainties in spin rotation by comparing
results obtained from independent perturbations of each of the
six parameters of the geometrical model by its estimated uncer-
tainty and combining in quadrature differences with respect to
nominal parameters. We use the same systematic uncertainties
for those parameters as in Refs. [37,59]. The green error bars in
Fig. 11 include an inner statistical portion shown with end caps
and a total error without end caps. However, rarely can one
discern the systematic contribution to the total bar, because the
composite contribution of spin rotation errors is almost always
small relative to statistical uncertainties.

The net systematic uncertainties in response functions,
consisting of the quadrature sum of all contributions discussed
in this section, tend to be dominated by the normalizations
and are almost always small compared with statistical un-
certainties. Many of the figures show statistical uncertainties
as inner error bars with end caps and total uncertainties as
outer error bars without end caps. The systematic contributions
are occasionally visible for Legendre coefficients or multipole
amplitudes but are rarely visible for response functions.

2. Legendre coefficients and multipole amplitudes

Let y represent a fitted quantity, such as a quadrupole
ratio, Legendre coefficient, or multipole amplitude, and let
β represent a calibration parameter or a scale factor applied to
one of the corrections, such as false asymmetry. We estimate
the systematic uncertainty (δy)sys by adding in quadrature
numerical derivatives, i.e.,

(δy)2
sys =

∑
i

(
∂y

∂βi

δβi

)2

=
∑

i

(y(βi + δβi) − y(βi))
2, (28)

estimated by performing a series of fits in which each
calibration parameter is perturbed in turn. Therefore, Legendre
and multipole fits to such data sets begin with the results of
the best fit for nominal calibration parameters and usually
require only a few iterations to determine small displacements
of the minimum on the χ2 hypersurface. We assume that the
desired local minimum is related to the best fit by a small
distortion of the χ2 hypersurface produced by small changes
in the data set due to perturbation of an analysis parameter.
By starting with the nominal best fit, we minimize the chance
that the fitting procedure might find a different local minimum.
With enough care in the fitting procedure, we find that changes
in fitted Legendre coefficients or multipole amplitudes due
to variation of spin-rotation parameters or omission of false
asymmetry or elastic subtraction are typically small.

In addition to systematic uncertainties considered in the
previous section, Legendre and multipole analyses also include
an estimate of the uncertainty due to the kinematic or

bin-centering correction. The customary dipole form factor
should describe the Q2 dependence of nonresonant contribu-
tions fairly well, but the N → � form factor is known to
have a more rapid Q2 dependence. The best description is
probably intermediate between these models. We estimated
the uncertainty in fitted Legendre coefficients and multipole
amplitudes due to the choice of bin-centering form factor
by comparing fits for the dipole and N → � form factors,
assigning a systematic uncertainty equal to the difference
between the two fits. The dipole form factor is given by
GD(Q2) = (1 + Q2/�2)−2 where �2 = 0.71 (GeV/c)2. For
the N → � form factor, we use the Sato-Lee parametrization
GN� = (1 + aQ2) exp (−bQ2)GD with a = 0.154 and b =
0.166 (GeV/c)−2 [60]. However, the difference between these
form factors over the range of Q2 − Q2 for this experiment is
too small to produce a visible difference in the projected data
or fitted angular distributions.

The systematic uncertainties in fitted Legendre coefficients
and multipole amplitudes contain a total of 12 contributions
added in quadrature, each requiring a fit to the relevant data
set. Variations of the cross section, FPP analyzing power,
beam polarization, bin centering, false asymmetry, and elastic
subtraction are all compared with the best fit for data obtained
using COSY spin rotation. The six contributions to the
spin rotation uncertainty are estimated using differences with
respect to data based upon the nominal Pentchev model. The
net systematic errors in these quantities are generally small
compared with statistical uncertainties. Figures showing fitted
quantities with statistical and total errors bars can be found
in the separate reports on Legendre coefficients [61] and
multipole amplitudes [62].

J. Summary of experimental data

Near the middle of our (W,Q2) acceptance, we obtained
complete angular distributions for 16 response functions, 14
separated plus 2 Rosenbluth combinations for ε ∼ 0.95. The
angular coverage and statistical precision are clearly best in
the central W range, 1.21 � W � 1.29 GeV. Data tables are
on deposit with EPAPS [83]. These tables give both raw and
bin-centered data with both nominal and acceptance-averaged
kinematics. Tables of Legendre coefficients and multipole
amplitudes are also included.

VI. RESULTS

A. Comparison with models

In this section, we compare our data for response functions
with calculations using four recent models. We provide very
brief summaries of the models and refer to original sources
for more detailed information. A recent review of these and
related models has also been provided by Burkert and Lee [63].

The SAID model [13,64] parametrizes a photoexcitation
multipole amplitude A in the form

A = (AB + AQ)(1 + itπN ) + ARtπN

+ (C + iD)
(
ImtπN − t2

πN

)
, (29)
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where tπN is a t-matrix fit to πN elastic scattering data that
enforces the Fermi-Watson theorem [65] below the two-pion
threshold, AR is parametrized as a polynomial in Eπ with
the correct threshold behavior for each partial wave, AB is
a partial wave of the pseudoscalar Born amplitude, and AQ

is parametrized using Legendre functions of the second kind.
Recent extensions also include energy-dependent polynomials
C and D. Electroexcitation amplitudes also include form
factors in Q2. We are now using the WI03 version of SAID
[66].

The Mainz unitary isobar model [67], known as MAID,
parametrizes resonant contributions to multipole amplitudes
using the Breit-Wigner form

A = Ā(Q2)CπNfγN (W )
�totWReiψ

W 2
R − W 2 − iWR�tot

fπN (W ),

(30)
where WR is the resonance mass, �tot is its total width at
resonance, CπN is an isospin factor, and Ā is a form factor.
The W dependence of the electroexcitation vertex and its
pseudothreshold behavior is represented by fγN, while fπN

describes the R → πN decay in terms of an energy-dependent
partial width, �πN (W ), and appropriate phase-space and
penetrability factors. Nonresonant amplitudes are computed
using Born and vector-meson diagrams with a mixed πNN

coupling that interpolates between pseudovector coupling at
low c.m. momentum pπ and pseudoscalar coupling at high
pπ . Background amplitudes are unitarized with the (1 + itπN )
factor, as above, while resonant contributions are unitarized by
adjusting the phase ψ such that the total phase of the resonant
contribution is given by the SAID partial-wave analysis for
πN elastic scattering. Thus, ψ depends upon both W and
Q2 and varies with multipole. The event generator used for
data analysis employed MAID2000, but here we will show
calculations using the updated MAID2003 version [68,69].

Both MAID2003 and SAID WI03 were optimized with
respect to similar data sets and consider a very broad range of
kinematics for the pπ0 channel. Both use the same πN phase
shift analysis [13]. In the present kinematic region, the older
differential cross sections are primarily from Refs. [70,71].
Newer differential cross sections from Jefferson Laboratory
include angular distributions from Hall B [18] and data for
x < −0.825 from Hall A [20]. Neither analysis included any
polarization data for π0 electroproduction. However, neither
group has published a detailed comparison between these data
and their fits.

The Dubna-Mainz-Taipei (DMT) model [72,73] is based
upon MAID but employs a more sophisticated analysis of πN

rescattering. Whereas MAID employs a K-matrix approxi-
mation for the background contribution to the t matrix, DMT
includes off-shell contributions in the form of a principal-value
integral. Both models use similar Breit-Wigner parametriza-
tions for resonances, but the electroexcitation amplitudes for
MAID should be interpreted as “dressed,” while for DMT the
resonant amplitudes are considered “bare” because the πN

rescattering terms account for background contributions to
resonant multipoles.

The Sato-Lee (SL) model [60] is formulated in terms
of energy-independent effective Hamiltonian and current

operators. This dynamic model provides coupled equations
for the πN and γN reactions that automatically satisfy
unitarity. The potential governing pion rescattering is opti-
mized to reproduce πN elastic scattering data. By means
of a unitary transformation, one can distinguish between the
electroexcitation amplitudes for the N → � transition and the
contributions of the pion cloud and rescattering mechanisms.
Although differing in detail, both the DMT and SL analyses
conclude that the pion cloud is responsible for enhancing the
M1+ amplitude relative to the quark model and for most of
the observed quadrupole strength. Thus, these models suggest
that the intrinsic deformation is rather small. Note that the
SL model omits higher resonances and is limited to W <∼
1.4 GeV, while the DMT model reaches larger W by including
contributions of higher resonances based upon MAID2000.

The data for response functions are compared in Figs. 12–14
with calculations based upon these models. The response
functions in the first two columns, described as R type,
depend upon real parts of interference products; while those
in the last two columns, described as I type, depend upon
imaginary parts. Although the first three response functions
in column 1 and the last in column 3 have been observed
before, the other 12 response functions have been observed
for the first time in this experiment. As a general rule, we
find that variations among the models are usually greater
for I-type than for R-type response functions, although R′t

T T

also shows significant model dependence. When W ≈ M�,
R-type responses are largely determined by the relatively well-
known multipole amplitudes for the � resonance while I-type
responses require interference with nonresonant background
or tails of nondominant resonances that are constrained less
well by previous data. For both types the variations among
models are typically smallest for W near and below M� and
increase with W above the � resonance. By the time we reach
W ∼ 1.3 GeV, variations among models become large even
for R-type responses. Above the � resonance, the magnitudes
for many of the SL response functions decrease faster than
the data as W increases, presumably because of neglect of
higher resonances. Conversely, some of the DMT response
become too strong as W increases, notably RL+T , RLT , and
RT T . SAID appears to be the least accurate of these models,
especially for LT response functions. We speculate that this
problem might be related to the use of pseudoscalar coupling
for Born amplitudes. Among these models, MAID2003 seems
to provide the best overall description of the data, but none
provides a uniformly good fit.

B. Legendre analysis

In the present representation, the response functions should
be polynomials in x of relatively low order, especially if
the assumption of M1+ dominance is valid near the �

resonance. According to that assumption, one expects RT T

to be constant, RLT ,R′
LT , Rn

L+T , Rn
T T , and R�

T T to be linear,
and only R′t

LT , R′�
T T , and Rt

LT to be cubic; the others are
expected to be quadratic. Indeed, at W = 1.23 GeV, we find
that the data for RT T are almost constant and those for RLT are
almost linear, with deviations from these simple behaviors that
are qualitatively consistent with the departures of the models
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FIG. 12. (Color online) Data for response functions at W = 1.19 GeV compared with selected models: MAID2003 (solid red), DMT
(dashed green), SAID (dash-dotted blue), and SL (dotted cyan). Inner error bars with end caps are statistical, while outer error bars without end
caps include systematic uncertainties; however, the systematic contributions are often indistinguishable.

from M1+ dominance. Similarly, at W = 1.23 GeV, R′
LT and

Rn
T T appear to be consistent with linear behavior despite

the somewhat larger experimental uncertainties. However,
model calculations for these responses show larger deviations
with respect to M1+ dominance because imaginary parts
of interference products are more sensitive to nonresonant

mechanisms and tails of nondominant resonances. Finally,
although R′t

LT displays cubic behavior, R′�
T T appears to be

almost linear because the |M1+|2 contribution to its linear
coefficient dominates the polynomial. However, these simple
rules deteriorate rapidly as W increases, and RLT ,Rn

L+T

and R�
T T data develop strong curvatures. Furthermore, model

FIG. 13. (Color online) Same as Fig. 12, but for W = 1.23 GeV.
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FIG. 14. (Color online) Same as Fig. 12, but for W = 1.27 GeV.

calculations also show significant departures from these simple
behaviors; for example, the curvature of RT T calculations is
often appreciable.

Representative Legendre fits are compared in Figs. 15–17
with data for response functions. A more complete set of
figures and comparisons between fitted and predicted Legendre
coefficients can be found in Ref. [61]. Note that these fits
employed the (x, φ) distribution for the differential cross

section and beam analyzing power together with the data
for recoil polarization response functions. Thus, although
RL+T and RT T could not be separated for x ≈ 0 directly,
the Legendre fits to those response functions are determined
well in this region nonetheless. The dashed curves are limited
to the sp truncation, while solid curves include additional
terms in response functions for which the sp fits appear
to be systematically deficient over a range of W . Most of

FIG. 15. Data for response functions at W = 1.19 GeV compared with Legendre fits in the sp truncation (dashed) and with a few extra
terms as needed (solid). Inner error bars with end caps are statistical; outer error bars without end caps include systematic uncertainties.
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FIG. 16. Same as Fig. 15, but for W = 1.23 GeV.

the response functions can be fit well with the truncation
based upon M1+ dominance, but RLT ,RT T , Rn

L+T , and R�
T T

generally require an extra term that reveals additional contri-
butions. However, it is not immediately obvious whether those
additional contributions arise from �π� 1 terms that do not
involve M1+ or whether they require participation of higher
partial waves. It is also important to recognize that even when
Legendre expansions limited by M1+ dominance do fit the data
well, considerable violation of this assumption may still be

present. Legendre fits are made to the data for each response
function independently and ignore the correlations between
response functions required by multipole expansions. A
detailed study of the truncation errors in the Legendre analysis
of unpolarized response functions and their consequences
for simplistic extraction of multipole amplitudes is provided
in Ref. [74]. Therefore, a more rigorous analysis that fits
the multipole amplitudes directly, without the mediation of
Legendre coefficients, is presented in Sec. VI C.

FIG. 17. Same as Fig. 15, but for W = 1.27 GeV.
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Most previous extractions of R
(3/2)
EM and R

(3/2)
SM employed

truncated Legendre analysis of the unpolarized differential
cross section. To the extent that M1+ dominance and sp

truncation apply for W ≈ M�, one can define

R
(pπ0)
EM ≈ R̃

(pπ0)
EM R

(pπ0)
SM ≈ R̃

(pπ0)
SM , (31)

where

R̃EM = 3AL+T
2 − 2AT T

0

12AL+T
0

(32a)

R̃SM = ALT
1

3AL+T
0

(32b)

are W -dependent combinations of Legendre coefficients for a
particular charge state. To obtain the desired quantities for the
�(1232) resonance, these quantities are evaluated at W = M�,
and one needs to correct for the isospin 1/2 contamination of
the pπ0 channel. The isospin correction is expected to be
small and has not been made. The reliability of Eq. (31) will
be evaluated in Sec. VII A.

Figure 18 compares values for R̃
(pπ0)
EM and R̃

(pπ0)
SM obtained

from Legendre fits to the differential cross section data for
Q2 = 1.0 (GeV/c)2 with model calculations obtained from
Eq. (32), where the Legendre coefficients were obtained by
numerical integration. Although these quantities approximate

R
(pπ0)
EM and R

(pπ0)
SM only for W ≈ M�, their W dependence

offers some insight into the model dependence of the tradi-
tional truncated Legendre expansion. The open circles were
obtained using the M1+ truncation, while the filled circles
vary an additional term for each response function in order to
improve the fits for larger W . Recall that Figs. 5–7 demonstrate
that the data are sensitive to at least one additional term
per response function and that model calculations predict
significant Legendre coefficients beyond M1+ dominance.

FIG. 18. (Color online) The truncated Legendre analysis for
EMR and SMR at Q2 = 1.0 (GeV/c)2 compared with MAID2003
(solid red), DMT (dashed green), SAID (dash-dot blue), and SL
(dotted cyan). Both theory and experiment employ Eq. (32) and
approximate EMR and SMR at W = M�, indicated by the vertical
line. Open circles are fit according to sp truncation; filled circles
permit additional freedom in the Legendre analysis. For filled circles,
inner error bars with end caps are statistical while outer error bars
without end caps include systematic uncertainties.

Although the uncertainties increase for W > 1.3 GeV because
the angular acceptance becomes too limited, we find that
both analyses are qualitatively consistent for an appreciable
range of W around M�. The data for these quantities are
relatively smooth with W dependencies that are similar to
model calculations of the same quantities, whether or not
these quantities are adequate approximations to the desired
quadrupole ratios.

The spread among models is smallest near the physical

mass but remains appreciable for R̃
(pπ0)
EM , for which SAID

differs significantly from both the data and the other models
shown. Although the SL slope is somewhat too small compared
with data near M�, the other models provide a qualitatively
consistent description of the W dependence of R̃SM. In the
central W region, the experimental results are practically
independent of truncation scheme and are in reasonable
agreement with the MAID or DMT models; but for SAID when
W ≈ M�, the positive R̃EM values disagree sharply with the
data. For larger W, the SL calculation for R̃SM is much flatter
than the data, probably because higher resonances are omitted.
Although it is more difficult to obtain unambiguous R̃EM

results for W � 1.31 GeV, data based upon the sp truncation
remain in reasonable agreement with model calculations based
upon the same truncation scheme.

The results for W = 1.23 GeV are listed in Table II and
are practically independent of truncation scheme—the slight
variation in R̃EM is within the estimated statistical uncertainty.
We also list in Table II the values obtained by Joo et al. [18]
using the sp truncation, averaging with respect to neighboring

Q2 bins. Their results are consistent with ours for R̃
(pπ0)
EM but are

significantly larger for R̃
(pπ0)
SM . Note that Joo et al. estimated that

truncation errors in determination of quadrupole ratios were no
more than 0.5% for SMR or 0.7% for EMR in absolute terms.
While we agree that truncation of Legendre fits to the number
of terms in the sp model has little effect upon fitted values for
R̃EM or R̃SM, the discussion in Sec. VII demonstrates that the
underlying assumptions of the traditional Legendre analysis do
not provide adequate approximations to the quadrupole ratios
at the present level of experimental precision. Therefore, the
next section presents a more rigorous analysis based upon
multipole fits that does not assume sp truncation or M1+
dominance.

This analysis for the quadrupole ratios is based upon unpo-
larized cross sections and does not exploit any of the new recoil
polarization data. Many combinations of Legendre amplitudes

TABLE II. Legendre analysis of quadrupole ratios for W =
1.23 GeV at Q2 = 1.0 (GeV/c)2. The reduced chi-square for the
entire data set is χ 2

ν ; the chi-square per point for differential cross
section data is χ 2

N (σ ).

Method SMR (%) EMR (%) χ 2
ν χ 2

N (σ )

sp −6.07 ± 0.11 −2.04 ± 0.13 1.7 1.6
sp+ −6.11 ± 0.11 −1.92 ± 0.14 1.5 1.4
Joo et al.a −7.4 ± 0.4 −1.8 ± 0.4

aWeighted average of Q2 = 0.9 (GeV/c)2 results for Ei = 1.645 and
2.445 GeV from Ref. [18].
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FIG. 19. (Color online) Multipole fits for W = 1.19 GeV at Q2 = 1.0 (GeV/c)2 using a Born baseline model. Dashed curves fit corrections
to all s- and p-wave amplitudes, blue dotted curves also fit real parts of 2− multipoles, and green dash-dotted curves fit all s-, p-, and d-wave
amplitudes. The solid red curves, considered the final fit, are similar to the blue dotted curves except that ImM1− is absent. See text for further
details.

for polarized responses could also provide ReE1+M∗
1+ and

ReS1+M∗
1+—if the sp truncation is valid these quantities

should be highly overdetermined. Thus, one could obtain
ReE1+M∗

1+ and ReS1+M∗
1+ using a least-squares analysis of

the entire set of Legendre coefficients for W = M� and mea-
sure the reliability of the truncation scheme by χ2. However,
it is already clear from the Legendre fits that terms beyond
sp truncation are needed for some of the response functions
even for W ≈ M�. Furthermore, it is desirable to obtain the
W dependencies of both the real and the imaginary parts of
the multipole amplitudes. Therefore, we forgo further study
of the consistency of sp truncation and proceed directly to a
multipole analysis that exploits the new response functions.

C. Multipole analysis

Let

Ai(W,Q2) = A
(0)
i (W,Q2) + �Ai(W,Q2) (33)

represent either the real or the imaginary part of one of
the multipole amplitudes (M�j ,E�j , or S�j ) where A

(0)
i is a

baseline amplitude obtained from a suitable model while �Ai

is a variable to be fit to the data. To minimize theoretical
bias, our standard fits employ a baseline model consisting
of Born terms for pseudovector πNN coupling plus ρ and ω

exchange; see the Appendix for details. To test the sensitivity of
fitted multipole amplitudes to neglect of tails of nondominant
resonances or to variations of nonresonant contributions, we
have also performed fits using MAID2003, DMT, SL, or SAID
as baseline models. Note that some of the �Ai parameters are

relatively large when using the Born baseline that contains
no information about the �(1232) resonance, while the fitting
parameters for more sophisticated baseline models represent
small corrections to the specified model. Nevertheless, we have
demonstrated that fitted multipole amplitudes are practically
independent of the baseline model; see Ref. [62] for details and
figures. Both Legendre and multipole analyses were performed
using the EPIPROD program [75].

Fits were performed for each W bin to data consisting of
the (x, φ) distributions of differential cross section and beam
analyzing power plus x distributions for 12 recoil polarization
response functions simultaneously. Fits using Born amplitudes
for pseudovector coupling as the baseline model are shown
in Figs. 19–21. Several fits were performed to determine
the maximum number of parameters that could be extracted
without flattening the χ2 hypersurfaces too severely or
encountering uncontrollable correlations among parameters.
Dashed curves, designated sp, show fits that adjust real and
imaginary parts of all s- and p-wave multipole amplitudes
with higher partial waves constrained by the baseline model,
here just real Born amplitudes without resonances. The fits
designated spd3 also vary the real parts of 2− multipoles and
are shown as blue dotted curves. Fits designated spd vary
real and imaginary parts of all amplitudes with �π � 2 and are
shown as green dash-dotted curves. Finally, the fits designated
“final” are similar to the spd3 fits except that ImM1− is held
at baseline, here zero, for reasons discussed below. There are
14 free parameters for each W in an sp fit, 26 for an spd fit,
17 for an spd3 fit, and 16 for the final fit. For comparison,
Legendre fits vary 50 free parameters in the central W

region.
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FIG. 20. (Color online) Same as Fig. 19, but for W = 1.23 GeV at Q2 = 1.0 (GeV/c)2.

These figures show that fitting just the s- and p-wave
amplitudes, with a Born background, is already sufficient
to obtain a good description of the data. Although fitting
d-wave amplitudes, or a subset thereof, sometimes provides
modest reductions of χ2, there is little systematic evidence
that modification of d-wave or higher multipoles is really
necessary. However, it is also clear that variation of all �π � 2
amplitudes offers too much freedom—the oscillations in green
dash-dotted curves for W � 1.29 GeV or W � 1.19 GeV are

not needed to fit the data, are implausible in amplitude, and
change too much from one W to the next.

The fitted multipole amplitudes are compared in
Figs. 22–26 with several recent models [49,60,73,76]. In
addition, the baseline Born amplitudes are shown by solid
curves. Note that all multipole amplitudes are real in this
model, and there are no resonances; therefore, the starting
conditions are quite poor, and large adjustments to the initial
parameters are required to fit the data. Nevertheless, the fits

FIG. 21. (Color online) Same as Fig. 19, but for W = 1.27 GeV at Q2 = 1.0 (GeV/c)2.
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FIG. 22. (Color online) Fitted 1+
multipole amplitudes using Born baseline
and adjusting all �π amplitudes except
ImM1− plus real parts of 2− amplitudes.
Inner error bars with end caps are statisti-
cal; outer error bars without end caps in-
clude systematic uncertainties. The base-
line amplitudes are shown as black curves.
Other models shown are MAID2003 (red
dashed), DMT (green dot-dashed), SAID
(blue dotted), and SL (cyan short-dashed).

describe the data well, the fitted parameters generally display
smooth W dependencies, and the characteristic resonance
profiles emerge in the 1+ multipole amplitudes without
coaching. Note that the sp and final fits began with baseline
amplitudes, but to improve stability the fits with more freedom
began with the results of the final analysis. The uncertainties
increase with the number of free parameters because the data
do not adequately constrain multipoles for �π � 2. Thus, we
reject the full spd analysis because the uncertainties in its
parameters are large and the resultant oscillations in calculated
response functions are not warranted by the available data. The
amplitudes and resulting fits for the other three analyses tend
to be very similar except that there is a rather strong correlation
between ImM1− and ImS1− for small W that results in fitted
values of opposite sign that are substantially larger than model
predictions for W � 1.21 GeV. This correlation also appears to
affect imaginary parts of 1+ amplitudes for W = 1.17 GeV.
Evidently, the data for low W do not distinguish between
ImM1− and ImS1− well enough to fit both simultaneously.
Therefore, our final analysis eliminates ImM1− because
models tend to predict stronger ImS1− amplitudes and the sp

fit also produces rather small ImM1− values. The uncertainties
in fitted multipoles is reduced and the W dependencies are
improved, especially for imaginary 1+ amplitudes, upon elim-
ination of this redundant parameter. Furthermore, Figs. 19–21
demonstrate that elimination of ImM1− does not visibly reduce
the quality of the fits to the data. The “final” analysis varies both
real and imaginary parts of S1− and all 0+ and 1+ multipoles
plus the real parts of M1− and all 2− multipoles for a total of
16 free parameters for each (W,Q2) bin.

There is rather little spread among models for M1+ am-
plitudes across the �(1232) resonance, and our experimental

FIG. 23. (Color online) Same as Fig. 22, but for 0+ multipole
amplitudes.

amplitudes agree well with model calculations even when the
fit is based upon a Born baseline model without resonances.
The variation among models is also relatively small for
S1+ amplitudes, and good agreement is obtained with data
for ImS1+, but for the real part the present data exhibit
a steeper slope on the large W side. MAID2003, DMT,
and SL calculations are similar for E1+, but the current
SAID calculations are substantially different and disagree with
the data. Our results for ReE1+ agree relatively well with
MAID2003, DMT, or SL but the ImE1+ data do not show the
node near W ≈ 1.27 GeV predicted by those models; there is
no sign change for W � 1.35 GeV.

Among the models considered, MAID2003 tends to provide
the best description of the recoil polarization data, but it does
not reproduce the R�

LT , Rt
LT , or Rn

LT angular distributions
(see Figs. 12–14). These difficulties appear to arise primarily
from the S0+ amplitudes. Whereas MAID2003 suggests a
nearly constant ReS0+ amplitude in this W range, we find
less negative results that are consistent with the negative slope
in W suggested by SAID. Although the SL calculation crosses
the ReS0+ data near the middle of the W range, it has the
opposite slope. We also find a rather steep slope for ImS0+.
It is interesting to observe that the SAID model agrees best
with the 0+ amplitudes even though it is worst, among these
models, for E1+, Re1−, and S2−. All of the models agree
pretty well with the ReE0+ data, but none reproduces the W

dependence seen for ImE0+.
It is interesting to observe that there is a wide spread among

the models for ReM1− but that the data are closest to the Born
model that omits the Roper resonance, which suggests that the
transverse amplitude pA1/2 is small. On the other hand, the
fitted ReS1− does differ from the Born model and suggests

FIG. 24. (Color online) Same as Fig. 22, but for 1− multipole
amplitudes.
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FIG. 25. (Color online) Same as Fig. 22, but
for 2− multipole amplitudes.

that there is a nonnegligible longitudinal contribution from the
Roper consistent with a radial excitation. These models agree
fairly well with the ImS1− data but, with the exception of the
large SAID prediction, are smaller than the ReS1− data. Thus,
it appears that excitation of the Roper resonance is primarily
longitudinal at Q2 = 1 (GeV/c)2.

The real 2− amplitudes are small in this W range, but the
slope for ReE2− appears to be determined well by these data
and is in good agreement with Born, MAID2003, or DMT
predictions. However, the predictions of the SAID model are
much larger than the data for ReS2−. SAID also predicts
significant oscillations in 2+ amplitudes that are absent in
other models. Although we cannot fit the 2+ amplitudes
accurately, the large �π = 2 amplitudes for SAID produce
oscillations in many of the response functions that are not
warranted by the data.

D. Quadrupole ratios

The quadrupole deformation parameters can now be ob-
tained directly from the fitted multipole amplitudes using

Re
E1+
M1+

= ReE1+M∗
1+

|M1+|2 = ReE1+ReM1+ + ImE1+ImM1+
ReM1+ReM1+ + ImM1+ImM1+

,

(34a)

Re
S1+
M1+

= ReS1+M∗
1+

|M1+|2 = ReS1+ReM1+ + ImS1+ImM1+
ReM1+ReM1+ + ImM1+ImM1+

.

(34b)

where the multipole analysis provides the real and imaginary
parts of each amplitude separately. The W dependencies of
quadrupole ratios for the pπ0 channel are shown in Fig. 27
and the results at W = 1.23 GeV are listed in Table III; the
correction for the small isospin 1/2 contamination is discussed
in Sec. VII. The truncation dependence of the experimental

results is relatively small for R
(pπ0)
SM , and most of the models

are in good agreement with the data for W ≈ M�, but SMR
is significantly stronger for SAID. Although the truncation

dependence is larger for R
(pπ0)
EM data, the value at M� still

appears to be determined relatively well and is consistent
with all the models except SAID, which gives a much smaller
value and at larger Q2 sign opposite other models. The model
calculations spread more rapidly for the electric than for the
scalar ratio as the distance from M� increases.

Note that if one defines M� as the W where ReM (3/2)
1+ = 0,

then the quadrupole formulas in Eq. (34) reduce to

R
(3/2)
EM = ImE

(3/2)
1+ /ImM

(3/2)
1+ (35a)

R
(3/2)
SM = ImS

(3/2)
1+ /ImM

(3/2)
1+ (35b)

for the isospin 3/2 channel. However, these formulas are
unsuitable for data analysis because comparable nπ+ data
are not available for isospin decomposition and because
the appropriate value of M� is not known precisely or
independently of models. It would also be necessary, in
principle, to interpolate the multipole data with respect to W .
We employ Eq. (34) because it is independent of W , applies
equally well to pπ0 or isospin 3/2, and does not require
any model-dependent assumptions about M�. Furthermore,
because the energy dependence in Fig. 27 is quite mild,
Table III simply lists values for the bin closest to M�, namely,
W = 1.23 GeV. Small corrections for the energy dependence
of these quantities are evaluated in Sec. VII C.

Table III evaluates the sensitivity of quadrupole ratios to the
selection of adjustable multipoles. The uncertainties increase
when higher partial waves that are not well-constrained by
the data are permitted to vary. Above we argued that the best
compromise is obtained by varying 0+, 1+, 1−, and real parts
of 2− multipole amplitudes with 2+ and higher partial waves
constrained by the baseline model. Elimination of ImM1−
further reduces the uncertainties in SMR, without affecting the
quality of the fit, by suppressing its unresolvable correlation
with ImS1−. As previously argued, we believe that elimination

FIG. 26. (Color online) Same as Fig. 22, but
for 2+ multipole amplitudes. The open circles
show results for the spd analysis. Only statistical
errors are shown.
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TABLE III. Quadrupole ratios for W = 1.23 GeV at Q2 =
1.0 (GeV/c)2 using the pseudovector Born baseline model. Only
statistical uncertainties from fitting are given.

Variables SMR (%) EMR (%) χ 2
ν

0+, 1+, 1− −6.73 ± 0.24 −2.43 ± 0.19 1.69
0+, 1+, 1−, 2−, 2+ −6.95 ± 0.49 −3.19 ± 0.79 1.64
0+, 1+, 1−, Re2− −6.85 ± 0.27 −2.73 ± 0.20 1.65
Above, except ImM1− −6.84 ± 0.15 −2.91 ± 0.19 1.65

of ImM1− is justified by the prediction—made by all models
considered—that it is negligible in this energy range. The
results in the last two lines of Table III are practically identical
for SMR, though with reduced uncertainty in the final line,
while the change in EMR is within the estimated uncertainties.

E. Sensitivity to baseline model

As mentioned above, the multipole fits are rather insensitive
to the choice of baseline model. To illustrate this, Fig. 28 com-
pares fits to the response functions for W = 1.23 GeV based
upon several baseline models; figures for other W bins are
available in Ref. [62]. The fits based upon Born, MAID2003,
DMT, or SL models are practically indistinguishable. The fits
based upon SAID display a more oscillatory structure that
is not supported by the data in the middle of the W range
where the precision is best. The oscillations are presumably
due to relatively large ReE2+ and ReS2+ amplitudes that are
not ameliorated by the current truncation scheme. Therefore,
the data clearly require smaller 2+ amplitudes than predicted
by the SAID model.

Similarly, the fitted multipole amplitudes are also rather
insensitive to the choice of baseline model. Even the fits based
upon SAID, starting from rather different initial conditions and
with significantly larger fixed 2+ amplitudes, converge upon
essentially the same final results. For example, Table IV lists
the quadrupole ratios for W = 1.23 GeV based upon several
choices of baseline models and using the “final” parameter

FIG. 27. (Color online) Multipole analyses for EMR and SMR
at Q2 = 1.0 (GeV/c)2 are compared with MAID2003 (solid red),
DMT (dashed green), SAID (dash-dot blue), and SL (dotted cyan).
The vertical line shows the physical mass, W = M�. Open circles
adjust �π � 1 multipoles; filled circles represent the final fits. For
filled circles, inner error bars with end caps are statistical, while outer
error bars without end caps include systematic uncertainties.

TABLE IV. Dependence of quadrupole ratios for W = 1.23 GeV
at Q2 = 1.0 (GeV/c)2 upon baseline model. All s- and p-wave
amplitudes, except ImM1−, plus real 2− amplitudes were fit with
other amplitudes given by the specified baseline model.

Baseline SMR (%) EMR (%) χ 2
ν

Born −6.84 ± 0.15 −2.91 ± 0.19 1.65
MAID2003 −6.90 ± 0.15 −2.79 ± 0.19 1.67
DMT −6.82 ± 0.15 −2.70 ± 0.19 1.67
SL −6.79 ± 0.15 −2.81 ± 0.19 1.64
SAID −7.38 ± 0.15 −2.53 ± 0.20 1.85

space. All of the results are consistent except those using
the SAID baseline, for which SMR is substantially higher
and EMR lower than for other baseline models. However,
the quality of the fit is also noticeably inferior even though the
differences in χ2

ν are not impressive. Therefore, we conclude
that this version of the SAID model does not provide a suitable
baseline for multipole analysis, and we judge the sensitivity to
uncertainties in the baseline model to be similar to the tabulated
fitting uncertainties.

VII. DISCUSSION

A. Reliability of traditional Legendre analysis

Both the Legendre and multipole analyses fit the data well,
but they yield significantly different estimates of the N → �

quadrupole ratios. The Legendre results are listed in the first
line of Table V, and those for the multipole analysis in the
second and fifth columns of the second line. Subsequent lines
show model calculations for quadrupole ratios based upon
several truncation schemes. The second and fifth columns are
the proper ratios of multipole amplitudes, while the remaining
columns use the traditional estimators given by Eq. (32)
with Legendre coefficients that were computed by numerical
integration of response functions obtained from the indicated
truncation of the multipole amplitudes with respect to �π .
Thus, the third and sixth columns represent the sp truncation,
while the fourth and seventh columns are practically complete
with respect to �π . We placed the experimental Legendre
results in the �π � 5 columns because truncation is not pos-
sible experimentally. The model Legendre coefficients were
computed without using M1+ dominance, but the correspond-
ing traditional quadrupole estimators, R̃SM and R̃EM, employ

TABLE V. Calculated quadrupole ratios (in %) for W =
1.23 GeV at Q2 = 1.0 (GeV/c)2. Columns with ranges of �π are
based upon traditional estimators given by Eq. (32).

Model R
(pπ0)
SM R̃

(pπ0)
SM R̃

(pπ0)
SM R

(pπ0)
EM R̃

(pπ0)
EM R̃

(pπ0)
EM

�π � 1 �π � 5 �π � 1 �π � 5

Legendre fit −6.11 −1.92
Multipole fit −6.84 −6.46 −6.00 −2.91 −1.54 −2.18
MAID2003 −6.73 −6.37 −5.63 −1.65 −0.57 −1.12
DMT −7.21 −6.77 −6.10 −1.77 −0.70 −1.47
SAID −8.71 −7.78 −7.88 +0.17 +1.96 +0.22
SL −6.59 −6.69 −6.58 −2.29 −1.29 −1.58
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FIG. 28. (Color online) Sensitivity of multipole fits for W = 1.23 GeV at Q2 = 1.0 (GeV/c)2 to the choice of baseline model: Born (black
solid), MAID2003 (red dashed), DMT (green dash-dotted), SAID (blue dotted), or SL (cyan short-dotted).

combinations that were derived under that assumption. The
values of R̃SM and R̃EM for �π � 5 obtained from the fitted
multipole amplitudes are similar to those obtained from the
fitted Legendre coefficients but are distinctly smaller than the
fitted values for RSM and REM even though the fits to the cross
section data are practically identical. The differences between
�π � 1 and �π � 5 model calculations demonstrate that sp

truncation is often a poor approximation to R̃SM and R̃EM,
especially for the latter. Although the sp truncation of R̃SM is
reasonable for the SAID and SL models and for the present
multipole fit, it is inaccurate for the MAID2003 and DMT
models. However, sp truncation of R̃EM is quite poor for all
models considered. Furthermore, the correspondence between
the traditional Legendre estimators and the actual quadrupole
ratios also depends upon the requirement that M1+ appear in
every term of the multipole expansion of Legendre coefficients.
The differences between the �π � 5 results and the actual
quadrupole ratios demonstrate that the assumption of M1+
dominance is not sufficiently accurate either.

A more detailed study of truncation errors in the traditional
Legendre analysis of N → � quadrupole ratios has been
provided in Ref. [74]. Truncation errors are especially severe
for R̃EM where the contribution of ReM1−E∗

1+ alone is
approximately −40% of the leading term using MAID2003
pπ0 multipoles for our kinematics. Many other neglected
terms are significant, and the convergence is slow and model
dependent. Furthermore, the contributions of AL

0 and AL
2 to

Eq. (32) are not negligible, as assumed using M1+ dominance.
The contribution of AL

2 can, in fact, have a large effect upon
delicate cancellations within the numerator of R̃EM. Thus,
Rosenbluth separation should be performed before using the
Legendre method, especially for R̃EM, but none of the recent
Legendre analyses [17–19,21] have done so, including the

present experiment. The convergence of R̃SM is better, but its
relative accuracy as an estimate of RSM is still no better than
about 20% [74]. Therefore, although the details are model
dependent, it is clear that neither assumption of the traditional
Legendre analysis is sufficiently accurate at the present levels
of experimental precision and completeness.

B. Isospin 1/2 contamination of EMR and SMR

Separation of the isospin 1/2 and 3/2 contributions to
the multipole amplitudes would require comparable data for
the nπ+ channel, including angular distributions for either
recoil or target polarization, which are presently unavailable.
Fortunately, the isospin 1/2 contamination is expected to have
relatively little effect upon the determination of isospin 3/2
quadrupole ratios. According to MAID2003, one expects
(RSM, REM) = (−6.71%,−1.62%) at (W,Q2) = (1.23, 1.0)
for isospin 3/2 compared with (−6.73%,−1.65%) for the
pπ0 channel [49]. Similarly, the quadrupole ratios for
the pure N → � contribution become (−6.73%,−1.53%)
in the absence of background. Finally, if one attributes the
correction terms for 1+ multipoles in Eq. (33) entirely to the �

resonance, assuming that the Born baseline model is accurate,
we would estimate

R
(3/2)
SM ≈ Re

�S1+
�M1+

= −6.81%, (36a)

R
(3/2)
EM ≈ Re

�E1+
�M1+

= −3.12%, (36b)

in good agreement with the full results for the pπ0 channel that
include background. However, the fact that changes in REM

due to neglect of background are opposite for MAID2003,
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FIG. 29. Parabolic fits to the W dependence
of quadrupole ratios from Legendre (left) and
multipole (right) analyses. Vertical dashed and
dotted lines show M� and the fitted ranges of W .

and the experimental multipole fit suggests that part of the
fitted �E1+ should probably be attributed to the background
in the baseline model. Nevertheless, it appears that corrections
for isospin 1/2 contamination are probably smaller than the
present error bars. Therefore, this model-dependent correction
has not been made.

C. W dependence of EMR and SMR

The W dependencies of quadrupole ratios obtained using
both Legendre and multipole analyses are compared in Fig. 29
with parabolic fits of the form

y =
2∑

k=0

ak(W − M�)k, (37)

using a nominal value of M� = 1.232 GeV. The fits were
confined to the central region, indicated by dotted vertical
lines, where this simple parametrization should suffice for
interpolation. Both fits describe the data for the central region
well. It is important to remember that the quadrupole ratios for
the two types of analysis are different quantities and need not
have the same shapes—the Legendre estimators are affected by
ε and by all partial waves while those from multipole analysis
are not. The parabolic fits appear to extrapolate better for the
multipole analysis than for the Legendre analysis, but they
should still only be used in the central region.

The expansion coefficients fitted using the weighted linear
least-squares method are given in Table VI, where the data
for quadrupole ratios are expressed in percent and the
multipole amplitudes are based upon the Born baseline. The
a0 parameters represent best-fit estimates of the quadrupole
ratios at M�, but fits with only 2 degrees of freedom do not
necessarily provide realistic uncertainties. Instead, we quote
the largest of δR(1.23), δa0, and δa0

√
χ2

ν , where δR(1.23)
is the uncertainty in the single-energy fit to data for W =
1.23 GeV, δa0 is the uncertainty in the value of a0 according

TABLE VI. Power series for quadrupole ratios in terms of (W −
M�) in units of GeV. The best-fit estimate of the quadrupole ratios
at W = M� = 1.232 GeV is given for each analysis method by a0.

Method EMR SMR

a0 a1 a2 a0 a1 a2

Legendre −1.76 ± 0.19 −3.77 −793 −5.87 ± 0.20 53.2 618
Multipole −2.87 ± 0.19 −13.3 −450 −6.61 ± 0.18 39.3 749

to the linear least-squares fit to the energy dependence, and χ2
ν

is the reduced chi-square for that fit in the central region. The
second-order terms are negligible between M� and the nearest
W bin, and changes due to the linear terms are less than one
standard deviation. For example, the fitted EMR and SMR
values for the multipole analysis are −2.85% and −6.69%
at W = 1.23 GeV. The remaining differences between these
values and those listed on the last line of Table III are less
than one standard deviation. Although the quadrupole ratios in
Table VI are slightly smaller, they are consistent with those we
reported in Ref. [33]. The analysis in Ref. [33] considered only
a single energy, W = 1.23 GeV, while the present analysis fits
the energy dependence within the central region. The small
differences are partly due to the change in W from 1.23 to
1.232 GeV and partly due to statistical fluctuations of the data
for 1.23 GeV relative to the average trends represented by
the curves in Fig. 29. Therefore, we consider the interpolated
values in Table VI to be our best estimates of the quadrupole
ratios for W = M�.

D. Relationship between G En and RSM

Buchmann [77] has derived a relationship

RSM = qMN

2Q2

GEn

GMn

(38)

between RSM for the N → � transition and the neutron electric
and magnetic Sachs form factors, GEn and GMn. Here q

is virtual photon momentum in the c.m. frame. Deviations
from this relationship were attributed to three-quark and
higher-order currents and were estimated to be at the level of
1/N2

c , or about 10%. Figure 30 compares this prediction with
recent data [14,17–19] where the band is based upon fitted
neutron form factors from Ref. [78]. Note that the growth of
the band for Q2 > 1.5 (GeV/c)2, where GEn data are presently
unavailable, is artificially limited by the use of a model with
only two parameters. The Buchmann formula underestimates
most of the RSM data. The discrepancy of about 15% at Q2 =
1 (GeV/c)2 is similar to the estimated theoretical uncertainty,
but this model predicts a nearly constant quadrupole ratio for
larger Q2 while the data show a steep slope. Note that for
the high-Q2 data, we chose the effective Lagrangian analysis
instead of the Legendre analysis from Ref. [19] because
truncation errors in the Legendre method are expected to
increase with Q2 [74] and the effective Lagrangian results
are consistent with the MAID and DMT analyses of the
same data [72]. Although the RSM slope is described well

025201-27



J. J. KELLY et al. PHYSICAL REVIEW C 75, 025201 (2007)

FIG. 30. Comparison between RSM data and Buchmann’s formula
(band) using fitted neutron form factors. Data: open square [14], filled
triangle [17], open triangle [21], open circles [18], crosses [19]; the
filled circle is the present result. Small horizontal displacements are
used to reduce clutter. Error bars include statistical and systematic
but not model uncertainties.

by dynamic models of πN rescattering, perturbative QCD
predicts that RSM should become constant asymptotically.
Therefore, it would be of interest to extend measurements
of GEn to higher Q2 and to use model-independent multipole
analysis of new polarization data for pion electroproduction to
verify the apparent slope in RSM.

E. Sensitivity of Legendre coefficients to specific multipole
amplitudes

Even though sp truncation and M1+ dominance are not
sufficiently accurate for quantitative analysis of the quadrupole
ratios, that truncation can still provide qualitative insight into
the sensitivity of selected Legendre coefficients to particular
multipole amplitudes. For example, we note that AT T t

0 ≈
3ImM∗

1+M1−, while Fig. 24 shows that most models predict
that M1− is nearly real and varies slowly over this range of
W . Consequently, one expects the W dependence of AT T t

0 to
strongly resemble ImM1+ and its amplitude to be proportional
to ReM1− and opposite in sign. Figure 31 shows that these
expectations are realized by the Legendre fit. The observation
that the AT T t

0 data are smaller than SAID, larger than DMT
and SL, and in good agreement with MAID2003 predictions
is consistent with the same pattern seen in Fig. 24 for ReM1−
and with response function figures in Sec. VI A. A similar
correspondence is also observed for AL+T n

1 , but the truncation
is not as reliable because Rosenbluth separation is not available
and model calculations have greater shape differences. The
ReM1− amplitude also appears in AT T n

1 but is again diluted.
Therefore, the best sensitivity to ReM1− is provided by the
Rt

T T response function.
Similarly, model calculations suggest that S1− also varies

relatively slowly and is nearly real in this W range, although
neither feature is quite as accurate as for M1−. Study
of truncated multipole expansions of Legendre coefficients
suggests that the best sensitivity to ReS1− is offered by the Rn

LT

response function through its ALT n
0 Legendre coefficient. The

FIG. 31. (Color online) Fitted Legendre coefficients for Rt
T T

are compared with MAID2003 (red solid), DMT (green dashed),
SAID (blue dash-dotted), and SL (cyan dotted). In the simplest
approximation, the first and second panels are −3ReM1−ImM1+
and 3ReE0+ImM1+, respectively. Inner error bars with end caps
are statistical; outer error bars without end caps include systematic
uncertainties.

shape differences show that M1+ dominance is not as accurate
for this Legendre coefficient, but Fig. 32 shows that its W

dependence does resemble that of ImM1+ nonetheless. Thus,
we find that the SAID prediction for ALT n

0 is considerably too
strong while those of MAID2003, DMT, and SL are too weak
and that the same pattern is observed in Fig. 24 for ReS1−.

Within the truncated Legendre expansion, ReE0+ is isolated
by AT T n

0 , AT T �
0 , or AT T t

1 , which should be equal modulo
signs if E0+ were real and M1+ dominance accurate. The
AT T t

1 coefficient is included in Fig. 31, but the other figures
are omitted and can be found in Ref. [61]. We do observe
the expected pattern of signs, and all are similar in shape
to ImM1+, but their magnitudes do not conform to these
simplistic predictions. Nevertheless, the relationships between
data and model calculations for the Legendre coefficients are
similar to those for ReE0+.

The most complicated situation is S0+ because both model
predictions and fitted amplitudes show important imaginary
contributions to this nonresonant partial wave. Hence, mea-
surement of S0+ amplitudes requires LT response functions
of both R and I types. The S0+ contributions to the truncated
Legendre expansion are isolated by 5 R-type and 5 I-type
coefficients, but although each group displays a relatively
uniform shape with respect to W , there are significant
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FIG. 32. (Color online) Fitted Legendre coefficients for Rn
LT

are compared with MAID2003 (red solid), DMT (green dashed),
SAID (blue dash-dotted), and SL (cyan dotted). In the simplest
approximation, the top panel is ReS1−ImM1+ and the second is
ImS∗

0+M1+. Inner error bars with end caps are statistical; outer error
bars without end caps include systematic uncertainties.

differences in detail that show that the simple truncation is
not especially accurate for these coefficients. Nevertheless, the
fitted multipole amplitudes provide good fits to all of the LT

response functions simultaneously. Therefore, polarization
data provide the phase of S0+.

Schmieden [22] speculated that the disagreement between
SMR values for Q2 ∼ 0.13 (GeV/c)2 obtained by Kalleicher
et al. [21] using the forward pions and those obtained
using cross sections [15] or polarizations [14,23] for forward
protons might be explained using Re(S0+/M1+) ≈ −0.14.
However, recent models predict smaller positive values with
relatively slow Q2 dependence that are similar to −RSM.
Although it might appear that one could estimate this quantity
using

Re
S0+
M1+

≈ 2ALT
0

AT
0

≈ 2ALT
0

AL+T
0

, (39)

based upon M1+ dominance and sp truncation, Fig. 6 shows
that ALT

0 has a node near M� and is very small for larger W . By
contrast, ALT

1 peaks near M�. Thus, it is likely that truncation
errors in the multipole expansion of Legendre coefficients will
be more serious for S0+ than for S1+. This problem is illustrated
in Fig. 33 which compares fitted values for Re(S0+/M1+)
from the multipole analysis with those based upon Eq. (39)

FIG. 33. Comparison between multipole and Legendre analy-
ses of Re(S0+/M1+). Solid and dashed curves show MAID2003
calculations using multipole amplitudes or Legendre coefficients,
respectively. Solid (open) circles show experimental ratios based
upon multipole (Legendre) fits. The vertical dashed line indicates
W = 1.232 GeV.

where, because Rosenbluth separation is unavailable, we
assume that AT

0 ≈ AL+T
0 because M1+ dominance predicts

AL
0 = 0. We also show MAID2003 calculations for both

quantities. We find that MAID2003 describes both the steep
slope in Re(S0+/M1+) and the more complicated shape of
2ALT

0 /AL+T
0 fairly well, but these quantities are rather different

even in the immediate vicinity of W = M�—the Legendre
analysis does not even give the correct sign for this multipole
ratio at W = 1.232 GeV. The sign difference between these
quantities using MAID2003 calculations for Q2 = 1 (GeV/c)2

was previously noted in Ref. [74], and here the same problem
is observed in data. The analysis of a recent experiment
for Q2 = 0.2 (GeV/c)2 that measured left-right cross section
asymmetries for θπ = 20◦ and 160◦ also observed a large
difference between ratios based upon M1+ dominance and
sp truncation and those obtained by scaling MAID2003 S0+
and S1+ multipoles to fit the data [79]. With a much more
complete data set, our multipole analysis does not rely upon
models like MAID and gives Re(S0+/M1+) = (6.4 ± 0.7)%
at (W,Q2) = (1.23, 1.0) directly. Assuming that ReM1+ ≈
0 for W ≈ M�, the ratio Re(S0+/M1+) ≈ ImS0+/ImM1+
shows that ImS0+ is positive and somewhat larger than
the MAID2003 prediction for W = 1.23 GeV, as shown in
Fig. 23. Although there is nothing special about M� for S0+,
we can use the observed slope to estimate Re(S0+/M1+) =
(7.1 ± 0.8)% at (W,Q2) = (1.232, 1.0) for comparison with
similar analyses purportedly at W = M�; however, the energy
dependence is steep enough that kinematic uncertainties could
become important. Recognizing that the Q2 dependence is
mild in most models, neither the present result nor that of
Ref. [79] supports Schmieden’s hypothesis of a large negative
value for this ratio.
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TABLE VII. χ 2
ν for Legendre and multipole analyses.

W (GeV) χ 2
ν , Legendre χ 2

ν , multipole

1.17 1.32 1.24
1.19 1.69 1.67
1.21 1.32 1.39
1.23 1.50 1.65
1.25 1.87 1.94
1.27 1.59 1.58
1.29 1.53 1.52
1.31 1.61 1.42
1.33 1.53 1.32
1.35 1.41 1.30

F. Interpretation of χ 2
ν

The Legendre and multipole analyses employ data for
differential cross section, beam analyzing power, and recoil
polarization response functions with uncertainties that are pri-
marily statistical. The cross section data include uncertainties
in acceptance that can also be considered statistical because
they are estimated from the flatness of a yield/simulation
plateau. The uncertainties for recoil polarization response
functions are based upon diagonal elements of the covariance
matrix for the maximum likelihood method. However, the fact
that reduced chi-square values χ2

ν are consistently larger than
unity for both Legendre and multipole analyses suggests that
uncertainties in extracted quantities may be underestimated.
These statistics are listed in Table VII for each W . There
are several possible explanations for this observation. First,
the various recoil polarization response functions in a given
(x,W,Q2) bin are correlated with each other, but those
correlations are not considered by the Legendre or multipole
analyses because we have no efficient means to account
for them. Thus, the same fluctuation can affect several data
points and artificially increase its contribution to χ2 without
necessarily affecting the quality of the fit. Second, systematic
uncertainties that vary between kinematic bins were not
included in the uncertainties that were used in the Legendre and
multipole analyses because their effects upon various response
functions are also highly correlated. Third, inaccuracies in
baseline calculations of fixed amplitudes would impose a lower
limit on χ2 even if all experimental correlations could be
handled properly. Finally, no corrections have been made for
polarized radiative corrections.

Radiative corrections for the beam asymmetry in
the p(�e, e′p)π0 reaction have been evaluated for Q2 =
0.4 (GeV/c)2 by Afanasev et al. [80] and found to be quite
small across the �(1232) resonance. Radiative corrections for
polarized target asymmetries are presently under investigation
and generally appear to be small also [81], but procedures for
recoil polarization are not yet available in a form suitable for
the present analysis. In principle, external radiation permits ad-
ditional kinematic dependencies that cannot be accommodated
by the response function expansions given in Eq. (3). Analysis
of such effects probably requires an iterative procedure that
begins with the current results to obtain model response
functions, then calculates radiatively corrected polarizations

for each experimental event as input to an extended version
of the likelihood analysis that would use a more general
representation of the φ dependence. In the future, it may
be possible to improve upon the current multipole results by
iteration within a model of radiative corrections and hopefully
reduce χ2

ν , but that is obviously a very ambitious project.
The simplest method of correcting for underestimates of

experimental uncertainties is to multiply the uncertainties in
extracted quantities by

√
χ2

ν . We have not performed that
operation here because it is somewhat arbitrary, assuming
that neglected errors are random and uniform, but we provide
Table VII for the user’s convenience. However, if that proce-
dure is applied, the systematic uncertainties should probably be
reduced to avoid double-counting of random errors presently
labeled systematic.

VIII. SUMMARY AND CONCLUSIONS

We measured angular distributions for differential cross
section, beam analyzing power, and recoil polarization
in the p(�e, e′ �p)π0 reaction at Q2 = 1 (GeV/c)2 with
1.17 � W � 1.35 GeV across the � resonance and obtained
14 separated response functions and two Rosenbluth combi-
nations, of which 12 have been measured for the first time.

We compared the data for response functions with calcu-
lations for four recent models: MAID, DMT, SAID, and SL.
Variations among these models are relatively small at W ≈
M� for quantities that depend upon real parts of interference
products but increase with W . Variations among models are
much larger for quantities dependent upon imaginary parts
that are more sensitive to background amplitudes. MAID and
DMT are similar and in relatively good agreement with data for
W ≈ M�, but neither provides a uniformly good description
of the data for larger W . The SL model, which does not
include higher resonances, underpredicts the cross section for
larger W, while DMT is too strong. The SAID model has
considerable difficulty with helicity-independent LT response
functions that are probably caused mostly by its rather strong
ReS1− amplitude.

We performed a multipole analysis that fits both real and
imaginary parts of the multipole amplitudes for low partial
waves, while those for higher partial waves are constrained
either by Born terms or by the best available model calcula-
tions. Fitted multipole amplitudes based upon Born, MAID,
DMT, or SL models are practically indistinguishable, but the
available version of SAID does not provide a suitable baseline
because some of its �π � 2 amplitudes are too strong. The final
analysis is based upon the Born model to minimize bias. We
chose not to vary ImM1− in the final analysis because it is
predicted to be negligible in our energy range but its fitted
values are strongly correlated with those of ImS1− for the
present data set. We were able to extract consistent results for
all �π � 1 amplitudes, except ImM1−, plus the real parts of 2−
multipoles. The most significant differences between fitted and
model amplitudes are found in 0+ and 1− multipoles. The data
also show that ImS0+ grows faster than predicted by MAID,
DMT, or SL, but it is described reasonably well by SAID.
Good sensitivity to ReM1− is provided by the Rt

T T response
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function; there is a wide spread among models, but MAID2003
fits the ReM1− data best and is close to the Born baseline.
Similarly, the best sensitivity to ReS1− is provided by Rn

LT ,

but none of the models are accurate—SAID is much too strong
while MAID, DMT, and SL are too weak for that amplitude.
The data are substantially stronger than the Born amplitude,
suggesting significant longitudinal Roper contributions arising
from a radial excitation.

We find that truncation errors in the traditional Legendre
analysis of N → � quadrupole ratios can be significantly
larger than statistical errors. Using parabolic fits to the

energy dependence, we obtain R̃
(pπ0)
SM = (−5.87 ± 0.20)%

and R̃
(pπ0)
EM = (−1.76 ± 0.19)% from the traditional analysis

or R
(pπ0)
SM = (−6.61 ± 0.18)% and R

(pπ0)
EM = (−2.87 ± 0.19)%

from the multipole analysis for W = 1.232 GeV and Q2 =
1.0 (GeV/c)2. These results are consistent with the single-
energy analysis published previously [33]. The model depen-
dence of the multipole analysis is small, and the Legendre
fits are stable with respect to the number of fitted terms, yet
the differences between these analyses are several standard
deviations. We have demonstrated that the multipole analysis is
more reliable because it does not depend upon M1+ dominance
or sp truncation. Both model calculations and the multipole
analysis of data demonstrate that neither assumption is
reliable and that multipole products omitted by that trunca-
tion scheme make important contributions to the Legendre
coefficients that spoil the accuracy of the simple estimators
of quadrupole ratios employed by the traditional Legendre
analysis. Truncation errors are especially severe for R̃EM.

We also find that Re(S0+/M1+) = (7.1 ± 0.8)% at W =
1.232 GeV is qualitatively consistent with most recent models
and with a recent measurement [79] at Q2 = 0.2 (GeV/c)2 of
left-right cross section asymmetries at a pair of supplementary
proton angles, but it is inconsistent with a recent hypothesis
[22] that a large negative value is needed to explain inconsisten-
cies between SMR analyses at Q2 = 0.13 (GeV/c)2 using ear-
lier data for forward versus backward θπ . Truncation errors in
the Legendre estimator for Re(S0+/M1+) are quite severe [74],
even resulting in an incorrect sign at Q2 ∼ 1 (GeV/c)2. The
analysis in Ref. [79] relied on the MAID model instead of the
Legendre estimator, but accurate, model-independent results
require a phase-sensitive multipole analysis as performed here.

In conclusion, recoil and/or target polarization data are
essential to multipole analyses of meson electroproduction
reactions, providing access to the relative phase between
resonant and nonresonant contributions. Although neutral pion
electroproduction in the � region is the easiest example, this
experiment demonstrates the feasibility of the method, and we
hope that it will be applied over wider kinematic ranges and to
related reactions. An advantage of this type of analysis is that
it minimizes the dependence upon models; however, it does
not guarantee that the fitted multipole amplitudes will depend
smoothly on both W and Q2. Model-dependent analyses
which adjust parameters of an effective Lagrangian or unitary
isobar model should produce kinematically smooth multipole
amplitudes at the expense of possible bias. Presumably,
analyses of these types would also be less sensitive to variations
of acceptance-averaged W and Q2 between bins of the angular

variables (x, φ). Both types of analyses would benefit from
more extensive coverage in W . With sufficient kinematic
coverage one hopes to obtain reliable transition form factors
for overlapping resonances.
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APPENDIX: BORN BASELINE MODEL

In this Appendix, we summarize the Born baseline model
used for the multipole analysis, including only the terms that
contribute to the pπ0 channel. The electromagnetic vertices
are represented by effective Lagrangians of the form

LγNN = −eN̄

[
F1(Q2)γµAµ + F2(Q2)

σµν

2mN

(∂µAν)

]
N,

(A1a)

LγπV = e
λV

mπ

εµναβ(∂µAν)π3∂
α
(
δi,3ω

β + ρ
β

i

)
FγπV (Q2),

(A1b)

where N represents a nucleon field operator, Aµ is the
electromagnetic vector potential, π is the pion field as an
isospin vector, and V ∈ {ω, ρ} denotes a vector meson. We
used conventional dipole and Galster form factors for the
nucleon and monopole form factors

FγπV (Q2) =
(

1 + Q2

m2
V

)−1

(A2)

for γπV vertices. The γπV and V NN parameters are listed
in Table VIII and were taken from Ref. [67].

We used pure pseudovector πNN coupling

LπNN = −gPV
πNN

2mN

N̄γ5γµτ · (∂µπ)N, (A3)

with gPV
πNN = 13.4. Drechsel et al. [67] proposed a more

flexible πNN model that interpolates between pseudovector
coupling for small pπ and pseudoscalar coupling for large pπ ,
but this variation only affects real parts of 0+ and 1− baseline

TABLE VIII. Parameters for vector-meson vertices.

V mV (MeV) gV1 gV2 �V NN (MeV) λV

ω 782.6 21 −12 1200 0.314
ρ 769.0 2 13 1500 0.103
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multipoles, and the fitted parameters simply compensate for
variations of the pseudoscalar/pseudovector mixture anyway.

Finally, the V NN coupling is described by

LV NN = −N̄

[(
gV1γµ + gV2

2mN

σµν∂
µ

)
(ων + τ · ρν)

]

×NFV NN (t) , (A4)

where ων and ρν represent ω and ρ fields. A strong form
factor,

FV NN (t) = �2
V NN − m2

V

�2
V NN − t

, (A5)

is applied to the V NN vertex according to the prescription of
Brown et al. [82].
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