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The equations of relativistic hydrodynamics are transformed so that steps forward in time preserve local
simultaneity. In these variables, the space-time coordinates of neighboring points on the mesh are simultaneous
according to comoving observers. Aside from the time step varying as a function of the location on the mesh,
the local velocity gradient and the local density then evolve according to nonrelativistic equations of motion.
Analytic solutions are found for two one-dimensional cases with constant speed of sound. One solution has a
Gaussian density profile when mapped onto the new coordinates. That solution is analyzed for the effects of
longitudinal acceleration in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider, especially in
regards to two-particle correlation measurements of the longitudinal size.
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I. INTRODUCTION AND THEORY

The large collective flow observed at the Relativistic Heavy
Ion Collider (RHIC) has revitalized interest in relativistic
hydrodynamics for nuclear collisions [1–4]. Numerical ap-
proaches for solving nonrelativistic equations can be divided
into numerous categories. Information regarding the densities
and collective velocities might be stored for static mesh
points (Eulerian) or for mesh points that move with the fluid
(Lagrangian). Other approaches discard the notion of a mesh
and instead follow the motion of particles that represent fluid
elements [5–7], thus making the solution similar to that of
molecular dynamics. Adding viscosity and heat conduction
brings about an even wider range of approaches. For instance,
once heat diffusion is introduced one must choose whether the
velocity refers to that of the energy [8] (Landau frame) or that
of the number density [9] (Eckart frame), or even of the entropy
density [10]. In addition to specifying the character of the mesh
and the equations, there exist innumerable algorithms.

Relativistic modeling involves another class of choices,
as there may be good reasons to consider meshes where
information is not stored for a space-time hyper-surface
defined by a fixed Cartesian time, but rather for some
alternately defined hyper-surfaces. For instance, cosmological
modeling might use the proper time (i.e., the time as measured
by a local observer). For relativistic collisions, where there
is semi-Hubble-like flow along the z axis, one might use the
Hwa-Bjorken time [11,12], τ = √

t2 − z2, which is the time
as measured by an observer moving with constant velocity
v = z/t . If the matter accelerates along the z axis, this
time would differ from the time measured by an observer
moving with the fluid. Once the fluid velocities significantly
differ from that of the mesh, relativistic effects become
important.

In this study we investigate the prospects of propagating so
that, after each point i moves forward by δτi , the hyper-surface
will satisfy local simultaneity,

u · dr = 0, (1)

where drµ is the differential distance between neighboring
points on the hyper-surface, and u is the four-velocity, and

where in the frame of fluid u = (1, 0, 0, 0). Thus, in the frame
of the fluid the time difference dt between neighboring mesh
points is zero. After presenting the equations of motion that
preserve local simultaneity in the next section, we present
analytic solutions in these coordinates in the next two sections.
The first solution is for a Gaussian-shaped entropy distribution
that is initially at rest, while the second is a restatement
of the Khalatnikov-Landau solution for matter leaving a
static shock [13,14]. Both solutions are for the particular
case of purely one-dimensional motion with a constant
speed of sound. Section IV explores the manifestations of
longitudinal acceleration and compares the analytic Gaussian
case with a numerical solution for the case with initial
collective flow given by the Hwa-Bjorken velocity profile,
uz = z/τ . In particular, the degree to which the velocity
gradient differs from 1/τ is discussed for its importance
in affecting conclusions about collision lifetimes from two-
particle correlations. The prospects and limitations for these
approaches are reviewed in Sec. VI, after which we include
an appendix to review other analytic solutions to relativistic
hydrodynamics.

II. MAINTAINING SIMULTANEITY IN RELATIVISTIC
HYDRODYNAMICS

Here, we express the equations for relativistic hydrody-
namics in terms of coordinates relevant for a set of observers
traveling with the fluid. Each observer initializes his or her
clock so that, in each observer’s frame, evolution will begin
simultaneously for the neighboring observers. Such is the case
for the commonly used Hwa-Bjorken assumption [11,12],
where the collective velocity is given by uz = z/τ , with τ

being the proper time (i.e., the time measured by each observer
in their frame). In the Hwa-Bjorken picture, there is no
acceleration and local simultaneity (u · dx = 0) is preserved
if each comoving observer propagates forward equal amounts
in proper time. However, as will be shown here, simultaneity
will not be maintained in the presence of acceleration. For
accelerating cases, each comoving observer must propagate
forward by different time steps.
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The equations of motion for a relativistic hydrodynamic
fluid conserving entropy are

(u · ∂)s = −s∂ · u, (2)

(u · ∂)uα = 1

P + ε
(∂α − uαu · ∂)P, (3)

where s is the entropy density as measured by a comover.
Throughout this section, we ignore the general case where
other currents are conserved, thus making P a function of
s only. For a specific differential fluid element, an observer
moving in the frame of the fluid observes a change in the
velocity and entropy density,

δv = − ∇P

P + ε
δτ, (4)

δs = −s(∇ · v)δτ, (5)

where δτ is the differential time step and r and v are the
position and velocity measured by an observer moving with
the same velocity as the matter.

The equations of motion can be integrated forward numer-
ically on a Lagrangian mesh, one that moves with the fluid,
by solving for the time development of the separation between
neighboring mesh points, �r, and the relative velocity of the
two points, �v, where �r and �v are always measured by
an observer traveling with the fluid between the two mesh
points. Since the velocities are, by definition, small according
to this observer, the motion appears nonrelativistic. After
solving for the nonrelativistic evolution of �v and �r, one
could perform incremental relativistic velocity additions and
Lorentz transformations to solve for the relativistic evolution.
Thus, it would appear that relativistic complications could be
avoided until after the nonrelativistic evolution of the mesh is
determined.

The algorithm described here assumes that �r represents
the separation of two simultaneous space-time points (i.e.,
�t = 0 in the frame of the fluid). Unfortunately, even if
the mesh is originally defined with neighboring points being
simultaneous, the simultaneity will be destroyed after propa-
gating each point forward a fixed amount of proper time if the
points undergo acceleration. Here, we show that simultaneity
can be maintained if different points on the hyper-surface are
propagated forward by different steps in proper time.

Simultaneity between two neighboring points x1 and x2

with velocities u1 and u2 can be stated by the relation

(u1 + u2) · (x2 − x1) = 0, (6)

where �x = x2 − x1 is small and (1/2)(u1 + u2) is the four-
velocity of a comoving observer between the two points of the
fluid. Maintaining simultaneity requires

(u1 + u2 + aδτ1 + aδτ2) · (x1 − x2 + u1δτ1 − u2δτ2) = 0,

(7)
where aµ is the acceleration. Since accelerations have no time
components in the frame of the matter, a · u = 0, and since
(u1 − u2) · (u1 + u2) is also zero, one can rewrite Eq. (7) to
find

[(u1 + u2) + a(δτ1 + δτ2)] · [�x + (u1 − u2)(δτ1 + δτ2)/2

− (u1 + u2)(δτ2 − δτ1)/2] = 0,

(δτ1 + δτ2)a · (�x) − 2(δτ2 − δτ1) = 0,

δτ2 = δτ1(1 − a · �x), (8)

where it has also been assumed that �x and δτ are small [i.e.,
(u1 + u2) · (u1 + u2) ≈ 4]. The last expression in Eqs. (8) can
be integrated to find an expression for the ratio of time steps
between an observer at x and a reference observer at xR ,

δτ = αδτR,

α(x) = exp

{
−

∫ x

xR

a · dx ′
}

= exp

{∫
c2d ln s

}
, (9)

where the last step used the definition of the speed of sound
for the case where P is expressed as a function of the entropy
density,

c2
s = s

dP/ds

P + ε
. (10)

Thus, although the equations of motion, Eqs. (4), appear
simple to solve by working in a comoving frame where
distance is measured along a path satisfying u · dx = 0, the
equations cannot be integrated forward by fixed δτ without
violating the condition of simultaneity. Instead, one should
integrate forward in time by an amount dτ = α(x)dτR , where
τR refers to the time measured by a reference observer at xR .

The equations of motion can be rewritten in terms of dτR

rather than dτ as

δs = −αs(∇ · v)δτR,
(11)

δv = − α

P + ε
(∇P )δτR.

These expressions differ from the nonrelativistic equations of
motion because of the presence of α on the right-hand sides
of both equations. These equations are especially well suited
for Lagrangian approaches, where the mesh moves with the
fluid, and one need only solve the equations of motion for
the evolution of differences of position and velocity between
neighboring points, as measured by a comoving observer.

Solution in more than one dimension of Eq. (11) requires
that the flow be irrotational. For rotational flow, the definition
of simultaneity, u · dx = 0, cannot uniquely map to a hyper-
surface extending over all space. For instance, one can consider
a ring of particles in uniform circular motion of a radius R at
a velocity v. If two neighboring particles would synchronize
their clocks as to be simultaneous in the frame of an observer
moving with the particles, the laboratory observer would view
this synchronization event as happening at two different times
separated by δt = v�x. If the synchronization were to be
performed clockwise around the ring, the times would be off by
a factor 2πRv after returning to the original point. The problem
with rotational flow is also encountered when considering α =
exp(− ∫

dx · a), which is only path independent if ∇ × �a = 0.
If ∇ × �v = 0 everywhere for the initial condition, and if
∇ × �a = 0 for all times, the flow will remain irrotational. The
requirement that ∇ × �a = 0 is maintained when the pressure
depends solely on the energy density but can be violated if
the pressure also depends on a particle density n. This can be
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shown by considering

∇ × �a = ∇ × ∇P (ε, n)

P (ε, n) + ε
(12)

= −∇ε × ∇P

(P + ε)2
(13)

= −∂P

∂n

∇ε × ∇n

(P + ε)2
. (14)

For the physics of RHIC, and especially for the physics of the
LHC, the particle densities are small and rotational aspects
of initial flow should be small. The flow would indeed be
rotational at nonzero impact parameters, even at midrapidity
[15]. However, these effects should be less pronounced at
higher beam energies if the production mechanism becomes
increasingly boost-invariant.

A common question that arises when discussing these
coordinates concerns how they relate to the principles and
formalism of general relativity. In general relativity an observer
under the influence of gravitational acceleration observes time
to increment by amounts that are modified as compared to
times measured by a fixed observer according to the metric
gµν . The difference is that, for gravitational differences, local
simultaneity is maintained if each comoving observer incre-
ments his or her clock forward by the same amount, whereas
for nongravitational accelerations such as hydrodynamics,
the comoving observers increment their clocks by different
amounts according to the factor α as described by Eq. (9). If an
acceleration is purely the result of a gravitational force, general
relativity requires an additional factor beyond the factor α to
be applied. This would cancel the contribution from α. This
follows from the equivalence principle: If an elevator is in free
fall, a clock on the elevator’s ceiling will stay synchronized
with a clock at the floor because the clocks must behave
the same as if there were no acceleration. As stated in the
previous paragraph, local simultaneity cannot be maintained
if ∇ × �a �= 0. Similarly, the consistency of general relativity
relies on the fact that the gravitational force can be expressed as
the derivative of the gravitational potential, thereby enforcing
the condition that ∇ × �a = 0. Thus, the formalism developed
in this paper is valid for relativistic hydrodynamics but is
invalid in the presence of gravity.

III. ONE-DIMENSIONAL GAUSSIAN SOLUTION

Here, we present an exact analytic solution to the hydrody-
namic equations of motion in Eq. (11) for the specific case of
one-dimensional motion where the speed of sound is constant.
The solution is found by first mapping the coordinate 	, which
measures the distance along a space-time path of simultaneity,
to a new coordinate 	̃:

d	̃ = αd	, 	̃ =
∫ 	

0
d	′α(	′). (15)

The transformation to the new coordinate 	̃ will be chosen
to cancel the factor of α in the equations of motion. In these

coordinates, the equations of motion become

δs = −s
∂v

∂	̃
δτR, δv = − 1

P + ε

∂P

∂	̃
δτR. (16)

Expanding δs and δv, we get

∂s

∂τR

+ ∂s

∂	̃

d	̃

dτR

= −s
∂v

∂	̃
,

(17)
∂y

∂τR

+ ∂y

∂	̃

d	̃

dτR

= − 1

P + ε

∂P

∂	̃
.

Here, we have identified the sum of small changes of the
velocity as measured by comovers, �v, as the rapidity y.
These would look exactly like the nonrelativistic expressions
if the velocity could be identified with d	̃/dτR . This will not
always be satisfied. In general, one can write 	̃ as a sum over
contributions between neighboring cells of length �	,

d	̃

dτR

= d

dτR

∑
i

�	iα(	i)

=
∑

i

αi

d�	

dτR

+
∑

i

�	i

dαi

dτR

=
∑

i

d�	

dτ
+

∑
i

�	i

dαi

dτR

= y +
∫ ∑

i

dαi

dτR

. (18)

The last term will vanish only if the comoving time derivate of
α vanishes. This criteria will be satisfied for our specific case
where the speed of sound is constant and the entropy profile is
set by a scaling function. From the definition of α in Eq. (9)
one can see that, for a constant speed of sound,

α = exp
{
c2
s ln(s/sR)

} =
(

s

sR

)c2
s

. (19)

For a scaling solution, s(	̃, τR) = F [	̃/R(τR)], and the shape
of the entropy profile is unchanged through time, aside from
changing the scale R. The ratio s/sR will then stay constant
for each comover.

Here, we present a solution where the entropy profile is
assumed to follow a Gaussian profile,

s(	̃, τR) = 1

R(τR)
exp

{
− 	̃2

2R(τR)2

}
. (20)

Furthermore, the velocity profile is assumed to be linear in 	̃,

y

cs

= A(t̃ ≡ csτR/R0)
	̃

R0
. (21)

Since the entropy profile scales with time, the equations of
motion are those of nonrelativistic hydrodynamics,

∂s

∂τR

+ ∂(sy)

∂	̃
= 0,

∂y

∂τR

+ y
∂y

∂	̃
= −c2

s

∂ ln s

∂	̃
. (22)

After application of the hydrodynamic equations of motion to
the assumed forms for s and y, the dependence on 	̃ factors
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away and leaves simple differential equations of motion for
A(t̃ ≡ csτR/R0) and for r(t̃) ≡ R(t̃)/R0:

dA

dt̃
+ A2 = 1

r2
, A = dr/dt

r
. (23)

Substituting for A provides a differential equation for r:

d2r

dt̃ 2
= 1

r
, (24)

which can be solved by making an analogy with classical
mechanics where one wishes to find the trajectory for a force
behaving as 1/r . The solution is

t̃ =
∫ r

1

dx√
2 ln(x)

= 21/2
∫ √

ln(r)

0
dy ey2

= 21/2rD(
√

ln r), (25)

where D(x) is Dawson’s integral function [16] defined by the
integral

D(x) ≡ e−x2
∫ x

0
du eu2

. (26)

D(x) rises proportional to x for low x and falls as 1/2x for
large x. Here, t = 0 refers to the time at which the velocity
gradient vanishes, and r represents the ratio of R to the radius at
that time. The expression is analytic, but in practice evaluating
the expression might require programming the function, which
diminishes the glamour of finding an analytic expression. This
expression must be inverted to find r as a function of t̃ . The
velocity gradient can then be expressed in terms of r ,

A(t̃ ) = 1

r(t̃ )

√
ln(r2). (27)

A disquieting aspect of the solution is that the entropy
density is s = dS/d	, while the solution conserves the integral∫

sd	̃. However, one can understand that both dS/d	̃ and
dS/d	 represent conserved charges by considering a comoving
cell. The two quantities differ by a factor α = d	̃/d	, and
since α remains constant and since the entropy is conserved
within each cell individually, both

∫
sd	 and

∫
sd	̃ survive as

constants of the motion.
If one solves the equations of motion in terms of τR and 	̃,

the state of the system in terms of the coordinates determined
in a fixed reference frame, x and t , requires inversion of the
mapping procedure. To find s and u for a given time and
position in the x direction, one could apply the following
procedure:

(i) Use the equations of motion as a function of 	̃ and τR

to solve for the entropy density s, the rapidity v, and the
factor α.

(ii) Begin with τR = t and 	̃ = 0.

(iii) For small �x, choose �τ and �	 to satisfy the conditions

�x = cosh(y)�	 + sinh(y)�τ,
(28)

0 = cosh(y)�τ + sinh(y)�	.

(iv) Find �	̃ = α�	 and �τR = α�τ . Increment τR and 	̃.
(v) Repeat steps (iii) and (iv) until the point (t, x) is reached.

FIG. 1. The analytic solution after being transformed into Carte-
sian space-time coordinates for three times, t = 0 (circles), t =
10R0/cs (squares), and t = 20R0/cs (triangles). The initial entropy
profile is Gaussian in the variable 	̃ but in Cartesian coordinates
behaves like a power law in the tail. The velocity profiles turn
over at large x because of the falling slope of the entropy profile
combined with the effects of transforming the solution into Cartesian
coordinates.

Solutions for different values of R0 and cs can be trans-
formed into one another by scaling τR and R through the
dimensionless variables t̃ and r described here. However, this
simple equivalence is lost when one maps to the coordinates
in fixed reference frame, x and t . The mapping procedure will
then depend on the ratio of the speed of sound to the speed of
light.

Figure 1 shows the entropy density and collective rapidity
as a function of the position and time in a Cartesian reference
frame for the case where the speed of sound is c2

s = 0.2. In
terms of 	̃, the profile is of a Gaussian form, but after scaling
to d	 = d	̃/α, then performing the Lorentz transformations
to Cartesian space-time coordinates, we see that the profile
is decidedly non-Gaussian. This is evident for the entropy
density s, plotted in the upper panel of Fig. 1 for t = 0. On a
logarithmic scale, a Gaussian is concave downward for all x;
whereas the scaled Gaussian picks up a power-law tail, which
after some nontrivial expansions can be shown to have the
form

s(x → ∞, t = 0) ≈
(

u

2
√

ln u

)−1/c2

, u ≡ csx/(R0

√
2).

(29)

Since the acceleration for a fixed speed of sound is proportional
to the logarithmic derivative of the density, the reversal of the
concavity in s(x) results in an acceleration that is maximized
for intermediate values, as illustrated by the plot of rapidity
versus position for subsequent times displayed in the lower
panel of Fig. 1. This is distinctly unlike the behavior one
would observe for a nonrelativistic system [17], where the
acceleration rises linearly at all x.
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The solutions illustrated in Fig. 1 were also checked for
conservation of energy and entropy:

Etot(t) =
∫

dxT 00(x, t), Stot =
∫

dx u0(x, t)s(x, t),

(30)
where the stress-energy tensor was calculated from s(x, t) and
the collective four-velocity u,

T αβ(x, t) = (P + ε)uαuβ − Pgαβ,
(31)

P = s1+c2
s , ε = P/c2

s .

Although the expressions used to calculate u and s are
analytic, calculation of the Dawson’s integrals and the mapping
to a fixed reference frame involved numerical integrations,
which introduced small errors. These errors were less than
0.1% and fell with increasing granularity in the calculations.
Furthermore, the net momentum of all matter moving to the
right was tested for consistency with the integrated impulse∫

dxT 0x(x, t) =
∫ t

0
dt ′P (x = 0, t ′). (32)

This condition was also satisfied to high precision.
Despite the fact that the space-time evolution of the entropy

density is rather complicated, the entropy per rapidity has a
simple form. To see this, we begin with the fact that s = dS/d	,
then apply the chain rule to find dS/dy:

dS

dy
= s

d	

d	̃

d	̃

dy
= 1

R(τR)
exp

{
− 	̃2

2R(τR)2

}
d	

d	̃

d	̃

dy
. (33)

After using the simple linear form, y = A	̃/R0, in Eq. (21),
we integrate Eq. (9) to find

α = d	̃/d	 = e−c2
s 	̃

2/(2R2). (34)

Substituting for 	̃ by using Eq. (21) then gives a rapidity
distribution of

dS

dy
= 1√

ln(r2)
exp

{
− (

1 − c2
s

)
y2

2A2c2
s r

2

}
(35)

= 1√
ln(r2)

exp

{
− (

1 − c2
s

)
y2

2c2
s ln(r2)

}
. (36)

Here, we have also substituted for rA = [ln(r2)]1/2 by using
Eq. (27), and r is again related to R by scaling, r = R/R0.
The Gaussian width of the rapidty distribution is thus

σy = cs

√
ln(r2)

1 − c2
s

. (37)

For large times, the width of the rapidity distribution in Eq. (35)
grows logarithmically with time, as can be seen by considering
the large-r behavior of the Dawson’s integral function in
Eq. (25),

√
ln(r) ∼ √

ln(t). We emphasize that this simple
Gaussian form relies on the assumption that the breakup is
sudden along a hyper-surface of simultaneity.

Experimentally, the breakup time is inferred from two-
particle correlations through the measurement of Rlong, which
represents the size along the beam axis of the phase space
distribution of particles with zero rapidity. If the collective
motion covers large amounts of rapidity, the size of the phase

space region is defined by the point at which the collective
velocity, Rlongdv/dz, surpasses the thermal velocity [18,19]:

Rlong = vtherm

dv/dz
. (38)

For the Hwa-Bjorken solution, where there is no longitudinal
acceleration, the collective velocity is always z/t . The velocity
gradient is then 1/τ , where τ is the proper time elapsed since
the beginning of the collision. In the no-acceleration Hwa-
Bjorken ansatz, the time τ is then inferred by

τ = Rlong

vtherm
. (39)

Here, Rlong is experimentally determined and the thermal
velocity is inferred from spectra or blast-wave models. This
simple statement is modified by collective transverse flow,
though the basic linear nature of the dependencies is preserved.

The presence of longitudinal acceleration alters the infer-
ence of τ by voiding the Hwa-Bjorken equivalence dv/dz =
1/τ . In the analytic Gaussian solution shown here, the velocity
gradient is given by Eq. (27),

dv

dz
= cs

R

√
2 ln(R/R0)

= σy

R

√
1 − c2

s

= 1

τ
[2xD(x)] , x ≡ σy

√(
1 − c2

s

)
/2c2

s . (40)

Here, the second line used the relation for the rapidity width,
Eq. (37), and the final step used Eq. (25).

The quantity in the square brackets in Eq. (40) now
represents the correction to the Bjorken formula for the
lifetime,

τ = Rlong

vtherm
[2xD(x)] . (41)

For large rapidty widths, the Dawson’s integral function can
be expanded for large x as

D(x → ∞) = 1

2x
+ 1

4x3
+ 3

8x5
+ · · · (2n − 1)!!

2(n+1)x(2n+1)
+ · · · .

(42)
The first-order term reproduces the Hwa-Bjorken result. At
RHIC, the variance of the pion rapidity distribution is a bit
over 2.0 [20]. However, here y refers to the source rapidity,
which should combine in quadrature with the thermal spread,
∼1, to result in the pion rapidity spread. Thus, σy should be
∼1.7 here, which if we combine this value of σ with a speed of
sound, c2

s ∼ 0.20, x should in the neighborhood of 2.4, which
would suggest that the Hwa-Bjorken estimate underestimates
the lifetime by approximately 10%. This is similar in strength
to what was seen by comparing three-dimensional to boost-
invariant numerical hydrodynamics by Renk [21].

IV. COMPARISON WITH THE HWA-BJORKEN INITIAL
CONDITION

The analytic solution of the previous section was predicated
on the physical picture of complete stopping. However,
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experiment strongly suggests, mainly through baryon distri-
butions, that there is significant stopping, which invalidates
the analytic expressions derived in the previous section.
Nonetheless, it is often the case that for large times solutions
approach analytic forms even though the initial conditions
differed significantly from the analytic form. To investigate
this possibility, we compare the solutions for the same speed
of sound, c2

s = 0.2, but for two very different initial conditions:

(i) An analytic solution that assumes complete stopping
at τ = 0. An initial Gaussian size of 0.06416 fm was
chosen so that when the system expanded to its breakup
time of 10 fm/c, the rapidity width would match
that estimated for the final state as discussed in the
previous section, σy(τ = 10 fm/c) = 1.7 [22]. Here,
the variance is defined by using the entropy density as
a weight,

σ 2
y (τ ) =

∫
d	y2s(	, τ )∫
d	 s(	, τ )

. (43)

(ii) Numerical solutions of hydrodynamics assuming a
Hwa-Bjorken ansatz for the initial conditions, with the
rapidity at time τ0 = 0.5 fm/c given by

y = 	

τ0
, (44)

where 	 is defined in the same way as in Sec. II as the
net distance separating comovers. The initial entropy
density is chosen to be Gaussian:

dS

d	
∝ e−	2/2R2

0 . (45)

These initial conditions differ from that used in the
analytic solution in that the matter is not moving and
the Gaussian form was applied to 	, rather than the
scaled variable 	̃. The initial time τ0 was chosen rather
arbitrarily to be 0.5 fm/c, and the initial size R0 was
then adjusted so that the variance σy would again be
1.7 at a breakup time τ = 10 fm/c. The size required to
achieve this fit is R0 = 0.55 fm.

Thus, the two solutions are matched by having the two
solutions break up at the same reference time along a hyper-
surface of simultaneity, and by having the same rapidity spread
in the final state σy . Figure 2 demonstrates the remarkable
agreement of the two evolutions for all but the earliest times
by showing σy and the inverse velocity gradient at the origin
as a function of τ . At τ = 0, the analytic solution has zero
velocity gradient, but by the time the other solution begins
at τ = 0.5 fm/c it has already reached a similar amount of
collective velocity. Figure 3 shows that the entire structures of
the density and rapidity profiles are very similar at breakup.
This shows that the final state of the system tends to move
toward the analytic solution at large times, with a given final
state being reached by a large number of possible initial
conditions. We would expect this trend to be violated when
comparing solutions with very different equations of state.

Although these models have an overly simplistic equation
of state and ignore the effects of transverse flow, one can gain
some quantitative understanding of the effects of longitudinal

FIG. 2. The rapidity width and inverse velocity gradient as a
function of τ for the analytic solution (solid lines) and a numerical
solution of a system whose initial collective flow at τ0 = 0.5 fm/c
was that of a Hwa-Bjorken model. For the analytic solution, the
matter was initially stopped with a size chosen so that the rapidity
width would grow to 1.7 by 10 fm/c. For the numerical solution, the
initial width of the rapidity distribution was chosen so that it would
also reach σy = 1.7 at τ = 10 fm/c. Even though the initial velocity
gradient is zero in the analytic solution, the models behave similarly
for all τ > τ0. The dashed lines show what would be expected
in a Hwa-Bjorken expansion that neglects acceleration. The upper
panel shows that acceleration increases the rapidity width by over
50%. In the lower panel, the difference between the calculations
with acceleration and the acceleration-less solution demonstrates
the error associated with assigning the inverse velocity gradient,
which is inferred from correlation measurements, with the lifetime.
Accounting for acceleration should increase the estimate of the
breakup time by ∼10%.

l

FIG. 3. The rapidity and entropy profile as a function of the
distance along a hyper-surface of simultaneity. Distances are scaled
by the time τ for easy comparison with a Hwa-Bjorken expasion. The
analytic solution (solid lines), which assumed complete stopping at
τ = 0, is compared to a numerical solution for Hwa-Bjorken initial
conditions with τ0 = 0.5 fm/c. By τ = 10 fm/c (squares), the two
solutions are in almost perfect agreement. Even at τ = 0.5 fm/c
(circles), the two solutions match well for 	<∼ 3τ .
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expansion at RHIC from the evolutions shown in Fig. 2.
First, the variance of the collective rapidity σy grew by more
than 60% between τ = 0.5 fm/c and 10 fm/c. Even after
incorporating transverse flow or using a softer equation of
state, the growth would be several tens of percent. This clearly
plays a critical role in understanding the stopping at RHIC, as
ignoring the effects of longitudinal acceleration would lead to
an underestimate of the initial stopping in central collisions.

The evolution of the inverse velocity gradient at the origin
in the lower panel of Fig. 2 provides quantitative insight
into how longitudinal acceleration affects the determination
of the lifetime from correlations. In correlation analyses,
one obtains the inverse velocity gradient by dividing the
longitudinal correlation radius Rlong by the thermal velocity
vtherm, which is determined from analyses of spectra. Thus,
the analyses first determine the inverse velocity gradients,
which are identified with the breakup time by assuming an
acceleration-less Hwa-Bjorken form for y versus 	. Figure 2
shows that the neglect of acceleration leads to an underestimate
of the breakup time of ≈10%. As discussed in the previous
section, Eq. (41) shows that this underestimate depends only
on the ratio of the speed of sound to σy at breakup. Given
that solutions tend toward the analytic solution, this con-
clusion is somewhat robust. However, lowering the speed of
sound or incorporating transverse flow should ameliorate this
effect.

Some analyses of correlation and spectra have been based
on assumptions of a purely boost-invariant picture for the
longitudinal flow. This leads to an underestimate of the lifetime
for two separate reasons. First, the system is not infinite in
extent. Convoluting a boost-invariant solution with a Gaussian
profile should lead to larger estimates of the lifetime, with
the amount of the correction being of the order of 10%,
depending on the pt range studied. The second effect is the one
discussed here, of longitudinal acceleration. Boost-invariant
blast waves suggest breakup times near 9 fm/c [23]. These
times give one pause, since the same analyses suggest that
the radii have grown from 6 fm initially to 12 or 13 fm, with
final collective velocities of 0.7c at the edge. To achieve this
final state geometry, the matter would have had to achieve
maximum transverse speed immediately, which is unphysical.
This inconsistency, which represents part of the “HBT puzzle,”
would be softened by increasing the estimates of the breakup
lifetime to 11 or 12 fm/c.

V. ONE-DIMENSIONAL EXPONENTIAL SOLUTION

Like the first part of the Khalatnikov-Landau solution, we
will consider matter ejected from a slab of uniform energy
density, thus rederiving their result but using the mapping
procedure applied to the Gaussian profile in the previous
section. Unlike the Gaussian solution, all the matter undergoes
acceleration in this solution, including the reference point. We
assume a simple form for the rapidity profile and entropy
density:

y(	̃, τR) = yR(τR) + A(τR)	̃, s(	̃, τR) = sR(τR)e−	̃/R(τR).

(46)

Here, τR is the time as measured by a reference observer who
moves along with the fluid whose local entropy density is
sR and moves with rapidity yR . The distance 	̃ is the scaled
distance measured relative to the reference observer,

	̃ =
∫ 	

	R

d	′α(	′), α(	) = exp

{
−

∫ 	

	R

d	a

}
=

(
s

sR

)−c2
s

,

(47)
where 	 is measured along a line of simultaneity, u · dx = 0.
Here, a is again the acceleration of the fluid element. This
parametrization will solve the hydrodynamic equations of
motion if

A(τR) = 1

τR

, R(τR) = csτR, sR(τR) = B

τR

, (48)

where cs is the speed of sound and B is an arbitrary constant.
As was the case with the Gaussian solution α stays fixed for a
comover in this solution, which allows one to state

d	̃

dτR

= y − yR. (49)

Since these solutions are in terms of positions and times
relative to an accelerating observer, expressing the solution in
Cartesian space-time coordinates requires first solving for the
trajectory of the reference observer. This is not difficult as the
observer has velocity cs at t = 0 and accelerates with a = 1/τR

after that point. Because these solutions have the same initial
conditions and satisfy the same underlying hydrodynamic
equations of motion, they should reproduce the first-stage
Khalatnikov-Landau solution. This was checked numerically.

The rapidity distribution can be extracted from the solu-
tion by considering dS/dy, which should approximately be
proportional to the number of particles per unit rapidity. This
is only approximate because thermal motion smears out the
correspondence between a particles asymptotic rapidity and
the rapidity of the source from which it was emitted. From the
solution just given,

dS

dy
= s

d	̃

dy

d	

d	̃
= Be−(y−yR )(1/cs−cs ), (50)

where d	̃/d	 = α = e−cx̃/τR . The precise form of dS/dy

depends on the form of the breakup surface in space-time,
which is defined by the simultaneity condition here. A
remarkable aspect of this result is that the shape is determined
solely by the speed of sound and is independent of the breakup
time. Of course, after the shocks meet, matter is no longer
being fed into the solution at y = 0, and the width of the
rapidity distribution would no longer be fixed.

VI. CONCLUSIONS

We have investigated the prospects of solving hydrodynam-
ics in a coordinate system that maintains local simultaneity.
This involves storing information about the number and
entropy densities and about the velocity gradient along a hyper-
surface defined by the condition u · dx = 0. At each point in
time the subsequent evolution of the velocity differences to the
next time step become equivalent to those of nonrelativistic
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hydrodynamics. However, maintaining simultaneity requires
propagating by a time step δτ that differs at each mesh point by
a factor α = exp(− ∫

a · dx) relative to a reference observer.
This approach has both advantages and limitations. One

advantage is that the differential equations are linear in
the velocity, unlike the usual equations, which involve γ

factors. Since mesh points satisfy u · dx = 0, it is particularly
convenient to extract information about the matter in its rest
frame from the mesh. The coordinate system is especially
attractive for one-dimensional systems, where, for certain
cases, one can also scale the position measurement and find
some exact analytic solutions by mapping to nonrelativistic
solutions.

Working with simultaneity-conserving coordinates does
involve added difficulty when compared to nonrelativistic
hydrodynamics. First, one must calculate the coefficient α

at each mesh point. For ideal hydrodynamics this is not
difficult as the coefficient depends only on the local densities
and the densities of the reference observer. For viscous
hydrodynamics, calculation of α might involve performing
a path integral of the acceleration. Viewing the evolution
in standard coordinate systems (e.g., a Cartesian space-time
mesh) can also be clumsy as the transformation to a different
hyper-surface is a bit cumbersome.

The most serious limitation of the method concerns rota-
tional flow. In the absence of rotational flow the condition
u · dx = 0 defines an infinite hyper-surface in space-time, and
each step forward in time defines a new surface. After evolving
forward in time, each point in space-time will belong to one
surface, and one surface only. This is not the case for rotational
flow, as the condition of simultaneity becomes path dependent.
This restriction certainly disqualifies this approach for many
applications for relativistic heavy ion collisions.

For certain one-dimensional cases, the method leads to
analytic solutions. These are scaling solutions (i.e., ones where
the density profile is determined by a single parameter). In
these cases the hydrodynamic equations of motion exactly
reproduce the non-relativistic ones after the distances along the
hyper-surface are scaled along with the time. Along with the
Khalatnikov-Landau solution for matter ejected from a shock,
which was already well known, we were able to find a Gaussian
solution. In the scaled coordinates, it involves the expansion
of a Gaussian-shaped profile, exactly like the well-known
nonrelatistic case. One of our biggest disappointments is that
the analytic solutions were confined to purely one-dimensional
solutions. We could not even find analytic solutions for
problems with spherical symmetry. Analytic solutions in
higher dimension would have been significantly more useful
for testing higher dimensional relativistic codes.

One virtue of the analytic solution was that it provided a
transparent means for understanding the effects of longitudinal
acceleration at RHIC. The analytic solution, which assumes
complete stopping, and a numerical solution of a system with
an initial Hwa-Bjorken expansion were compared with the
constraint that they achieved the same σy at breakup. The
analytic solution had such significant acceleration that, by a
time of 0.5 fm/c, when the numerical solution was initialized,
it had already achieved a similar amount of collective velocity,
and by breakup the two solutions were indistinguishable. For

a speed of sound c2
s = 0.2, the rapidity spread was shown to

increase by over 50% between τ = 0.5 fm/c and a breakup time
of 10 fm/c. The quickness with which the initial conditions
became irrelevant and the numerical solution merged with
the analytic one was remarkable and represents an important
lesson.

The effect of longitudinal acceleration is especially impor-
tant for determining the lifetime from correlation analyses.
The effect of the expansion was to increase the lifetime by a
simple factor, 2x/D(x), where x depended only on the ratio of
σy at breakup to the speed of sound. For RHIC this suggests a
10% effect. Since the speed of sound and final rapidity spread
are well constrained by other measurements, the correction
factor is quite robust. The main qualifier comes from the fact
that the effects of transverse expansion were not coupled into
the evolution.

After having investigated prospects in detail, we only
enthusiastically endorse simultaneity-conserving approaches
for one-dimensional problems, or for problems for which the
symmetry reduces the problem to one dimension. We do not
foresee major technical issues for extending the approach
to more complicated equations of state or for incorporating
viscous effects. For higher dimensions, the difficulties associ-
ated with the path integrals and the limitations of irrotational
flow might bring along more trouble than is warranted by the
advantages of the approach.
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APPENDIX: OTHER ANALYTIC SOLUTIONS

Here, we review three solutions to one-dimensional rel-
ativistic hydrodynamics. The first is the Khalatnikov-Landau
solution [13,14], which assumes initial conditions of a thin slab
with a uniform energy density inside and zero energy density
outside. Since no information can travel into the slab, because
∂xP = 0, a shock develops. In the frame of the discontinuity
the matter moves outward from the front at the speed of sound
cs . Choosing a coordinate system where the front is at x = 0,
we can describe the velocity v and entropy density s outside
the slab by

v(x, t) = x + cst

t + csx
, s(x, t) = s0e

−y(x,t)/cs , (A1)

where y = tanh−1(v) is the rapidity and s0 is the entropy
density at x = 0, which is determined by solving the Rankine-
Hugoniot equations and is determined by the equations of state
and the energy density inside the slab. This solution requires
the additional assumption that the speed of sound is fixed. Once
the two shock fronts meet, the solution becomes a real tour de
force and has a much more complicated form than the simple
expressions here. The latter part of the solution is expressed in
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terms of derivatives of an integral of Bessel functions, which
can be easily evaluated numerically.

The second solution is the boost-invariant solution of Hwa
and Bjorken [11,12], which is especially simple and can easily
incorporate an arbitrary equation of state. In contrast to the
Landau parametrization, this solution assumes the existence
of an initial flow velocity and, in fact, it assumes that the flow
covers an infinite rapidity window. The solution assumes that
all frames that pass through the z = t = 0 space-time point
will see the same evolution. Referred to as “boost invariance,”
this implies that v = z/t , and it implies zero acceleration.
Furthermore, the energy density ε, the entropy density s, the
temperature T , and the pressure P depend only on the time
measured by comoving observers, τ = γ t − γ vz = √

t2 − z2,
which is known as the proper time. In the Hwa-Bjorken
solution, the distance between neighboring points at the same
proper time, as measured by a comoving observer, is δz = τδη,
where

z = τ sinh(η), t = τ cosh(η). (A2)

Given that v = z/t, η equals the rapidity y in the Hwa-Bjorken
solution. The collective velocity gradient is the same for all
comoving observers: dv/dx = 1/τ .

Current conservation for the boost-invariant solution,
∂µjµ = 0, governs the time evolution of any conserved charge
density. Since ∇ · v = 1/τ , current conservation states that all
charge densities fall inversely with time,

ρ = ρ0
τ0

τ
. (A3)

Since entropy is also conserved, s also falls inversely with τ .
Since P and ε are functions of s and the charge densities,
their time dependence is determined by the time equation
of state. For instance, if the speed of sound is constant,
P = P0(s/s0)1+c2

s and P = P0(τ0/τ )1+c2
s . The boost-invariant

nature of the solution can easily incorporate arbitrary equations
of state and can also incorporate viscosity. When viscosity is
added, entropy is no longer conserved but one can solve for s

as a function of τ using the Navier-Stokes equation [24,25].
The Hwa-Bjorken solution would seem justified in the case

of extremely high beam energy, where the source covers many
units of rapidity. In that limit, the pressure depends only slowly
on η, and since accelerations are driven by pressure gradients,
the velocities of particular regions of the matter are fixed,
thus justifying the condition v = z/t . Boost invariance also
seems natural from the perspective of having matter created
by the classical fields originating from the ultrarelativistic
charges belonging to the incoming hadrons. For an observer
at midrapidity, the currents appear as qc or −qc, where c

is the velocity of light. If the observer boosts to a new
frame, the currents will still appear to be qc and −qc as long
as the observer does not approach the speed of the colliding
hadrons. If the interactions are determined by currents, one
would expect an approximate boost invariance at midrapidity.

The shortcoming of the Hwa-Bjorken solution comes
from ignoring longitudinal acceleration. This shortcoming
could result in 10–20% changes in the interpretation of
some observables. One interesting aspect of boost-invariant
solutions is that the conservation of total energy is not enforced.

Each fluid element expands and does work PdV. However, that
work never goes into increasing the collective kinetic energy
of the fluid elements, since they all coast without acceleration.
Instead, the central cell does work on the adjacent cell, which
then does even more work on the next cell. For an observer at
rest, the work done on subsequent cells at time t increases
exponentially, in a kind of covariant procrastination, until
eventually one reaches the light cone. Again, as long as many
units of rapidity are covered, and as long as observations are
confined to midrapidity, the overall conservation of energy can
be ignored.

Recently, Csörgő et al. [26] published a new set of exact
one-dimensional analytic solutions for hydrodynamics. Unlike
the Hwa-Bjorken solutions these solutions incorporate longi-
tudinal acceleration. For the Csörgő solution the coordinate
η ≡ tan−1(z/t) no longer equals the rapidity. Instead,

y = λη, (A4)

with λ being independent of η and τ . A second simplifying
assumption made in Ref. [26] is that P depends only on τ .
Using Eq. (A4) one can express the collective velocities and
derivatives in the frame of an observer at η0 moving with
y = η0 as

∂µ = (∂τ , (1/τ )∂η),
(A5)

uµ = [cosh(λη − η0), sinh(λη − η0)].

Here, the square brackets are used to represent the two relevant
components of the four-vector. The divergence of the velocity
is then

∂ · u = λ

τ
. (A6)

Entropy conservation, dE = −PdV , can equivalently be
stated in continuous variables as ∂τ ε = −(P + ε)(∂ · u),
which gives

∂

∂τ
ε = −λ

τ
(P + ε). (A7)

The equations of motion for hydrodynamics,

(u · ∂)uµ = 1

P + ε
(∂µ − uµ(u · ∂)) P, (A8)

after insertion of the expression for uµ, and under the
assumption that P depends only on τ, become

λ

τ
[sinh2(γ η), sinh(γ η) cosh(γ η)] = ∂P/∂τ

P + ε
[1, 0]

− ∂P/∂τ

P + ε
[cosh2(γ η), sinh(γ η) cosh(γ η)], γ ≡ (λ − 1).

(A9)

Both components of the equation will be satisfied either if
λ = 1 or

∂P

∂τ
= −λ

τ
(P + ε). (A10)

Dividing this by the similar expression for the energy density,
Eq. (A7), gives the speed of sound

c2
s = dP

dε

∣∣∣∣
fixed S

= 1. (A11)
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Thus, the Csörgő solution is rather particular, as it only
applies when the speed of sound equals that of light. If

the dimensionality is d, the speed of sound must then be
c2
s = 1/d [27].
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