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I. INTRODUCTION

Studies of multiparticle production is a complicated matter
because of the large number of variables describing the
system, and thus several methods were developed to simplify
the problem. Two of them turned out particularly useful in
providing information: (i) studies of correlations between
particles by investigation of the inclusive distributions and
(ii) studies of event-by-event fluctuations. Since both of them
give, in principle, a complete description of the system,
they must be related. This relation was first discussed in
Ref. [1] and reformulated in Ref. [2]. In the present paper,
we follow the arguments of Refs. [1,2] and investigate
further the relation between these two ways of approaching
multiparticle production.

To illustrate the problem, consider the well-known formula

Fk =
∫

dq1 . . . dqkρk(q1, . . . , qk), (1)

where ρk(q1, . . . , qk) is the inclusive distribution of k particles
and Fk is the factorial moment of the k-th order,

Fk =
∑
N

P (N )N (N − 1) . . . (N − k + 1)

≡ 〈N (N − 1) . . . (N − k + 1)〉, (2)

where N is the event multiplicity and P (N ) denotes the
multiplicity distribution.

The main interest in formula (1) is that its left-hand side
characterizes event-by-event fluctuations of the multiplicity
while its right-hand side represents the measurement of particle
distribution by a k-arm spectrometer. Thus Eq. (1) connects
the two quantities which are defined in an entirely different
manner. Needless to say, confronting such apparently unrelated
quantities is often a source of a new insight into the problem.
This is precisely the interest in investigating further relations
of this type.

Another feature of Eq. (1) that makes this relation very
useful in practical applications is that it connects the factorial
moment of order k with the inclusive density of the same
order. Thus it can be used even if one does not have a complete

*Electronic address: bialas@th.if.uj.edu.pl

knowledge of the system (which is of course practically always
the case).1

For k = 2, the extension of Eq. (1) to quantities other than
multiplicity was proposed in Ref. [3]. It was discussed and
applied by several authors (see, e.g., Refs. [4–7] and the review
in Ref. [8]). The possibility of generalization to k > 2 was
suggested in Ref. [3] and considered in Ref. [9].

The purpose of the present paper is twofold. First, we
derive an explicit formula, valid for arbitrary k, which
extends the relation (1) to fluctuations of quantities other than
multiplicity. This is obtained by introducing the generalized
factorial moments [2], defined in terms of measurements of
event-by-event fluctuations of measurable extensive quantities.
Second, we investigate the physical meaning of the generalized
factorial moments along the lines developed in Ref. [10], as
described below.

As first discussed in Ref. [10], the factorial moments have
a rather simple physical interpretation. It follows from the
observation that for any distribution of multiplicity which can
be represented as a superposition of Poisson distributions

P (N ) =
∫

dN̄W (N̄ ) e−N̄ N̄N

N !
, (3)

one has

Fk =
∑
N

(N (N − 1) . . . (N − k + 1)P (N )

=
∫

dN̄W (N̄ )N̄k. (4)

Thus the factorial moment of the actual multiplicity distribu-
tion P (N ) measures the standard moment of the underlying
distribution W (N̄ ). One can say [10] that the factorial
moment removes the statistical noise (represented by the
Poisson distribution) from the corresponding moment of the
distribution W (N̄ ). This observation is easily generalized to
local multiplicity fluctuations [10].

The present paper will show that in absence of other
constraints, the generalized factorial moments can be used
as well to remove the statistical noise from the data. This is,
of course, to be expected. The problem must be treated more

1This feature may be contrasted with the relation between Fk and
P (N ). They must be related because they both describe completely
the multiplicity distribution. However, as seen from Eq. (2), to
calculate Fk one needs to know allP (N ) (and vice versa).
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carefully, however, in the presence of an additive conservation
law. Indeed, the additive conservation law implies that the
statistical noise cannot be entirely random, and therefore the
simple argument of Ref. [10] must be modified. We consider
in some detail the effects of conservation of charge and of
transverse momentum.

The problem of removing the statistical noise from fluctua-
tions of various quantities observed in multiparticle production
is a long-standing one. The most popular method remains the
� measure, introduced in Ref. [11]. Other possibilities and
their relation to the � measure were discussed in Refs. [5–7].
They are now commonly used in data analysis [12–17].

Our treatment, using the generalized factorial moments,
goes beyond the previous studies in two points. On the
theoretical side, our method applies to correlations of any order
(until now, mostly k = 2 was discussed2). On the practical
side, including the effects of additive conservation laws makes
the control over the reliabity of the experimental results much
more solid.3

In the next section, the generalized factorial moments are
introduced and their relation to integrals of inclusive multipar-
ticle densities explained. Their physical interpretation in the
case of random noise is explained in Sec. III. Modifications due
to conservation of a discrete quantum number are discussed
in the example of charge distributions in Sec. IV. The effects
of conservation of transverse momentum are considered in
Sec. V. Discussion and conclusions are given in the last section.
Appendices A and B explain the details of the algebra.

II. GENERALIZED FACTORIAL MOMENTS

Generalizations of Eq. (1) to fluctuations of extensive
quantities other than multiplicity were found in Ref. [1] and
reformulated in Ref. [2]. Here we follow the argument used in
these two papers.

Consider a single-particle variable x = x(p), where p is the
particle momentum. Consider, furthermore, the set of extensive
quantities

Xl(q1, . . . , qN ) =
N∑

n=1

[x(qn)]l , (5)

where N is the multiplicity of the event.
We want to study fluctuations of X ≡ X1. One possible

method is to consider the moments

〈Xk〉 =
∑
N

∫
dq1 . . . dqNP (q1, . . . , qN ; N )(x1 + · · · + xN )k,

(6)

where P (q1, . . . , qN ; N ) is the probability to find an event
with N particles at momenta (q1, . . . , qN ) and where we have

2A related method of removing the statistical noise, applicable to
arbitrary k, was described in Ref. [18] and studied in Ref. [19].

3For k = 2, the effects of charge conservation were discussed in
Ref. [6]. An interesting proposal to deal with energy-momentum
conservation can be found in Ref. [20].

introduced the shorthand

xj ≡ x(qj ), (7)

which will be used henceforth. It was shown in Ref. [1] that
the moments (6) can be expressed by linear combinations of
the integrals

R(k1, . . . , ks ; s) =
∫

dq1 . . . dqsρs(q1, . . . , qs)x
k1
1 . . . xks

s . (8)

These relations are, however, fairly complicated.
To find a more elegant formulation, we observe that

when one takes x ≡ 1, one has X ≡ N , and thus the simple
relation (1) must hold. It is thus clear that one has to
find a generalization of the factorial moments (2). Such a
generalization was proposed in Ref. [2]:

Fk[x] = 〈[X − (k − 1)x̂][X − (k − 2)x̂] . . . [X − x̂]X〉, (9)

where x̂ is the operator, acting on a product [Xl1 . . . Xlm ] as
follows4

x̂
[
Xl1 . . . Xlm

] = 1

m

m∑
s=1

[
Xl1 . . . Xls+1 . . . Xlm

]
, (10)

where the indices [l1, . . . , lm] need not be different. It follows
from Eq. (10) that, in particular,

x̂Xl = Xl+1, x̂[Xl]
m = Xl+1[Xl]

m−1. (11)

From Eq. (10) one can also deduce how x̂ acts on a product
xj1 . . . xjk

. The result is

x̂
[
xj1 . . . xjk

] = (
xj1 . . . xjk

)1

k

k∑
s=1

xjs
, (12)

where, again, the indices j1, . . . , jk need not be different.
Using Eqs. (9) and (10), we obtain for k = 1, 2, 3,

F1[X] = 〈X〉, F2[X] = 〈X2〉 − 〈x̂X〉 = 〈X2〉 − 〈X2〉,
F3[X] = 〈X3 − 2x̂X2 − Xx̂X + 2[x̂]2X〉 (13)

= 〈X3 − 3XX2 + 2X3〉.
We shall now prove that

[X − (k − 1)x̂][X − (k − 2)x̂] . . . [X − x̂]X

=
N∑

i1=1

. . .

N∑
ik=1

xi1 . . . xik , (14)

where all indices are different from each other.
The proof goes by induction. For k = 2, we have X2 −

X2 = ∑N
i=1

∑N
j=1 xixj with i �= j . Thus Eq. (14) is satisfied.

Suppose now that it is valid for a given k. Multiplying both
sides of Eq. (14) by (X − kx̂), we thus have

[X − kx̂][X − (k − 1)x̂] . . . [X − x̂]X

= (X − kx̂)
N∑

i1=1

. . .

N∑
ik=1

x11 . . . xik (15)

4The definition of the operator x̂ given in Ref. [2] was incomplete.
I would like to thank Andrzej Kotanski for pointing out the error.
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But

X

N∑
i1=1

. . .

N∑
ik=1

x11 . . . xik =
N∑

j=1

xj

N∑
i1=1

. . .

N∑
ik=1

x11 . . . xik

=
k∑

s=1

N∑
i1=1

. . .

N∑
ik=1

x11 . . .
[
xis

]2
. . . xik

+
N∑

s=k+1

N∑
i1=1

. . .

N∑
ik=1

x11 . . . xik xis , (16)

where in the first term in the right-hand side, one of the
variables from X is identical to one of xi1 . . . xik , whereas
in the second term, all variables differ from each other. Noting
that, as seen from Eq. (12), the first term is identical to

kx̂


 N∑

i1=1

. . .

N∑
ik=1

x11 . . . xik


 , (17)

one sees that it cancels in Eq. (15), and thus right-hand side
of Eq. (15) equals the second term in the right-hand side of
Eq. (16). But this term is just what is needed to complete the
proof.

It follows from Eq. (14) that

Fk[X] ≡
∞∑

N=0

∫
dq1 . . . dqNP (q1, . . . , qN ; N )

× [X − (k − 1)x̂] . . . [X − x̂]X

=
∫

ρk(q1, . . . , qk)x(q1) . . . x(qk)dq1 . . . dqk, (18)

where ρk(q1, . . . , qk) is the k-particle inclusive density. This
follows almost directly from the definition of inclusive density

ρk(q1, . . . , qk) =
∑
N

N (N − 1) . . . (N − k + 1)

×
∫

dqk+1 . . . dqNP (q1, . . . , qN ; N ) (19)

if one notices that the number of terms in the right-hand side
of Eq. (14) equals N (N − 1) . . . (N − k + 1).

Equation (18) represents a generalization of Eq. (1), which
is obtained from Eq. (18) by putting x(q) ≡ 1. It has the
same two attractive features: it connects the fluctuations of
the extensive variables Xl with the integral of the inclusive
density and it involves only moments of finite order.

III. PHYSICAL INTERPRETATION OF THE
GENERALIZED FACTORIAL MOMENTS

To discuss the physical interpretation of the generalized
factorial moments, we again consider the momentum space
split into an s bin and the rest. To determine the generalized
factorial moment in the s bin, we need the distribution of the
number of particles and of the variable x in it. Following the
lines of Ref. [10], we demand that in each bin, particles are
distributed as randomly as possible. In the absence of any

constraints, this implies that in the s bin, the distribution is

ps(q1, . . . , qn, n; n̄, η)dq1 . . . dqn = e−n̄ [n̄]n

n!

n∏
l=1

[g(ql ; η) dql],

(20)

where n̄ is the average multiplicity in the s bin and g(q; η)
is the momentum distribution of one particle on this bin,
with η representing a collection of parameters on which this
distribution may depend.

To obtain the actual distribution, we have to weight Eq. (20)
by the underlying probability distribution Ws(n̄, η):

Ps[q1, . . . , qn, n] =
∫

dn̄dηmWs(n̄, η)

×ps(q1, . . . , qn, n; n̄, η) . (21)

From Eq. (21) we deduce the inclusive particle density in
the s bin as

ρk(q1, . . . qk) =
∑
ns

ns(ns − 1) . . . (ns − k + 1)

×
∫

dqk+1 . . . dqnPs(q1, . . . , qn; n) . (22)

Introducing Eq. (22) into Eq. (18) and using Eq. (20), we
obtain for the generalized factorial moment in the s bin

Fk[X] =
∑

n

n(n − 1) . . . (n − k + 1)

×
∫

dq1 . . . dqnPs(q1, . . . , qn; n)x(q1) . . . x(qk)

=
∫

dn̄dηWs(n̄, η)[n̄x̄]k ≡ 〈[n̄x̄]k〉 = 〈X̄k〉, (23)

where

x̄ = x̄(η) =
∫

g(q; η)x(q) dq (24)

is the average of x(q) at fixed η, and X̄ is the average of X at
fixed n̄ and η.

Equation (23) is the generalization we were seeking. It
shows the physical interpretation of the generalized factorial
moments: they remove the statistical noise from the moments
of n̄x̄ = X̄ of the underlying distribution Ws . For x ≡ 1, we
of course recover the well-known result [10].

IV. FLUCTUATIONS OF CHARGE

As already explained in the introduction, the argument
present in the previous section fails when the variable x

satisfies an additive conservation law. In this section, we
discuss fluctuations of charge. The discussion applies to any
discrete, additive quantum number.

We again select an s bin from the momentum space and
consider the distribution of particles inside and outside of this
bin.

The first problem is to define the distribution describing
the statistical noise. Following the idea of Ref. [10], we take
the normalized product of Poisson distributions (expressing the
independent particle emission and thus introducing no
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correlations). This is supplemented by the Kronecker δ symbol
to satisfy the conservation law:

ps = 1

AQ

e−n̂+ [n̂+]n
+

n+!
e−n̂− [n̂−]n

−

n−!
e−N̂∗+ [N̂∗+]N

∗+

N∗+!
e−N̂∗−

× [N̂∗−]N
∗−

N∗−!
δn++N∗+−n−−N∗−−Q0 , (25)

where n+, n− denote the number of produced charges in the
s bin, and N∗+, N∗− those outside of the s bin. Q0 is the net
charge in the initial state. We take Q0 � 0. The normalization
factor AQ is given by (see Appendix A)

AQ = e−N̂ω−Q0IQ0 (Ñ ), (26)

where IQ0 denotes the Bessel function,

N̂ = n̂+ + N̂∗+ + n̂− + N̂∗− ≡ N̂+ + N̂−, (27)

and
Ñ = 2

√
N̂+N̂−; ω = 2N̂−

Ñ
= Ñ

2N̂+ . (28)

The observed distribution of particles is thus

P (n+, n−, N∗+, N∗−; Q0)

=
∫

dn̂+dn̂−dN̂∗+dN̂∗−W (n̂+, n̂−; N̂∗+, N̂∗−)

×ps(n
+, n−; N∗+, N∗−; Q0; n̂+, n̂−; N̂∗+, N̂∗−), (29)

where W is the “dynamical” distribution, free of the statistical
noise.5

It is important to observe that, contrary to the naive expec-
tation, the parameters n̂+, n̂−; N̂∗+, N̂∗− do not represent the
average values of n+, n−; N∗+, N∗−, respectively. The explicit
formulas for these average values are given in Appendix A.
In particular, the average values of the number of produced
positive and negative particles in the the s bin are given by

〈n̄±〉 =
〈
n̂±ω±1 IQ0∓1(Ñ)

IQ0 (Ñ)

〉
=

〈
n̂±

N̂±
Ñ

2

IQ0∓1(Ñ)

IQ0 (Ñ)

〉
, (30)

where we have denoted by ¯ the average at fixed
n̂+, n̂−; N̂∗+, N̂∗−, and by 〈. . .〉 the average over
n̂+, n̂−; N̂∗+, N̂∗− (with the probability distribution W ).

The explicit formulas for the generalized factorial moments
of the charge F−

k and the (standard) factorial moments of the
multiplicity F+

k in the s bin are derived in Appendix A. They
read

F±
k =

〈(
Ñ

2

)k k∑
m=0

k!

(k − m)!m!

[
n̂+

N̂+

]k−m

×
[
± n̂−

N̂−

]m
IQ0+2m−k(Ñ)

IQ0 (Ñ)

〉
. (31)

5The selection of statistical noise in the form of Eq. (25) is
not unique. Another natural possibility is to consider independent
emission of particle pairs (supplemented by independent emission of
Q0 positive particles). The two methods differ mostly by the treatment
of the initial charge Q0. Without further information about dynamics
it is difficult to decide which of them describes better the physics of
the problem.

Equations (30) and (31) simplify substantially in the
interesting limit of a very large number of produced particles,
N̄ ≈ Ñ → ∞. In this limit, using the asymptotic expansion
of the two Bessel functions, one obtains up to the terms of
order N̄−1

F±
k =

〈
[n̄+ ± n̄−]k − k(k − 1)

2N̄
[n̄+ ± n̄−]k−2[n̄+ ∓ n̄−]2

〉
.

(32)

The first term corresponds to the standard interpreta-
tion of the generalized factorial moments, as expressed by
Eq. (23). One sees from Eq. (32) that the correction to
this result (induced by the conservation law) vanishes, at
fixed n̄±, with the inverse power of the total multiplicity of
produced particles. In this case, the correction is expected to
be small at high energies (particularly for the central heavy ion
collisions).6 We thus conclude that the generalized factorial
moments can indeed provide a useful tool for eliminating
the statistical noise from the event-by-event fluctuations of
multiplicity (F+

k ) and charge (F−
k ) even in the presence of the

conservation law.

V. FLUCTUATIONS IN TRANSVERSE MOMENTUM

In this section, we discuss fluctuations of the transverse
momentum, as an example a continuous variable subject to an
additive conservation law.

Selecting one bin in rapidity (s bin) and dividing the
available momentum phase space into this bin and the rest,
we write the transverse momentum distribution in the form

P [q1, . . . , qn, n; q∗
1 , . . . , q∗

N∗ , N
∗; q0]

=
∫

dn̂dq̂ dD dN̂∗dq̂∗dD∗W (n̂, q̂, d, ; N̂∗, q̂∗,D∗)

× e−n̂ [n̂]n

n!

n∏
l=1

[
e−(ql−q̂)2/2D2

2πD2

]

× e−N̂∗ [N̂∗]N
∗

N∗!

N∗∏
l=1

[
e−(q∗

l −q̂∗)2/2(D∗)2

2π (D∗)2

]

× 1

A⊥
δ(q1 + · · · + qn + q∗

1 + · · · + q∗
N∗ − q0). (33)

where q denotes the two-dimensional transverse momentum
vector and q0 is the total transverse momentum of the
considered phase-space region. The uncorrelated statistical
noise in the form of a Poisson distribution for multiplicity
multiplied by a Gaussian distribution of transverse momenta
is supplemented by the δ function ensuring the transverse
momentum conservation7 and by the normalization factor A⊥.

6For F −
k the relative correction may be large if n̄+ + n̄− � n̄+ −

n̄−.
7This is a commonly used form of the statistical noise (see, e.g.,

Refs. [20,21] ). Note that, since W (n̂, q̂, d, ; N̂∗, q̂∗, D∗) is a general
(positive) function, the assumed Gaussian forms in Eq. (33) do not
restrict seriously the observed distribution of particles (as both the
average values, q̂, q̂∗ and dispersions, D,D∗ of the Gaussians can
fluctuate according to the distribution W ).
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It is also natural to take

n̂q̂ + N̂∗q̂∗ = q0. (34)

Replacing the δ function in Eq. (33) by its Fourier transform,
we obtain for the inclusive distribution in the s bin

ρk(q1, . . . qk) =
∫

dN̂dq̂dD dN̂∗dq̂∗ dD∗W

× (n̂, q̂, D; N̂∗, q̂∗,D∗)eN̂∗[eiq̂∗y−D∗2y2/2−1]

× 1

(2π )2A⊥

∫
dye−iyq0

∑
n

n(n − 1) . . .

× (n − k + 1)e−n̂ [n̂]n

n!

∫
dq(k+1) . . . dqn

×
n∏

l=1

[
1

2πD2
eiqly e−(ql−q̂)2/2D2

]
. (35)

Using Eq. (18), we thus have for the generalized factorial
moment in the s bin

Fk[X; q0] =
∫

dn̂ dq̂dDdN̂∗dq̂∗dD∗W

× (n̂, q̂, D; N̂∗, q̂∗,D∗)
Sk⊥
S0⊥

≡
〈
Sk⊥
S0⊥

〉
, (36)

with

Sk⊥ = 1

(2π )2

∫
dye−iyq0 [n̂φ(y)]k en̂[eiq̂y−D2y2/2−1]

× eN̂∗[eiq̂∗y−D∗2y2/2−1] (37)

(note that A⊥ = S0⊥), and

φ(y) = 1

2πD2

∫
d2qe−(q−q̂)2/2D2

eiqyx(q); φ(0) = x̄, (38)

where x̄ is the average value of x at fixed q̂ and D2. The
function φ(y) depends obviously on the choice of the variable
x(q). Generally, if x(q) is a polynomial in q of order l, then
φ(y) is a polynomial in y of the same order8 multiplied by
eiq̂y−y2D2/2.

If the number of particles is large, the integral over d2y can
be evaluated by the saddle point method. We write

Sk⊥ = 1

(2π )2

∫
d2y [n̂φ(y)]k e�(y), (39)

with

�(y) = −iq0y + n̂[eiq̂y−D2y2/2 − 1]

+ N̂∗[eiq̂∗y−D∗2y2/2 − 1]. (40)

The saddle point equation � ′ = 0 gives y0 ∼ q0 − n̂q̂ −
(N̂∗q̂∗), and thus Eq. (34) implies y0 = 0. Furthermore,
� ′′(0) = −N̂ (D̃2 + q̃2) ≡ −N̂	2, where N̂ = n̂ + N̂∗ and

D̃2 = n̂D2 + N̂∗D∗2

N̂
; q̃2 = n̂q̂2 + N̂∗q̂∗2

N̂
. (41)

8E.g., for x(q) ≡ q we have φ(y) = (q̂ + iyD2)eiq̂y−y2D2/2, for
x(q) = q2 we obtain φ(y) = [2D2 + (q̂ + iyD2)2]eiq̂y−y2D2/2.

Consequently, we obtain

Sk⊥
S0⊥

≈ N̂	2

2π

∫
d2y[n̂φ(y)]ke−y2N̂	2/2. (42)

To evaluate this integral in the limit of large N̂ , one
can expand φ(y) in powers of y and observe that since the
coefficient in the exponent increases with increasing N̂ , the
dominant term at large N̂ is that with the lowest power of
y2 under the integral (the terms with odd powers of y do not
contribute). A detailed discussion is given in Appendix B. Here
we only summarize the results.

If φ(0) = x̄ �= 0, one obtains

Fk[X] = 〈[n̄q̄]k〉, (43)

i.e., we recover the formula (23). Thus, if the average value of
x(q) in the s bin does not vanish, the standard interpretation of
the generalized factorial moments remains valid, even in the
presence of the conservation law. The corrections to this result
vanish as 1/〈N〉. They are given in Eq. (B5) of Appendix B.

This is not the case if x̄ = 0 and qx �= 0. For k even, k = 2p,
one obtains

F2p[X] = (−1)pp!

〈
[n̄qx]p

(
2n̄qx

N̂	2

)p〉
, (44)

which shows that now the factorial moments are related to the
average value qx rather than to x̄. For a fixed n̄ and large N̄

these moments tend to zero. For a finite ratio n̄/N̄ , however,
they may be large. The corrections to Eq. (44) and the formula
for k odd are given in Appendix B .

VI. DISCUSSION

We have reconsidered relations between the event-by-
event fluctuations of extensive multiparticle variables and the
integrals of the inclusive distributions [1]. Our main result is
the formula (18) which expresses the integral of the k-particle
inclusive distribution in terms of the generalized factorial
moment of the k-th order.

A discussion of the physical meaning of the generalized
factorial moments shows that they remove the random uncor-
related statistical noise from the data, a result already known
from previous investigations [2,10]. When an additive con-
servation law is at work, however, the statistical noise cannot
be uncorrelated and, consequently, its removal can at best
be approximate. The exact formulas were derived for charge
and transverse momentum conservation. The corrections were
evaluated in the limit of a very large total number of produced
particles, relevant for collisions at high incident energy.

In short, the results presented in this paper formulate a
systematic approach to investigation of fluctuations of exten-
sive variables. They seem to be particularly useful for studies
aiming to uncover the local structure of the multiparticle
system. To take just one example, interpretation of the data
on transverse momenta (or energies) in small rapidity bins
will be much more transparent if presented in terms of the
generalized factorial moments.

It was shown in Ref. [1] that the relation between fluc-
tuations and correlations can be extended to other extensive
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variables. This, however, goes beyond the scope of the present
investigation.
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APPENDIX A

Replacing the Kronecker δ symbol by its integral represen-
tation, one obtains

P (n+, n−; N∗+, N∗−; Q0) = 〈wQ(n+, n−; N∗+, N∗−; Q0)〉
(A1)

where

wQ(n+, n−; N∗+, N∗−; Q0)

= 1

AQ

1

2π

∫ 2π

0
df e−iQ0f e−n̂+ [n̂+eif ]n

+

n+!
e−n̂− [n̂−e−if ]n

−

n−!

× e−N̂∗+ [N̂∗+eif ]N
∗+

N∗+!
e−N̂∗− [N̂∗−e−if ]N

∗−

N∗−!
, (A2)

and AQ is the normalization factor.
Thus the generating function for the distribution wQ is

�Q(z+, z−, Z+, Z−) ≡
∑

n±,N±∗
wQ(n+, n−; N∗+, N∗−; Q0)

× (z+)n
+
(z−)n

−
(Z+)N

+∗
(Z−)N

−∗

= 1

2π

∫ 2π

0
df e−iQ0f en̂+(z+eif −1)

× en̂−(z−e−if −1)eN̂+∗(Z+eif −1)

× eN̂−∗(Z−e−if −1). (A3)

From this it is not difficult to derive, by the standard methods,
the average multiplicities. One obtains

n̄± = 1

2πAQ

∫ 2π

0
df e−iQ0f eN̂+(eif −1)eN̂−(e−if −1)n̂±e±if

= e−N̂

2πiAQ

∮
dz

z
eÑ (z+1/z)/2(ωz)−Q0 n̂±(ωz)±1

= e−N̂

AQ

n̂±1ω±1−Q0

∞∑
j=−∞

Ij (Ñ )
1

2πi

∮
dz

z
zj z±1−Q0

= n̂±ω±1 IQ0∓1(Ñ)

IQ0 (Ñ)
, (A4)

where ω and Ñ are defined in Eq. (28).
Similarly, one obtains

N̄± = N̂±ω±1 IQ0∓1(Ñ )

IQ0 (Ñ )
. (A5)

It follows that

n̂±ω±1 = Ñ

2

n̂±

N̂± = Ñ

2

n̄±

N̄± . (A6)

The inclusive distribution in the s bin is

ρk(k+, k−) =
〈

1

2πAQ

∫ 2π

0
df e−iQ0f HQ(k+, k−; f )

〉
, (A7)

where

HQ(k+, k−, f ) = eN̂∗+(eif −1)eN̂∗−(e−if −1)

×
∑
n+,n−

V (n+, n−; k+, k−)e−n̂+ [n̂+eif ]n
+

n+!

× e−n̂− [n̂−e−if ]n
−

n−!
(A8)

and

V (n+, n−; k+, k−) = δk−k+−k−
k!

k+!k−!

n+!

(n+ − k+)!

n−!

(n− − k−)!

= 1

2π

∫ 2π

0
dh e−ihkk!

n+!

k+!(n+ − k+)!

× eihk+ n−!

k−!(n− − k−)!
eihk−

(A9)

are the number of ways one can select k+ out of n+ positive
and k− out of n− negative particles in a given order.

To calculate the generalized factorial moment F−
k in the

s bin

F−
k =

∑
k++k−=k

(−1)k
−
ρk(k+, k−), (A10)

we observe that∑
k+

∑
k−

(−1)k
−
V (n+, n−; k+, k−)

= k!

2π

∫ 2π

0
dhe−ihk[1 + eih]n

+
[1 − eih]n

−
, (A11)

and thus∑
k+,k−

(−1)k
−
HQ(k+, k−, f ) = eN̂+(eif −1)eN̂−(e−if −1) k!

2π

×
∫ 2π

0
dhe−ihke[n̂+eif −n̂−e−if ]eih

= eN̂+(eif −1)eN̂−(e−if −1)

× [n̂+eif − n̂−e−if ]k. (A12)

Now integration over df gives

1

2π

∫ 2π

0
df e−iQ0f

∑
k++k−=k

HQ(k+, k−; f )

= 1

2π

∫ 2π

0
df e−iQ0f eN̂+(eif −1)eN̂−(e−if −1)

× [n̂+eif − n̂−e−if ]k

= e−N̂

2πi

∮
dz

z
eÑ (z+1/z)/2(ωz)−Q0 [n̂+ωz − n̂−/(ωz)]k
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= e−N̂ω−Q0

k∑
m=0

k!

(k − m)!m!
[−n̂−/ω]m[n̂+ω]k−m

×
∞∑

j=−∞
Ij (Ñ)

1

2πi

∮
dz

z
zj zk−2m−Q0

= e−N̂ω−Q0

k∑
m=0

k!

(k − m)!m!
[−n̂−/ω]m

× [ωn̂+]k−mIQ0+2m−k(Ñ ), (A13)

where N̂±, Ñ and ω are defined in Eqs. (27) and (28).
The normalization factor AQ is obtained from Eq. (A13) by

putting k = 0. Inserting Eqs. (A13) and (A6) into Eqs. (A7)
and (A10), we obtain Eq. (31).

We also note that the standard factorial moment for the
multiplicity can be obtained from Eq. (A13) simply by
replacing [−n̂−]m by [n̂−]m.

APPENDIX B

Here we evaluate the generalized factorial moments for
variables related to transverse momentum, given by Eq. (42),
in the limit of a very large total number of produced particles
(but without any restriction on the ratio n̂/N̂ , i.e., on the size
of the s bin).

Developing the function φ(y) around y = 0, we have

φ(y) =
∞∑

m=0

φm

(iy)m

m!
, (B1)

where

φm = 1

2πD2

∫
d2qx(q)qme−q2/2D2 = x(q)qm. (B2)

This implies that [φ(y)]k can also be represented by a series

[φ(y)]k =
∞∑

m=0

φ(k)
m ym, (B3)

where the coefficients φ(k)
m can be explicitly evaluated when

necessary.

Introducing this into Eq. (42), we have

Sk⊥
S0⊥

≈ n̂k

∞∑
m=0

φ(k)
m 〈y2m〉/m! = n̂k

∞∑
p=0

p!φ(k)
2p

(
2

N̂	2

)p

.

(B4)

One sees that in the limit of very large N̂ , the first nonvanishing
term dominates. If φ0 = x̄ �= 0, we have

Fk⊥[x(q)] ≈ 〈
n̂kφ

(k)
0

〉 = 〈[n̂x̄]k〉, (B5)

and thus we recover the original formula (23). We conclude
that in this case the standard interpretation of the generalized
factorial moments remains valid even in the presence of the
conservation law.

If x̄ = 0, and φ1 = qx �= 0, we have

[φ(y)]k = [iyφ1]k
[

1 + iy
kφ2

2φ1
+ · · ·

]

= [iyφ1]k + (iy)k+1φk−1
1 φ2/2 + · · · . (B6)

For even k, when k = 2p, the dominant term is

Sk⊥
S0⊥

≈ (−1)pn̂2p[φ1]2p N̂	2

2π

∫
d2y(y2)pe−y2N̂	2/2

= (−1)p[n̂qx]pp!

(
2n̂qx

N̂	2

)p

, (B7)

where we have used the relation (B2).
For odd k, when k = 2p − 1, we obtain

Sk⊥
S0⊥

≈ (−1)p
1

2
n̂2p−1[qx]2p−2q2x

N̂	2

2π

∫
d2y(y2)pe−y2N̂	2/2

= (−1)p
1

2
n̂p−1[qx]p−2q2xp!

(
2n̂qx

N̂	2

)p

. (B8)

where again Eq. (B2) was used. Note that these moments are
proportional to q2x and thus vanish if the variable x(q) is odd
with respect to change (q ↔ −q).

We conclude that the standard interpretation of the factorial
moments, as expressed in Eq. (23), holds only when the
average value x does not vanish. When x = 0, the factorial
moments measure the average value qx rather than x.

[1] A. Bialas and V. Koch, Phys. Lett. B456, 1 (1999).
[2] A. Bialas, Acta Phys. Pol. B 35, 683 (2004); 37, 3679(E) (2006).
[3] S. Voloshin and D. Seibert, Phys. Lett. B249, 321 (1990).
[4] D. Seibert and S. Voloshin, Phys. Rev. D 43, 119 (1991);

D. Seibert, Phys. Rev. C 44, 1223 (1991).
[5] S. A. Voloshin, V. Koch, and H. G. Ritter, Phys. Rev. C 60,

024901 (1999).
[6] C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66, 044904

(2002); Nucl. Phys. A715, 661 (2003).
[7] S. Gavin, Phys. Rev. Lett. 92, 162301 (2004); M. Abdel-Aziz

and S. Gavin, Nucl. Phys. A774, 623 (2006).
[8] S. Jeon and V. Koch, in Quark-Gluon Plasma 3 (World Scientific,

Singapore, 2003), p. 430.
[9] S. A. Voloshin, nucl-th/0206052.

[10] A. Bialas and R. Peschanski, Nucl. Phys. B273, 703 (1986);
B308, 857 (1988).

[11] M. Gazdzicki and S. Mrowczynski, Z. Phys. C 54, 127
(1992).

[12] H. Appelshauser et al. (NA49 Collaboration), Phys. Lett. B459,
679 (1999).

[13] K. Adkox et al. (PHENIX Collaboration), Phys. Rev. C 66,
024901 (2002).

[14] D. Adamova et al. (CERES Collaboration), Nucl. Phys. A727,
97 (2003).

[15] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 044902
(2005).

[16] M. Atayan et al. (NA222/EHs Collaboration), Phys. Rev. D 71,
012002 (2005).

024904-7



A. BIALAS PHYSICAL REVIEW C 75, 024904 (2007)

[17] W. Broniowski, B. Hiller, W. Florkowski, and P. Bozek,
Phys. Lett. B635, 290 (2006); W. Florkowski, W. Broniowski,
B. Hiller, and P. Bozek, presented at the Thirty-
Sixth International Symposium on Multiparticle Dynamics,
Parity, Brazil, 2–8 September, 2006 (unpublished), nucl-th/
0610035.

[18] Fu Jinghua and Liu Lianshou, Phys. Rev. C 68, 064904 (2003).
[19] Fu Jinghua, Gao Yuanning, and Cheng Jianping, Phys. Rev. C

72, 017901 (2005).
[20] G. Odyniec, Acta Phys. Pol. B 30, 385 (1999).
[21] N. Borghini, P. M. Dinh and J.-Y. Ollitrault, Phys. Rev. C 62,

034902 (2000).

024904-8


