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Extended optical model analyses of elastic scattering and fusion cross sections for the 6Li+208Pb
system at near-Coulomb-barrier energies using a folding potential
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Based on the extended optical model approach in which the polarization potential is decomposed into direct
reaction (DR) and fusion parts, simultaneous χ2 analyses are performed for elastic scattering and fusion cross
section data for the 6Li+208Pb system at near-Coulomb-barrier energies. A folding potential is used as the bare
potential. It is found that the real part of the resultant DR part of the polarization potential is repulsive, which
is consistent with the results from the continuum discretized coupled channel (CDCC) calculations and the
normalization factors needed for the folding potentials. Further, it is found that both DR and fusion parts of the
polarization potential satisfy separately the dispersion relation.
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I. INTRODUCTION

Much attention has been focused on two well-known
problems originally revealed in the optical model analyses
of the elastic scattering data for loosely bound projectiles such
as 6Li and 9Be when a folding potential is used for the real
part of the optical potential [1,2]. First, as demonstrated by
Satchler and Love [1], it is needed to reduce the magnitude
of the folding potential by a factor N = 0.5 ∼ 0.6 to fit the
data; problem (1). Secondly, the threshold anomaly [3,4] does
not appear in the resultant normalization constant N fixed
from the fit to the data at near-Coulomb-barrier energies [2];
problem (2).

It is natural to expect that these two problems may
originate from the strong breakup character of the loosely
bound projectiles; in fact, studies have been made of the
effects of the breakup on the elastic scattering, based on
the coupled discretized continuum channel (CDCC) method
[5,6]. These studies were very successful in reproducing
the elastic scattering data without introducing an arbitrary
normalization factor and further in understanding the physical
origin of the factor N = 0.5 ∼ 0.6 needed when only one
channel optical model calculations were made. The authors
of Refs. [5,6] projected their coupled channel equations to a
single elastic channel equation and deduced the polarization
potential arising from the coupling with the breakup channels.
The resultant real part of the polarization potential was then
found to be repulsive at the surface region around the strong
absorption radius, Rsa. This means that the reduction of the
folding potential by a factor of N = 0.5 ∼ 0.6 needed to be
introduced when only one channel optical model calculation
is made is to effectively take into account the effects of the
coupling with breakup channels. The CDCC studies, however,
have not been able to solve problem (2) mentioned above, i.e.,

the fact that the normalization factor N does not show the
threshold anomaly.

To solve problem (2), it was suggested some time ago [7]
that the threshold anomaly is due to fusion: In the case where
fusion is the dominant part of all the reaction processes,
threshold anomaly naturally manifests itself in the optical
potential extracted from the fit to elastic scattering data.
However, in case where breakup or direct reactions (DR)
dominate, the energy dependence of the resultant optical
potential is governed by DR and thus should be quite smooth
[3]. In order to see the threshold anomaly in the latter case,
it is thus necessary to separate the polarization potential into
fusion and DR (breakup) parts. The threshold anomaly will
then be observed in the fusion part of the potential.

In order to test this idea, we have thus carried out [8,9]
simultaneous χ2 analyses of elastic scattering and fusion
cross section data for the 6He+209Bi [10–12], 6Li+208Pb
[2,13,14], and 9Be+209Bi [15,16] systems at near-Coulomb-
barrier energies in the framework of the extended optical model
[17–19] that introduces two types of complex polarization
potentials, the DR and fusion potentials. In such analyses, in
addition to the elastic scattering cross sections dσ

exp
E /d�, the

measured fusion cross section σ
exp
F , was taken into account

together with the total experimental DR cross section, σ
exp
D , if

available, or the semi-experimental DR cross section, σ semi-exp
D ,

if σ
exp
D was not available.
The DR and fusion potentials thus determined revealed

some characteristic features: First of all, both potentials satisfy
separately the dispersion relation [3]. Secondly, the fusion
potential is found to exhibit the threshold anomaly, as was
observed for tightly bound projectiles [20–22], but the DR
potential does not show a rapid energy variation, i.e., the
threshold anomaly. Thirdly, at the strong absorption radius, the
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magnitude of the fusion potential was found to be much smaller
than that of the DR potential. As a consequence, the resulting
total polarization potential dominated by the DR potential
becomes rather smooth as a function of the incident energy.
This has explained the reason why the threshold anomaly is not
seen in the optical potentials determined for systems involving
loosely bound projectiles such as 6He, 6Li, and 9Be [2,10,15].

In the extended optical model analyses made so far [8,9]
use was made of a rather shallow real potential for the bare
potential. The aim of the present study is to carry out for the
first time an extended optical model analysis of the elastic
scattering and fusion cross section data for the 6Li+208Pb
system at near-Coulomb-barrier energies by utilizing a folding
potential as the bare potential. We shall show that the resulting
real part of the DR potential becomes repulsive and that the
threshold anomaly appears in the fusion potential, describing
the experimental data of the fusion and elastic scattering cross
sections without the two problems (1) and (2) discussed in the
beginning of the introduction.

In Sec. II, we first generate σ
semi-exp
D from the elastic

scattering and fusion cross section data by following the
method proposed in Ref. [9]. χ2 analyses are then carried
out in Sec. III, and the results are presented and discussed in
Sec. II. Section V concludes the paper.

II. EXTRACTING SEMI-EXPERIMENTAL
DR CROSS SECTION

For the purpose of determining the fusion and DR potentials
separately, it is desirable to have data for the DR cross section
in addition to the fusion and elastic scattering cross sections.
For the 6Li+208Pb system, however, no reliable data for the
DR cross section are available, although considerable efforts
have been devoted to measure the breakup and incomplete
fusion cross sections [23–27]. We thus generate the so-called
semi-experimental DR cross section σ

semi-exp
D , following the

method proposed in Ref. [9].
Our method to generate σ

semi-exp
D resorts to the empirical

fact [11,28–31] that the total reaction cross section calculated
from the optical model fit to the available elastic scattering
cross section data, dσ

exp
E /d�, usually agrees well with the

experimental σR , in spite of the well known ambiguities in the
optical potential. Let us call σR generated by the optical model
the semi-experimental reaction cross section σ

semi-exp
R . Then,

σ
semi-exp
D is generated by

σ
semi-exp
D = σ

semi-exp
R − σ

exp
F . (1)

This approach seems to work even for loosely bound projec-
tiles, as demonstrated by Kolata et al. [11] for the 6He+209Bi
system. We take σ

exp
F from Ref. [13], but since the measured

cross sections there somewhat fluctuates as a function of
energy, we smoothed out their experimental cross sections
using the Wong’s formula [32].

Following Ref. [9], we first carry out rather simple optical
model χ2 analyses of elastic scattering data solely for the
purpose of deducing σ

semi-exp
R . For these preliminary analyses,

we assume the optical potential to be a sum of V0(r) + iWI (r)
and U1(r, E), where V0(r) is the real, energy independent bare

TABLE I. Semi-experimental total reaction and DR cross sections
for the 6Li+208Pb system.

Elab Ec.m. σ
exp
F σ

semi-exp
D σ

semi-exp
R σ

semi-exp
R [2]

(MeV) (MeV) (mb) (mb) (mb) (mb)

29 28.2 22 205 227 228
31 30.1 120 306 426 431
33 32.1 234 430 664 666
35 34.0 335 545 880 897
39 37.9 507 778 1285 1303

folding potential to be discussed later in Sec. III B, iWI (r)
is an energy independent short range imaginary potential to
be discussed in Sec. III A, and U1(r, E) is a Woods-Saxon
type complex potential with common geometrical parameters
for both real and imaginary parts. The elastic scattering data
are then fitted with a fixed radius parameter r1 for U1(r, E),
treating, however, three other parameters, the real and the
imaginary strengths V1 and W1 and the diffuseness parameter
a1, as adjustable. The χ2 fitting is done for three choices of the
radius parameter; r1 = 1.3, 1.4, and 1.5 fm. These different
choices of the r1-value are made in order to examine the
dependence of the resulting σ

semi-exp
R on the value of r1.

As noted in Ref. [9], the values of σ
semi-exp
R thus extracted

for three different r1-values agree with the average value
of σ

semi-exp
R within 3%, implying that σ

semi-exp
R is determined

without much ambiguity. We then identified the average
values as the final values of σ

semi-exp
R . Using thus determined

σ
semi-exp
R , we generated σ

semi-exp
D by employing Eq. (1). The

resultant values of σ
semi-exp
R and σ

semi-exp
D are presented in

Table I, together with σ
exp
F . In Table I, given are also σ

semi-exp
R

determined in Ref. [2]. The two sets of σ
semi-exp
R determined

independently agree with each other. Note that in this study
we use the same normalization factors for the experimental
elastic scattering cross sections as in Ref. [2]. This was not
the case in Ref. [9], and thus the extracted σ

semi-exp
D in Table I

and σ
semi-exp
D in Ref. [9] are slightly different. In Sec. III E, a

comparison will be made of σ
semi-exp
D thus extracted with the

existing data for breakup and incomplete fusion, and also the
final calculated DR cross section.

III. SIMULTANEOUS χ 2 ANALYSES

Simultaneous χ2 analyses were then performed for the data
sets of (dσ

exp
E /d�, σ

semi-exp
D , σ

exp
F ) by taking dσ

exp
E /d�, and

σ
exp
F from the literature [2,13]. In calculating the χ2 value,

we simply assumed 1% errors for all the experimental data.
The 1% error is about the average of errors in the measured
elastic scattering cross sections, but much smaller than the
errors in the DR (∼5%) and fusion (∼10%) cross sections.
The choice of the 1% error for DR and fusion cross sections is
thus equivalent to increasing the weight for the DR and fusion
cross sections in evaluating the χ2-values by factors of 25 and
100, respectively. Such a choice of errors may be reasonable,
since we have only one datum point for each of these cross
sections, while there are more than 50 data points for the elastic
scattering cross sections.
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A. Necessary formulas

The optical potential U (r, E) we use in the χ2 analyses has
the following form;

U (r; E) = VC(r) − [V0(r) + UF (r; E) + UD(r; E)], (2)

where VC(r) is the usual Coulomb potential with rC =
1.25 fm and V0(r) is the bare nuclear potential, for which
use is made of the double folding potential to be described in
more detail in the next subsection. UF (r; E) and UD(r; E) are,
respectively, fusion and DR parts of the so-called polarization
potential [33] that originates from couplings to the respective
reaction channels. Both UF (r; E) and UD(r; E) are complex
and their forms are assumed to be of volume-type and surface-
derivative-type [8,18], respectively. They are explicitly given
by

UF (r; E) = [VF (E) + iWF (E)]f (XF ) + iWI (r), (3)

and

UD(r; E) = [VD(E) + iWD(E)]4aD

df (XD)

dRD

, (4)

where f (Xi) = [1 + exp(Xi)]−1 with Xi = (r − Ri)/ai (i =
F and D) is the usual Woods-Saxon function with the fixed
geometrical parameters of rF = 1.40 fm, aF = 0.43 fm, rD =
1.47 fm, and aD = 0.58 fm, while VF (E), VD(E),WF (E),
and WD(E) are the energy-dependent strength parameters.
Since we assume the geometrical parameters of the real and
imaginary potentials to be the same, the strength parameters
Vi(E) and Wi(E) (i = F or D) are related through a dispersion
relation [3],

Vi(E) = Vi(Es) + E − Es

π
P

∫ ∞

0
dE′ Wi(E′)

(E′ − Es)(E′ − E)
,

(5)
where P stands for the principal value and Vi(Es) is the value
of Vi(E) at a reference energy E = Es . Later, we will use
Eq. (5) to generate the final real strength parameters VF (E) and
VD(E) using WF (E) and WD(E) fixed from the χ2 analyses.
Note that the breakup cross section may include contributions
from both Coulomb and nuclear interactions, which implies
that the direct reaction potential includes effects coming from
not only the nuclear interaction, but also from the Coulomb
interaction.

The second imaginary potential WI (r) in UF (r; E) given
by Eq. (3) is a short-range imaginary potential of the Woods-
Saxon type given by

WI (r) = WIf (XI ), (6)

with WI = 40 MeV, rI = 1.0 fm, and aI = 0.30 fm. This
imaginary potential is introduced in order to eliminate unphys-
ical survivals of lower partial waves at very small values of r

when this WI (r) is not introduced. Because of the deep nature
of the folding potential V0 used in this study and also because
WF (E)f (XF ) energy-dependent imaginary part of UF (r; E)
in Eq. (3) turns out to be not strong enough, reflections
of lower partial waves appear which causes oscillations of
dσE/d� at large angles, but physically such oscillations
should not occur. Thus WI (r) is introduced to eliminate
this unphysical reflection of lower partial waves. We may

introduce the corresponding real part VIf (XI ), but we ignore
it here, simply because such a real potential does not affect
physical observables, which means that it is impossible to
extract the information of such a potential from analyzing the
experimental data.

In the extended optical model, fusion and DR cross sections,
σF and σD , respectively, are calculated by using the following
expression [17–19,34]:

σ th
i = 2

h̄v
〈χ (+)|Im [Ui(r; E)]| χ (+)〉 (i = F or D), (7)

where χ (+) is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model potential
U (r; E) in Eq. (2). σ th

F and σ th
D are thus calculated within

the same framework as dσE/d� is calculated. Such a unified
description enables us to evaluate all the different types of
cross sections on the same footing.

B. The folding potential

The double folding potential V0(r) we use as the bare
potential may be written as [1]

V0(r) =
∫

dr1

∫
dr2ρ1(r1)ρ2(r2)vNN (r12 = |r − r1 + r2|),

(8)
where ρ1(r1) and ρ2(r2) are the nuclear matter distributions
for the target and projectile nuclei, respectively, while vNN is
the sum of the M3Y interaction that describes the effective
nucleon-nucleon interaction and the knock-on exchange effect
given as

vNN (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
− 262δ(r). (9)

For ρ1(r) we use the following Woods-Saxon form taken from
Ref. [35]:

ρ1(r) = ρ0

/ [
1 + exp

(
r − c

z

)]
, (10)

with c = 6.624 fm and z = 0.549 fm, while for ρ2(r) the
following form is taken from Ref. [1]:

ρ2(r) = 3

8π3/2

[
1

a3
exp

(
− r2

4a2

)

−c2(6b2 − r2)

4b7
exp

(
− r2

4b2

)]
, (11)

with a = 0.928 fm, b = 1.26 fm, and c = 0.48 fm. The
parameters for the above ρ1(r) and ρ2(r) were fixed from
the charge density, but we assume they can be used for the
matter density also. We then use code DFPOT of Cook [36] for
evaluating V0(r).

C. Threshold energies for sub-barrier fusion and DR

As in Ref. [9], we utilize as an important quantity the so-
called threshold energy E0,F and E0,D of sub-barrier fusion
and DR, respectively, which are defined as zero intercepts of
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FIG. 1. (Color online) The Stelson plot of Si = √
Ec.m.σi for

DR (i = D, open circles) and fusion (i = F , solid circles) cross
sections. Use is made of the semi-experimental DR cross section for
SD , while the experimental fusion cross section is employed for SF .
The intercepts of the straight lines allow us to extract the threshold
energies E0,i .

the linear representation of the quantities Si(E), defined by

Si ≡
√

Eσi ≈ αi(E − E0,i) (i = F or D), (12)

where αi is a constant. Si with i = F , i.e., SF is the quantity
introduced originally by Stelson et al. [37], who showed
that in the sub-barrier region SF from the measured σF can
be represented very well by a linear function of E (linear
systematics) as in Eq. (12). In Ref. [8], we extended the linear
systematics to DR cross sections. In fact the DR data are also
well represented by a linear function.

In Fig. 1, we present the experimental SF (E) and SD(E).
For SD(E), use is made of σ

semi-exp
D . For both i = F and D, Si

are very well approximated by straight lines in the sub-barrier
region and thus E0,i can be extracted without much ambi-
guity. From the zeroes of Si(E), one can deduce E

semi-exp
0,D =

20.5 MeV and E
exp
0,F = 26.0 MeV in the c.m. system. It is

interesting to note that E
semi-exp
0,D is found to be considerably

smaller than E
exp
0,F , meaning that the DR channels open at

lower energies than fusion channels, which seems physically
reasonable.

E0,i may then be used as the energy where the imaginary
potential Wi(E) becomes zero, i.e., Wi(E0,i) = 0 [8,38]. This
procedure will be used later in the next subsection for obtaining
a mathematical expression for Wi(E).

D. χ 2 analyses

All the χ2 analyses performed in the present work are
carried out by using the folding potential as the bare potential
V0(r) described in Sec. III B and by using the polarization
potentials with fixed geometrical parameters, rF = 1.40 fm,
aF = 0.43 fm, rD = 1.47 fm, and aD = 0.58 fm, which are
close to the values used in our previous study [8]. Some
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FIG. 2. (Color online) The strength parameters Vi (upper panel)
and Wi (lower panel) for i = D and F as functions of Ec.m.. The open
and the solid circles are the strength parameters for i = D and F ,
respectively. The dotted and the solid lines in the lower panel denote
WD and WF from Eqs. (13) and (14), respectively, while the dotted and
the solid curves in the upper panel represent VD and VF calculated by
using the dispersion relation of Eq. (5). The potential values and the
corresponding reference energies are such that VF (Es = 30.5 MeV)
= 3.1 MeV and VD(Es = 27.5 MeV) = −0.6 MeV, respectively.

changes of the values from those of Ref. [8] were made to
improve the χ2-fitting.

As in Ref. [8], the χ2 analyses are done in two steps; in the
first step, all four strength parameters, VF (E),WF (E), VD(E),
and WD(E) are varied. In this first step, we can fix fairly
well the strength parameters of the DR potential, VD(E) and
WD(E), in the sense that VD(E) and WD(E) are determined as
smooth functions of E. The values of VD(E) and WD(E) thus
extracted are presented in Fig. 2 by open circles. The values of
WD(E) thus extracted can be well represented by the following
function of E(=Ec.m.) (in units of MeV)

WD(E) =




0 for E �E
semi-exp
0,D = 20.5

0.300(E − 20.5) for 20.5 < E � 27.5

−0.567(E − 27.5) for 27.5 < E � 29.0

+2.10

1.25 for 29.0 < E.

(13)

Note that the threshold energies where WD(E) becomes zero
are set equal to E

semi-exp
0,D as determined in the previous

subsection and are also indicated by the open circles at
E = 20.5 MeV in Fig. 2. The dotted line in the lower panel of
Fig. 2 represents Eq. (13). The dotted curve in the upper panel
of Fig. 2 denotes VD as predicted by the dispersion relation of
Eq. (5), with WD(E) given by Eq. (13). As seen, the dotted
curves reproduce the open circles fairly well, indicating that
VD(E) and WD(E) extracted by the χ2 analyses satisfy the
dispersion relation.

In this first step of χ2 fitting, however, the values of
VF (E) and WF (E) are not reliably fixed in the sense that
the extracted values fluctuate considerably as functions of E.
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This is understandable from the expectation that the elastic
scattering data can probe most accurately the optical potential
in the peripheral region, which is nothing but the region
characterized by the DR potential. The part of the nuclear
potential responsible for fusion is thus difficult to pin down in
this first step.

In order to obtain more reliable information on VF and WF ,
we thus have performed the second step of the χ2 analysis;
this time, instead of doing a four-parameter search we fix VD

and WD as determined by the first χ2 fitting, i.e., WD(E) given
by Eq. (13) and VD(E) predicted by the dispersion relation.
We then perform two-parameter χ2 analyses, treating only
VF (E) and WF (E) as adjustable parameters. The values thus
determined are presented in Fig. 2 by the solid circles. As seen,
both VF (E) and WF (E) are determined to be fairly smooth
functions of E. The WF (E) values may be represented by

WF (E) =




0 for E � E
exp
0,F = 26.0

0.756(E − 26.0) for 26.0 < E � 30.5

3.40 for 30.5 < E.

(14)

As is done for WD(E), the threshold energy where WF (E)
becomes zero is set equal to E

exp
0,F , which is also indicated by

the solid circle in Fig. 2. As seen, the WF (E) values determined
by the second χ2 analyses can fairly well be represented by the
functions given by Eq. (14). Note that the energy variations
seen in WF (E) and VF (E) are more pronounced than those
in WD(E) and VD(E) and exhibit the threshold anomaly as
observed in tightly bound projectiles [20–22].

Using WF (E) given by Eq. (14), one can generate VF (E)
from the dispersion relation. The results are shown by the
solid curve in the upper panel of Fig. 2, which again well
reproduces the values extracted from the χ2-fitting. This means
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FIG. 3. (Color online) Ratios of the elastic scattering cross
sections to the Rutherford cross section, PE = σE/σR , calculated
with our final dispersive optical potential are shown in comparison
with the experimental data. The data are taken from Ref. [2].
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FIG. 4. (Color online) DR and fusion cross sections calculated
with our final dispersive optical potential are shown in comparison
with the experimental data. σ

semi-exp
R and σ

semi-exp
D denoted by the

triangles and the open circles, respectively, are obtained as described
in Sec. II. The fusion data are from Ref. [13].

that the fusion potential determined from the present analysis
also satisfies the dispersion relation.

E. Final calculated cross sections in comparison with the data

Using WD(E) given by Eq. (13) and WF (E) given by
Eq. (14) together with VD(E) and VF (E) generated from the
dispersion relation, we have performed the final calculations of
the elastic, DR and fusion cross sections. Thus, instead of using
the potential parameters just as extracted by the χ2 analyses we
have used these dispersive potentials for the final calculations.
The results are presented in Figs. 3 and 4 in comparison with
the experimental data. All the data are well reproduced by the
calculations.

It may be worth noting here that the theoretical fusion cross
section, σ th

F , includes partial contributions, σI and σF , from two
imaginary components WI (r) and WF (E)f (XF ) in UF (r, E)
given by Eq. (3). In Table II the partial contribution from the
WI (r) part, denoted by σI , are presented in comparison with
the total fusion cross section, σ th

F . As seen, the contribution
from the inner part, WI , amounts to 14 ∼ 25 % of σ th

F ,
which is relatively small but not negligible. It should be
remarked, however, that the real potential VI (r) = VIf (XI )
corresponding to WI (r) does not contribute at all to any cross

TABLE II. Partial contributions σI and σF in com-
parison with the total fusion section, σ th

F .

Elab Ec.m. σI σF σ th
F

(MeV) (MeV) (mb) (mb) (mb)

29 28.2 5 16 21
31 30.1 16 92 108
33 32.1 29 180 209
35 34.0 50 270 320
39 37.9 100 439 539
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TABLE III. Incomplete fusion plus exclusive coincidence cross
sections, σICF+excl in comparison with σ th

D for the 6Li+208Pb system.

Elab Ec.m. σICF+excl σ th
D σ

semi-exp
D

(MeV) (MeV) (mb) (mb) (mb)

29 28.2 207 205
31 30.1 264 312 306
33 32.1 415 448 430
35 34.0 517 558 545
39 37.9 735 715 778

section if the strength VI is less than, say, 20 MeV. This justifies
the fact that we have ignored the VI (r) term.

At the moment, there are no data available for the DR cross
sections, σ

exp
D , which we may compare with our calculated

DR cross section σ th
D of Eq. (7). However, there are some

data available; breakup-fusion cross sections (cross sections
of breakup of 6Li −→ α + d followed by the absorption of
one of the fragments) which is referred to as the incomplete
fusion cross section, σICF, in Ref. [26] and also exclusive α − d

and α − p coincidence cross sections [24]. The sum of these
cross sections become fairly large. In Table III, we present the
sum of these cross sections denoted as σICF+excl in comparison
with our theoretical DR cross sections. As seen, σICF+excl is
slightly smaller than σ th

D , which is reasonable, since σICF+excl

does not include such contributions as inelastic excitations of
the target nucleus and the incomplete fusion in which only
a proton is emitted, and so on. It is thus highly desirable to
measure the remaining missing parts of the DR cross sections
in the future.

F. Discussions

It is remarkable that the real part of the DR potentials
determined in the present χ2 analysis turn out to be repulsive
at all the energies considered here. We present in Fig. 5 the real
part of the DR potential, −VD(r, E), at Ec.m. = 28.2 MeV in
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FIG. 5. (Color online) The double folding potential, real parts of
fusion and DR potentials, and the sum of these potentials are plotted
for Ec.m. = 28.2 MeV.
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FIG. 6. (Color online) The real part of the DR potential VD(r, E)
is plotted in comparison with that of the polarization potential
deduced from the CDCC calculations for 6Li+208Pb system at Ec.m. =
28.2 MeV [6].

comparison with the folding potential, −V0(r), in the surface
region, 11.5 fm < r < 13.5 fm. Also, the real part of the
fusion potential, −VF (r, E), and the sum, −Vtot(r, E), of all
these three potentials are shown. As seen, the values of the
sum of real potentials are significantly reduced from those of
the bare folding potential.

It may be interesting to compare our −VD(r, E) with the
real part of the polarization potential obtained from the CDCC
calculations. Such a comparison is made in Fig. 6, where
−VD(r, E) shown in Fig. 5 is compared with the polarization
potential calculated at Ec.m. = 28.2 MeV [6]. As seen, two
potentials show similar behaviours and agree qualitatively
with each other both in magnitude and in radial dependence.
This indicates that the DR potential deduced from the present
analyses of the elastic scattering and fusion data describes
essentially the same physical effects as treated in the CDCC
calculation.

In Table IV presented are the values of the strong absorption
radius Rsa, and those of V0, VF , VD, Vtot,WF ,WD , and R =
Vtot/V0 at r = Rsa for all the energies considered here. The
values of Rsa decrease slightly with the incident energy and
range from 12.27 fm to 12.75 fm. Note that the value of
R = 0.19 ∼ 0.37 may be compared with that of 0.51 obtained
in Ref. [6]. (The normalization factor used for the same system
at Elab = 50.6 MeV in Ref. [1] was 0.59.) It is seen also in
Table IV that at the strong absorption radius Rsa, the values
of the real and the imaginary parts of the DR potential are
both considerably greater than those of the fusion potential.
Because of this, the energy dependence of the net polarization
potential (sum of the fusion and DR potentials) at Rsa is
dominated by that of the DR potential with rather a smooth
energy dependency. Consequently, the net potential does not
show such a threshold anomaly as seen in the net potential for
systems with tightly bound projectiles [20–22].

As already remarked, the real and the imaginary parts of
both fusion and DR potentials determined in the present χ2

analyses satisfy well the dispersion relation, and further the
fusion potential shows clearly the threshold anomaly.
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TABLE IV. The value of the strong absorption radius, Rsa, and those of V0, VF , VD, Vtot, WF , WD , and
R = Vtot/V0 evaluated at r = Rsa for all the energies.

Ec.m. Rsa −V0 −VF −VD −Vtot −WF −WD R = Vtot/V0

(MeV) (fm) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

28.2 12.75 −0.338 −0.045 0.318 −0.065 −0.019 −0.539 0.19
30.1 12.56 −0.436 −0.061 0.334 −0.163 −0.056 −0.512 0.37
32.1 12.46 −0.499 −0.051 0.382 −0.168 −0.077 −0.583 0.34
34.0 12.39 −0.547 −0.047 0.437 −0.157 −0.090 −0.635 0.29
37.9 12.27 −0.641 −0.042 0.553 −0.130 −0.118 −0.730 0.20

IV. CONCLUSIONS

From the discussions of our results in the previous section,
we may safely conclude that within the extended optical
model approach, even if use is made of the double folding
potential as its bare potential, one can describe the elastic
scattering and fusion cross section data simultaneously without
encountering the two problems remarked at the beginning of
this paper. The normalization factor needed to be introduced to
the folding potential, particularly for loosely bound projectiles,
in the earlier analyses [1,2] based on the conventional optical
model approach can now be removed in the present extended
optical model analysis, and the effects are accounted for
by means of the repulsive DR potential as observed in the
CDCC approach. Also the threshold anomaly that could not be
seen in the analyses based on the conventional optical model

approach is now seen in the fusion part of the polarization
potential.

In the present work, we focused our attention only to
the 6Li+208Pb system, but it is possible to carry out similar
analyses to other systems. It is particularly interesting to do
the analysis for the 7Li+208Pb system, where the conventional
analysis is successfully applied to explain the data. An
extension of the present analysis to the 7Li+208Pb system is
now under way, and the report of the results will be made in a
separated paper.
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