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The semiclassical formulation of the Skyrme energy density functional for spin-orbit density part of the
interaction potential is compared with the microscopic shell model formulation, at both the ground state and
finite temperatures. The semiclassical spin-orbit interaction potential is shown to contain exactly the same shell
effects as are there in the microscopic shell model, provided a normalization of all semiclassical results to the
spin-saturated case (for one or both nuclei as spin-saturated) is made. On the other hand, the α nucleus structure
present in microscopic shell model is found absent in semiclassical approach. The role of temperature is found
not to change the behavior of shell or α nucleus structure effects up to about 3 MeV, and increase or decrease
the height of the (normalized) barriers in accordance with the shell structure of nuclei. Calculations are made for
three two-nucleon transfer reactions forming the α-nucleus A = 4n, N = Z compound systems 56Ni∗ and 48Cr∗

and the non-α-nucleus compound system 52Cr∗, and for Skyrme forces SIII and SLy4. The two parameter Fermi
density, with its parameters fitted to experiments and made temperature dependent in a model way, is used for
the nuclear density in semiclassical calculations, and the same in microscopic shell model is achieved via the
Fermi-Dirac occupation of shell model states and particle number conservation.
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I. INTRODUCTION

In the recent past, in a series of papers [1–10], one of us
(R.K.G.) and Collaborators studied the role of the spin-orbit
density part of the interaction potential in Skyrme energy den-
sity formalism [11] and proposed a simple analytical formula-
tion of the potential, for both the spin-orbit density independent
part and the spin-orbit density term itself, respectively, as the
proximity potential and in terms of the masses of colliding
nuclei and their associated particle strength which accounts for
the shell structure effects via the number of valence particles
outside the closed core. The role of spin-orbit density part of
the interaction potential is shown to be important, not only
for its significant contribution to fusion cross sections [5], but
also for the α-nucleus structure of colliding N = Z, α-nuclei
and its suppression for colliding non-α nuclei [9]. Considering
a two-nucleon transfer process, it is shown that the α-particle
transfer is related to the closure of the last j shell for both
the protons and neutrons of at least one of the product nuclei.
This is manifested as a discontinuity (a definite step) in the
barriers, as well as in the transfer yields, at the α-nucleus
transfer products. Closed shells, but no discontinuities, are
also found for two-nucleon transfer products, but then the
closed j shell occurs for either the protons or neutrons and
not for both protons and neutrons. For non-α colliding nuclei,
the discontinuities in potentials and yields occur also at two
nucleon transfer products, irrespective of the above noted shell
closure effects. The same α-nucleus structure effect is found
to exist for the valence particles number and/or weighted
valence particles number, called particle strength, and hence is
a representation of shell effects in spin-orbit density part of the
interaction potential. The simple analytical formulas provided
a unique possibility to replace the time consuming microscopic

theoretical calculations, and for making predictions of fusion
cross sections, including for exotic neutron-rich colliding
nuclei [12–14]. The microscopic calculations of the spin-orbit
density part of Skyrme nucleus-nucleus interaction potential
were made for both the shell model (SM) densities and
two-parameter Fermi densities, yielding nearly the same result.

More recently, an alternative to help reduce the lengthy
microscopic calculations is provided by the semiclassical
formulation of the Skyrme energy density functional. The
semiclassical method of expansions, with h̄ as the order param-
eter, worked out in the framework of extended Thomas-Fermi
(ETF) model has been very successful, which expresses the
kinetic energy density τ and spin-orbit density �J as functions
of the nucleon density ρ(�r) [15–18], used in self-consistent
variational approach with nucleon densities as the variational
quantities. Thus, the Skyrme energy density becomes a
functional of the nucleon densities alone, and hence eliminates
completely the use of single particle wave functions. The (vari-
ational) nucleon densities are taken as the Hartree-Fock (HF)
densities, Hartee-Fock-Bogoliubov (HFB) densities, or simply
the modified (two-parameter) Fermi density with an additional
parameter [17–21]. Some effort has gone in to comparing
the results of semiclassical calculations using modified Fermi
densities with ones using HF densities (or the two densities
themselves) [18,20], but so far no calculation seems to have
been made to compare the semiclassical approach with the
microscopic shell model approach introduced by Vautherin
and Brink [11] for spherical (doubly closed shell) nuclei and
by one of us (R.K.G.) and Collaborators [1] for unclosed
shell nuclei, in particular for the spin-orbit density term in
Skyrme energy density functional. The use of microscopic
shell model wavefunctions reduce the angular variables in
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Hartree-Fock equations, such that the densities ρ(�r), τ (�r),
and (the modulus of) �J (�r) depend on the radial coordinate
r only. We make such a comparison between the semiclassical
and the microscopic shell model approaches here in this
paper for the spin-orbit interaction potential and for transfer
reactions. Note that in transfer reactions a spin-saturated
target-projectile combination such as 16O+40Ca (nuclei with
major shell closed for both protons and neutrons) would
become spin-unsaturated ones like 18Ne+38Ar, 20Ne+36Ar,
etc., with valence particle configurations. Furthermore, in
microscopic shell model approach the spin-orbit density is zero
( �J q = 0; q = n or p) for nuclei with major shells completely
filled, which is not the case in semiclassical approach since
it depends only on nucleon density. This later observation
makes the comparison between microscopic shell model and
semiclassical results more meaningful and interesting.

Semiclassical ETF approach is also extended to nuclear
systems at finite temperatures [17,22], but for the free energy
and entropy density functionals only. For the spin-orbit density
functional �J (ρ) of the semiclassical formalism, we include
the temperature effects here in the following via the nuclear
density, taken as the two-parameter Fermi density [23]. This
follows from the fact that at higher temperatures the HF density
takes nearly a shape of Fermi-type, i.e., become flat in the
interior region of small r-values [24]. Furthermore, the Fermi
density distributions and shell model density distributions, as
well as the spin-orbit density interaction potentials based on
them, are found to be nearly the same [1,4,7], at least in the
surface region of relevance for heavy ion collisions. Hence,
we compare the above-mentioned results of the temperature-
dependent semiclassical calculations with the microscopic
shell model ones, also made temperature dependent. In other
words, the second aim of this paper is to include temperature
effects both in the microscopic shell model and (in a model-
way) in the semiclassical formalism and compare the two
results. It is relevant to remind here that the well known effect
of adding temperature T is the washing away of the shell effects
but, what may not be that well known is that the α-nucleus
structure is not washed out [25–27]. The α-nucleus structure in
nuclear interaction energy has its origin in “Wigner term” in the
liquid drop energy [28,29], which is nonzero only for N �= Z,
non-α nuclei and gets reduced if the liquid drop energy is also
made T -dependent [30,31]. There is no α-nucleus structure
present in, e.g., two-center shell model [32]. It is important to
realize the above-noted facts, since the microscopic spin-orbit
interaction potential contains both the shell and α-nucleus
structure effects, normally termed simply as the “shell effects.”

The paper is organized as follows. Section II gives the
methodology, consisting of the energy density formalism
based on both the microscopic shell model and semiclassical
approaches, with temperature effects included in both of
them. Our calculations are discussed in Sec. III. We support
our calculations with the data on measured mass spectrum
of 75 or 80.6 MeV (Ec.m. = 53.6 or 57.6 MeV, respec-
tively) 16O+40Ca → 56Ni∗ and 88.8 MeV (Ec.m. = 44.4 MeV)
24Mg+24Mg → 48Cr∗ reactions, showing explicit preference
for the α-particle transfer channels [33–35]. The gradual
suppression of preference for the α-particle transfer products,
observed for the addition of two and four neutrons to 56Ni∗

channels [34], is illustrated here for adding four neutrons
to 48Cr∗, i.e., for the compound system 52Cr∗. The energies
involved in above reactions correspond to 1.5 to 2 times
the Coulomb barrier which, e.g., lies at about 24 MeV for
16O+40Ca reaction. Thus, the compound nucleus temperatures
involved are of the order of ∼3.5 MeV or more (E∗

CN =
Ec.m. + Qin = (A/9)T 2 − T ). Note that the same compound
system 56Ni∗ or 48Cr∗ is formed via the transfer products, say,
the 28Si+28Si or 12C+36Ar, respectively [33,36], and hence
our results could also be interpreted from the point of view
of the entrance channel effects. Finally, a summary of our
results is presented in Sec. IV, and Appendices A and B give
the detailed solution of the spin-orbit interaction potential,
respectively, for shell model and semiclassical approaches with
temperature-dependence included.

II. METHODOLOGY

A. The energy density formalism (EDF)

The energy density formalism defines the interaction
potential as

V (R) = E(R) − E(∞), (1)

i.e., the nucleus-nucleus interaction potential V (R), as a
function of relative separation distance R, is the difference
of the energy expectation value E of the colliding nuclei that
are overlapping (at a finite separation distance R) and are
completely separated (at R = ∞), where

E =
∫

H (�r)d�r, (2)

with the Skyrme Hamiltonian density

H (ρ, τ, �J ) = h̄2
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( �∇ρ)2

− 1
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(
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× [( �∇ρn

)2 + ( �∇ρp

)2]
− 1

2W0[ρ �∇ · �J + ρn
�∇ · �J n + ρp

�∇ · �Jp].

= H (ρ, τ ) + H (ρ, �J ). (3)

Here, ρ = ρn + ρp, τ = τn + τp, �J = �J n + �Jp are the nu-
clear, kinetic energy, and spin-orbit densities, respectively (the
subscripts n and p refer to neutron and proton, respectively).
m is the nucleon mass. The Coulomb effects are neglected in
the above energy density functional, but can be added directly.
x0, x1, x2, x3, t0, t1, t2, t3, α0 and W0 are the Skyrme force
parameters, fitted by different authors to obtain better descrip-
tions of various ground state properties of nuclei. In this work,
we use the Skyrme forces SIII and SLy4 whose parameters
are SIII: t0 = −1128.75 MeV fm3, t1 = 395 MeV fm5, t2 =
−95 MeV fm5, t3 = 14000 MeV fm4, x0 = 0.45, x1 = 0,
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x2 = 0, x3 = 1,W0 = 120 MeV fm5, α0 = 1, and SLy4: t0 =
−2488.9 MeV fm3, t1 = 486.82 MeV fm5, t2 = −546 MeV
fm5, t3 = 13777 MeV fm4, x0 = 0.834, x1 = −0.344, x2 =
−1, x3 = 1.354,W0 = 123 MeV fm5, α0 = 0.167, respec-
tively. Thus, for spin-orbit density part of the interaction
potential, both the cases of x2 = 0 and −1 are studied [see
below and in Appendix B for the role of parameter x2 in
effective mass parameter fq(�r)], which refer to very old and
rather new Skyrme forces, respectively.

Since we are interested here only in spin-orbit density part
of the interaction potential, we neglect the spin-independent
part of the Hamiltonian density H (ρ, τ ) in Eq. (3), and write

VJ (R) =
∫

{H (ρ, �J ) − [H1(ρ1, �J 1) + H2(ρ2, �J 2)]}d�r (4)

with ρ = ρ1 + ρ2 and �J = �J 1 + �J 2 for the composite system,
in sudden approximation [37]. We use the sudden approx-
imation because it is only in this approximation that the
different terms of H (ρ, �J ) in Eq. (4) are shown to constitute
the nuclear proximity potential [38] used here (Appendix B),
like for the spin-independent part H (ρ, τ ) in Refs. [39,40].
The other alternative is to use the adiabatic approximation,
but then VJ (R) could not be defined by Eq. (4) since the
collisions, being then slow, allows the system to adjust
itself to an equilibrium configuration at each stage (r-value)
of the collision. In the following, we solve this equation
in two different ways, i.e., by using the microscopic shell
model and the semiclassical ETF approaches, which are made
temperature dependent since the composite or compound
systems formed are hot.

1. The microscopic approach

Defining ni as the occupation probability of the i th single-
particle state φi , which depends on temperature T (in MeV),
we can write [41]

ρq(�r) =
∑
i,s

ni |φi(�r, s, q)|2, (5)

�J q(�r) = (−i)
∑
i,s,s ′

niφ
∗
i [ �∇φi(�r, s ′, q) × 〈s|σ |s ′〉] (6)

with

N =
∑

i

ni =
∑

i

[
1 + exp

(εi − λ)

T

]−1

. (7)

Apparently, ni = 1 for T = 0; and N is the number of particles
since the summation i is over all the occupied single particle
states of energies εi . s and q(=n or p) represent the spin
and isospin indices, respectively, and λ is the Fermi surface,
determined by requiring the total number of particles N to
be conserved. The single particle energies εi are calculated
by using the standard shell model Hamiltonian, and the
spherically symmetric single particle wave functions are taken
to be as follows for both the closed and un-closed shell

nuclei [1,11]:

φi(�r, s, q) = Rα(r)

r

∑
m�ms

〈
�

1

2
m�ms

∣∣∣∣jm

〉
Y

m�

� (r̂)χms
(s)χq(t),

(8)

where α = (q, i) ≡ (q, n, �). For use of Eq. (8), Eqs. (5) and
(6) simplify as

ρq(r) = 1

4πr2

∑
α

nα(2jα + 1)R2
α(r), (9)

�J q(�r) = �r
4πr4

∑
α

nα(2jα + 1)

×
[
jα(jα + 1) − �α(�α + 1) − 3

4

]
R2

α(r). (10)

The normalized radial wave functions Rα(r) of the shell model
of the nucleus are given as [1]

Rα(r) = Cαrl+1e−νr2
υα(2νr2) (11)

with

Cα =
[

2l−n+2(2ν)l+3/2(2l + 2n + 1)!!√
π [(2l + 1)!!]2n!

]1/2

, (12)

υα(x) =
n∑

k=0

(−1)k2k(nCk)
(2l + 1)!!

(2l + 2k + 1)!!
xk (13)

and

2ν = 41A−1/3mc2

h̄2c2
(in fm−2). (14)

Using Eqs. (9) and (10) in Eq. (4), we get the spin-orbit
density part of the interaction potential VJ (R), whose details
of solution for ρn = ρp = 1

2ρi are given in Appendix A. Note
that for T = 0 (nα = 1), �J = 0, and hence the VJ (R) will
be zero if the nucleus is with a major shell closed, i.e., the
orbits with j = l ± 1

2 pair are fully occupied. However, for
T �= 0, nα < 1 and hence �J �= 0 always (closed or unclosed
shell nuclei).

2. The semiclassical approach

The spin, being a purely quantal property, has no classical
analogue, which means there is no contribution to the semi-
classical functional of �J in the lowest order at the so-called
Thomas-Fermi (TF) level. However, at the ETF level one
obtains the higher order contributions [16–18], and as the
second order contribution is enough for numerical convergence
[18], we have for the semiclassical spin-orbit density (q = n

or p; i = 1,2)

�J q(�r) = −2m

h̄2

1

2
W0

1

fq

ρq
�∇(ρi + ρq) (15)
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with fq as the effective mass form factor,

fq(�r) = m

m∗
q(�r)

= 1 + 2m

h̄2

[
1

4

{
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)}
ρi(�r)

−1

4

{
t1

(
x1 + 1

2

)
− t2

(
x2 + 1

2

)}
ρq(�r)

]
. (16)

For nuclear density ρi , we use the two parameter Fermi
density distribution, which is made T -dependent as [23]

ρi(r) = ρ0i(T )

[
1 + exp

r − R0i(T )

ai(T )

]−1

, (17)

with central density

ρ0i(T ) = 3Ai

4πR3
0i(T )

[
1 + π2a2

i (T )

R2
0i(T )

]−1

(18)

and half density radii R0i(T = 0) and the surface thickness
parameters ai(T = 0) obtained by fitting the experimental data
[42,43] to the polynomials in nuclear mass A (= 4–209), as
(see Fig. 1)

R0i(T = 0) = 0.90106 + 0.10957Ai − 0.0013A2
i + 7.71458

× 10−6A3
i − 1.62164 × 10−8A4

i , (19)

ai(T = 0) = 0.34175 + 0.01234Ai − 2.1864 × 10−4A2
i

+ 1.46388 × 10−6A3
i − 3.24263 × 10−9A4

i .

(20)

It is for the first time that such a data is used in calculations
based on semiclassical approach. In all earlier calculations [18,
20,21], these parameters were determined self-consistently.
All of these calculations (the HF, the ETF, and the SM) give
similar densities, and are comparable with Fermi density at
T = 0, atleast in the tail/surface region of interest for heavy ion
collisions. This is illustrated in Fig. 2 for two nuclei (one light
and other heavy) where HF and ETF density calculations are
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FIG. 1. The half-density radius R0 and the surface thickness a in
fm, plotted as a function of mass number A of nuclei, each fitted to a
polynomial in A. The data are from [42,43].
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FIG. 2. The Fermi density compared with HF, ETF, and SM
density distributions at T = 0 for 208Pb and 16O nuclei. The HF and
ETF calculations are from [11] and [18], respectively.

available in the literature [11,18]. For 208Pb, the Fermi density
(17) is compared with the HF density, calculated for two
different Skyrme forces SI and SII [11], and the ETF density
for Skyrme SkM∗ force [18]; and for 16O with HF density for
Skyrme SI force and the shell model (SM) density (9). Since
nuclear densities are the main input in the semiclassical ETF
model, apparently, our use of the SM wave functions, instead
of the HF equations, and the Fermi density, instead of the
self-consistent HF/ETF densities, are quite reasonable.

The temperature dependence in the above formulas is
introduced as in Ref. [44],

R0i(T ) = R0i(T = 0)[1 + 0.0005T 2] (21)

and

ai(T ) = ai(T = 0)[1 + 0.01T 2]. (22)

The spin-orbit interaction potential VJ (R) is then obtained
by solving Eq. (4) for ρn = ρp = 1

2ρi ; i = 1, 2, expressed as
the proximity potential [38]. The details of this method are
summarized in Appendix B.

III. CALCULATIONS AND DISCUSSION OF RESULTS

In this section, we discuss our calculations of the spin-
orbit interaction potentials for two nucleon transfer products
in the reactions 28Si+28Si and 24,26Mg+24,26Mg forming
the compound systems 56Ni∗ and 48,52Cr∗, using both the
semiclassical and microscopic approaches and for two Skyrme
forces SIII and SLy4. Since, by definition, the formation of
compound system is independent of the entrance channel
effects, the 56Ni∗ and 48Cr∗, say, could also be considered
to be formed from any two other nuclei, such as 16O+40Ca
and 16O+32S, respectively. The important point is that during
the transfer process, the spin-unsaturated ( �J i �= 0) reaction
partners would become with either one or both spin-saturated
nuclei, and vice-versa. In the following, we first consider the
case of temperature T = 0 and then include the temperature
effects in the calculation of spin-orbit interaction potential.
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FIG. 3. (a) The spin-orbit interaction potential V SC
J (R), and

(b) V SC
J (D), for two nucleon transfer products, starting from

28Si+28Si, using the semiclassical approach for Skyrme force SIII.

A. Spin-orbit interaction potentials at temperature T = 0

Figure 3(a) shows the spin-orbit interaction potential
V SC

J (R), calculated by using the semiclassical approach with
Skyrme force SIII, for two nucleon transfer products starting
with the target-projectile combination 28Si+28Si. Note that the
spin-orbit interaction potential is independent of the charge of
colliding nuclei and hence the transfer of two neutrons or two
protons leads to the same result. Comparing this figure with
Fig. 4(a), showing the results of the same calculation for use of
the microscopic shell model approach, we notice the following
points of differences:

(i) Whereas in the semiclassical approach the barrier
height V SC

JB increases continuously [see Fig. 5(a)],
the same in microscopic shell model decreases till
it becomes zero for spin-saturated nuclei and then
increases as the product mass increases or decreases
[see Fig. 5(b), solid line for V SM

JB ]. Almost the same

result was obtained for shell model calculations with
Fermi density distribution [1,9].

(ii) In other words, in contrast to the shell model calcu-
lations, the VJ (R) in semiclassical approach does not
become zero for spin-saturated nuclei.

(iii) Though the maximum height of the barrier VJB in two
approaches is nearly of the same order, the relative
increament with respect to two nucleon transfer in the
semiclassical case is much smaller than in the shell
model.

(iv) The position RJB of the barrier in Fig. 3(a) changes
and shifts to smaller R-value as the asymmetry of
transfer products increases, though is placed exactly at
the touching radius, i.e., RJB = R01 + R02 for the semi-
classical approach, but it remains almost independent
of the transfer process for microscopic shell model in
Fig. 4(a). This result, however, becomes more evident if,
in the case of semiclassical calculations, we remove the
R01 + R02 dependence of Fig. 3(a) by plotting instead
the V SC

J (D), where D = R − R01 − R02 is the surface
separation between two nuclei. This is done in Fig. 3(b).
Now the barrier position DJB (=RJB − R01 − R02) is
also independent of the transfer process and occurs at a
fixed (zero) value. Note that the quantity D is of more
relevance for the proximity force theorem (see Ap-
pendix B). Similarly, the sign of the potential for shell
model approach changes at about the radius of the com-
pound nucleus R0, and that for semiclassical approach
at D0-value (equivalently, R0 = D0 + R01 + R02). Ap-
parently, the same result would appear on normalizing
the potentials of Fig. 3(b) with respect to the potential
for spin-saturated pair of nuclei (see below for normal-
ization), i.e., all the curves would pass through nearly
the same D0-value and placed at the same DJB = 0 (see
Fig. 4(b)).

Notwithstanding the above discrepencies with microscipic
shell model, the semiclassical approach is considered as well
accepted, possibly because it is supposed to contain no shell
effects or, in other words, is a liquid drop model type of
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microscopic shell model approach. (b) Same as
Fig. 3(b), but now the normalized values, i.e.,
the V SC

J |Norm.(D) with respect to curve 7 in part
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Skyrme force SIII. (b) The same as in (a) but for the microscopic shell
model approach, i.e., V SM

JB , and from the semiclassical calculations
after their normalization to zero for spin-saturated combination
16O+40Ca, i.e., V SC

JB |Norm. × 15.

description [18]. In the following, however, we show that
the semiclassical approach can reproduce the same effects
as are present in microscopic shell model if the results of
semiclassical calculations are normalized with respect to its
result for spin-saturated nuclei. The origin of such an arbitrary
normalization factor in semiclassical theory, however, still
remains to be traced.

Realising that the spin-orbit interaction VJ (R) for a spin-
saturated pair of nuclei (16O+40Ca for compound system
56Ni∗, i.e., curve 7 in Fig. 3) should be zero, we have
normalized all the curves in Fig. 3(b) to curve 7 to be zero,
by defining the normalized semiclassical spin-orbit interaction
potentials V SC

JB |Norm. at each D as follows:

V SC
J |Norm.(D) = ∓[

V SC
J (D) − V SC

J,SS(D)
]
, (23)

where V SC
J,SS refers to the V SC

J for the closed-shell, spin-
saturated pair of nuclei in Fig. 3(b) (curve 7), and the
(arbitrarily added) sign (−) or (+) to the combinations before
and after the spin-saturated pair of nuclei. Apparently, this
kind of normalization is applicable to regions of nuclei where
magic shells are well established, which means to exculde at
present the exotic nuclei far from the valley of stability and the
superheavy nuclei. The above normalization (with sign change
to be added later) follows from the definition of normalized

semiclassical spin-orbit density of a nucleus:

�J SC
i |Norm.(�r) = [ �J SC

i (�r) − �J SC
i,SS(�r)

]
, (24)

where the �J SC
i (�r) (i=1,2) refers to the semiclassical spin-orbit

density in Eq. (B1). Then, the V SC
J |Norm.(D) from Eq. (23) is

plotted in Fig. 4(b) by introducing a multiplication factor A to
match the shell model amplitude for V SM

JB at R = RJB, i.e.,

V SM
JB (RJB) ≡ A × V SC

JB |Norm.(DJB). (25)

We find that, for the system under study, with a factor of
A = 15 the normalized semiclassical spin-orbit potentials
V SC

J |Norm.(D) in Fig. 4(b) reproduce completely the structure
of shell model calculations in Fig. 4(a). The factor of 15 is
though arbitrary, but constant for all transfer products. In
other words, though the normalized semiclassical spin-orbit
interaction potentials are too small by a factor of 15, they
contain exactly the same shell structure effects as are present in
microscopic shell model calculations. This is further stressed
in Fig. 5(b) where the spin-orbit barrier heights V SM

JB for
shell model are compared with V SC

JB |Norm. of the normalized
semiclassical calculations. Apparently, we get the one-to-
one correspondence for the magnitudes, though there is a
significant difference in the structure of the two curves [solid
for V SM

JB (A2) and dashed for V SC
JB |Norm.(A2)], which refers to the

α-nucleus structure, to be discussed below. The above results
are independent of the choice of Skyrme force, as well as of
the compound system. This is illustrated in Fig. 6 for 56Ni∗

using SLy4, and in Fig. 7 for 48,52Cr∗ using SIII parameter
set, only for the barrier positions. The factor of 15 remains the
same for SLy4 force and for 52Cr∗ system, but reduces to 11
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FIG. 6. Same as for Fig. 5, but for the Skyrme force SLy4.
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FIG. 7. Same as for Fig. 5, but for 24,26Mg+24,26Mg reactions
forming 48,52Cr∗.

for the lighter compound system 48Cr∗. The small discrepency
in the first two points of Figs. 5(b) and 6(b) and last two points
of Fig. 7(b) calls for different multiplying factors. Note that in
48,52Cr∗, only one of the reaction partners is a spin-saturated
nucleus (16O in 16O+32S and 16O+36S), and hence we have
normalized the semiclassical calculations to the microscopic
shell model results, instead of to zero.

Looking at N = Z,A = 4nα multiplier compound sys-
tems in Figs. 5(b), 6(b), and 7(b) more closely, we notice that
the shell model calculations (solid lines) present a preference
for α nucleus transfer products in terms of a discontinuity (or
step) in the barriers at the α-nucleus transfer products. This
effect is shown [9] related to the closure of last j shell for
both the protons and neutrons of atleast one of the product
nucleus, as is the case here. However, such a preference is not
shown in Fig. 7(b) (solid line for V SM

JB ) for the non-α multiplier
compound system 52Cr∗, in agreement with experiments [34].
This problem is discussed in detail in the earlier work of one
of us (R.K.G.) and Collaborators [9]. On the other hand, the
above noted discontinuity at α-nucleus transfer products in
N = Z α-nucleus systems seems missing in the normalized
semiclassical calculations [dashed lines in Figs. 5(b), 6(b)
and 7(b)], which, when combined with the results of the last
paragraph, can be interpreted to mean that, in the normalized
semiclassical approach, the α-nucleus structure seems absent
though it still seems to contain the shell structure like effects.
Here, it may be reminded again that the α-nucleus structure in
nuclear interaction energy is related to the “Wigner term” in the
liquid drop energy (which is zero for N = Z, α-nuclei) [30]
and that there is no α-nucleus structure present in shell model
of the nucleus [32].
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FIG. 8. The Fermi density and microscopic shell model density
distributions at temperaturs T = 0 and 5.0 MeV.

B. Spin-orbit interaction potentials at finite temperatures

First of all, in Fig. 8, we compare the Fermi density
and microscopic shell model density distributions at two
temperatures for a few illustrative nuclei involved in the above
chosen transfer reactions. We notice that in the surface region,
relevant for heavy ion collisions, the two distributions match
not only for temperature T = 0, but also for a very high
T = 5 MeV. This means to suggest that our model prescription
for the T -dependence of Fermi density used in semiclassical
approach is reasonbly good, as compared to the microscopic
T -dependence of shell model density.

Figures 9 and 10 show, respectively, the semiclassical and
microscopic shell model spin-orbit interaction potentials at
different temperatures, ranging from 0 to 5 MeV, for the com-
pound system 56Ni∗ using Skyrme force SIII. We notice that in
both cases, as expected, the barriers decrease with increase of
temperature, but still there is an important point of difference
in the T -dependence of the two approaches: Whereas the order
(1 to 9) of barriers remains the same in semiclassical case, the
same in microscopic shell model approach changes due to
the different filling of shell model states (occupation number
nα decreases with T , with particle number N conserved).
Thus, it again seem as if there were no shell-like effects in
semiclassical approach. However, if we compare in Fig. 11
the normalized spin-orbit interaction barriers V

SC(T)
JB |Norm.(A2)

of semiclassical approach with V
SM(T)
JB (A2) of the shell model,
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FIG. 9. The spin-orbit interaction potentials for different transfer products of the reaction 28Si+28Si forming 56Ni∗ at different temperatures
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FIG. 11. The spin-orbit interaction barriers, plotted as a function
of the mass number of one of the transfer products for different
temperatures, calculated on the T -dependent microscopic shell model
approach and compared with normalized spin-orbit interaction barri-
ers calculated on the T -dependent semiclassical approach, using SIII
force parameters for the compound system 56Ni∗. The normalization
of the semiclassical results to the shell model results is carried at each
temperature for the spin-saturated combination 16O+40Ca.

we find an almost one-to-one correspondence provided the
multiplying factor is also made T -dependent. Figure 11 shows
our calculation for the compound system 56Ni∗ using SIII
force. The same results are obtained for the SLy4 force
and the compound systems 48,52Cr∗ (not shown here). The
comparisons are very good for temperatures up to T = 3 MeV,
but for the higher temperatures a single multiplying factor
seems to be not enough for both the symmetric and asymmetric
fragments.

Furthermore, we notice in Fig. 11 that the α nucleus
structure remains unaffected with temperature. In other words,
the α nucleus structure in shell model barriers remains
apparent at all temperatures, but the same is absent at all
temperatures in the (normalized) semiclassical interaction
barriers. Another interesting result that follows from this figure
is the increase or decrease of the barriers with temperature
due to the shell structure of nuclei, i.e., with respect to the
major shell closed nuclei (for both neutrons and protons,
or only for neutrons or protons), closed j shell nuclei or
the unclosed shell nuclei. This is explicilty demonstrated in
Fig. 12. In this figure we notice that the barriers increase with
temperature for major closed shell nuclei such as 16O+40Ca
and its neighboring combinations 14O+42Ca and 18Ne+38Ar,
decrease for j shell closed nuclei like 28Si+28Si, 26Si+30Si,
24Mg+32S, and 12C+44Ti, and remain nearly unaffected for
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FIG. 12. The same as for Fig. 11, but plotted as a function of
temperature T , and for different transfer products.

unclosed shell nuclei like 20Ne+36Ar and 22Mg+34S. This
change is more pronounced for T = 0 to 3 MeV since the
shell effects are known to get reduced to almost zero at about
3 MeV.

IV. SUMMARY

In this paper, we have attempted for the first time to compare
the semiclassical formulation of the Skyrme energy density
functional with the microscopic shell model formulation, in
particular for the spin-orbit density part of the interaction
potential. This is done for both the ground state (temperature
T = 0) and for finite temperatures of the hot compound
nucleus. The semiclassical approach, in extended Thomas-
Fermi (ETF) model, is used up to its second order terms of spin-
orbit density, with nuclear density taken as the two parameter
Fermi density whose half-density radius and surface thickness
parameters, obtained by fitting the available experimental data,
are made temperature dependent. The temperature dependence
in microscopic shell model is introduced via the Fermi-
Dirac occupation of states and particle number conservation.
Our calculations are made for three two-nucleon transfer
reactions forming both the α-multiplier A = 4n,N = Z and
non-α-multiplier A �= 4n,N �= Z compound systems, and
for Skyrme forces SIII and SLy4.

We find that, against the general belief, (normalized) semi-
classical spin-orbit interaction potential does contain exactly
the same shell-like effects as are present in microscopic shell
model. It is true that the semiclassical spin-orbit interaction
potential is not zero for spin-saturated nuclei, but if the in-
teraction potentials for spin-unsaturated nuclei are normalized
to the interaction potential of spin-saturated pair (for one or
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both the nuclei as spin-saturated), which in turn is also made
zero, then the normal shell effects are obtained in semiclassical
spin-orbit interaction potential. What may be missing in the
semiclassical approach is the α nucleus structure, seen in
microscopic shell model for α nucleus transfer product(s) with
its last j shell completely filled for both protons and neutrons.
This result is found to be independent of both the mass of
compound system and the choice of Skyrme force parameter.
Note that the α nucleus structure is related to the Wigner
term in liquid drop energy, and not to the shell model of the
nucleus.

Finally, our model prescription of the T -dependence of
Fermi density is found nearly identical to the microscopic
T -dependence of the shell model density. Its role is shown in
increasing or decreasing the height of the (normalized) barrier
as per the shell structure of the transfer products, and show
almost no change in the behavior of shell and α nucleus
structure effects in both the (normalized) semiclassical and
microscopic shell model spin-obit interaction potentials, at
least up to 3 MeV. The barriers are found to increase with
temperature for major closed shell nuclei, decrease for j shell
closed nuclei, but remain nearly unchanged for unclosed shell
nuclei.
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APPENDIX A: SOLUTION OF THE SPIN-ORBIT
INTERACTION POTENTIAL USING

THE MICROSCOPIC APPROACH

In the approximation of equal neutrons and protons densi-
ties (ρn = ρp = 1

2ρi ; i=1,2), Eqs. (3) and (4) give the spin-orbit
density dependent part of the interaction potential

VJ (R) = −3

4
W0

∫
{ρ2 �∇ · �J 1 + ρ1 �∇ · �J 2}d�r

= VJ1 (R) + VJ2 (R). (A1)

Notice here that we need to solve only one of the terms,
since one term can be obtained from the other by simply
interchanging 1 and 2.

Using Eq. (11) in Eq. (9), the microscopic shell model
density for a nucleus (neutrons+protons) can be expressed
simply as (i = 1,2)

ρi(ri) = ρ0i

(
a0 + a1yi + a2y

2
i + · · · · )

exp (−yi) (A2)

with yi = 2νir
2
i , the central density ρ0i = 4π−3/2(2νi)3/2, and

a0(=1), a1, a2, . . . as the constants. Also, it follows from
Fig. 13, that

r2
2 = r2

1 + R2 − 2r1R cos θ 0 � r � ∞. (A3)

R 

r2 
r1 

R01 R02 

P 
 

R 

D 

Nucleus 1 Nucleus 2 

FIG. 13. Geometry of two colliding spherical nuclei.

Next, noting that �J q depends only on �r , using Eq. (10) in the
following known divergence relation:

�∇ · �A = 1

r2

∂

∂r
(r2Ar ), (A4)

we get for a nucleus ( �J 1 = �J n + �Jp),

�∇ · �J 1 =
∑

α

[
Pα

r2
1

U 2
α (r1) + 2Pα

r1
Uα(r1)

∂

∂r1
Uα(r1)

]
, (A5)

where we have denoted Uα(r) = Rα(r)/r and

Pα = nα

4π
(2jα + 1)

[
jα(jα + 1) − �α(�α + 1) − 3

4

]
.

This equation (A5), together with Eq. (A2), on substitution in
Eq. (A1), gives (for µ = cos θ )

VJ1 (R) = −3π

2
W0

∫ ∞

0
I (y2)

×
∑

α

[
Pα

r2
1

U 2
α + 2Pα

r1
Uα

∂Uα

∂r1

]
r2

1 dr1, (A6)

where, using r2
2 = r2

1 + R2 − 2r1Rµ = y2/2ν2 or dµ =
−dy2/4ν2r1R,

I (y2) = ρ02

4ν2r1R

∫ 2ν2(r1+R)2

2ν2(r1−R)2

[
a0 + a1y2 + a2y

2
2 + · · ·]

× exp(−y2)dy2. (A7)

Solving the integral I (y2) by parts, the integral (A6) is solved
numerically.

APPENDIX B: SOLUTION OF THE SPIN-ORBIT
INTERACTION POTENTIAL USING THE

SEMICLASSICAL APPROACH

The nucleon spin-orbit density �J q (q = n or p) [Eq. (15)]
of the semiclassical approach, in the approximation of ρn =
ρp = 1

2ρi ; i=1,2, gives the spin-orbit density of a nucleus �J i

(= �J n + �Jp) as

�J i(�r) = −2m

h̄2

3

4
W0

1

fq

ρi
�∇ρi (B1)

with

fq(�r) = 1 + 2m

h̄2

(
3t1 + 5t2

16
+ t2x2

4

)
ρi(�r). (B2)
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Then, the spin-orbit density dependent part of the Hamiltonian
density [from Eq. (3)] becomes

HJi
(ρi) = −2m

h̄2

(
3

4
W0

)2 1

fq

ρi( �∇ρi)
2. (B3)

Note that HJ is now a functional of ρ alone (fq is also a
function of ρ), independent of the shell structure of the nucleus.
Observing this fact, Singh and Gupta [38] determined the spin-
orbit interaction potential VJ (R) [Eq. (4)] directly in terms of
the proximity potential, as discussed below.

Based on Ref. [45], and following Chattopadhyay and
Gupta [40], the proximity potential between two spherical
nuclei of radii R01 and R02, whose centers are separated by
R = R01 + R02 + D, is defined by

VJ (R) = 2πR̄

∫ ∞

s

e(D)dD = 2πR̄φJ (D), (B4)

where R̄ = R01R02/(R01 + R02), the mean curvature radius
defining the geometry of the system, and e(D) is the interaction
energy per unit area between two flat parallel slabs of

semi-infinite nuclear matter, with surfaces parallel to the
X-Y plane, moving in the Z-direction and separated by a
distance D having the minimum value s. Since the

∫
e(D)dD

is independent of the geometry, it is a universal function,
given by

φJ (D) =
∫ {

HJ (ρ) − [
HJ1 (ρ1) + HJ2 (ρ2)

] }
dZ. (B5)

For the slab approximation, the two parameter Fermi density
becomes (i = 1,2)

ρi(Zi) = ρ0i(T )

[
1 + exp

Zi − R0i(T )

ai(T )

]−1

− ∞ � Z � ∞
(B6)

with
Z2 = R − Z1.

Substituting Eq. (B6) in Eq. (B3), we get from Eq. (B5) the
universal function φJ (D), solved numerically for the spin-orbit
interaction potential VJ (R) in Eq. (B4). For more details, see
Ref. [38].
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