Mixing strength in the two lowest 0[−] states in 208Pb

A. Heusler^{*}

Max-Planck-Institut fur Kernphysik, D-69029 Heidelberg, Germany ¨

G. Graw, R. Hertenberger, and F. Riess

Department fur Physik, Ludwig-Maximilian-Universit ¨ at M¨ unchen, D-85748 Garching, Germany ¨

H.-F. Wirth

Physik Department E18, Technische Universitat M¨ unchen, D-85748 Garching, Germany ¨

R. Krücken

Physik Department E12, Technische Universitat M¨ unchen, D-85748 Garching, Germany ¨

P. von Brentano

Institut fur Kernphysik, Universit ¨ at zu K ¨ oln, D-50937 K ¨ oln, Germany ¨ (Received 16 November 2006; published 28 February 2007)

With a resolution of 3 keV, the two lowest 0[−] states in ²⁰⁸Pb are identified by measurements of the reaction ²⁰⁷Pb(*d*, *p*) with the München Q3D magnetic spectrograph in the region $E_x = 5.2-5.7$ MeV where the average level spacing is 6 keV. Precise relative spectroscopic factors are determined. Matrix elements of the residual interaction among one-particle one-hole configurations in a two-level scheme are derived for the two lowest 0[−] states in 208Pb. The off-diagonal mixing strength is determined as 110 ± 10 *(experimental)* ± 15 *(systematic)* keV. Measurements of the reaction $^{208}Pb(p, p')$ via isobaric analog resonances in ^{209}Bi support the structure information obtained.

DOI: [10.1103/PhysRevC.75.024312](http://dx.doi.org/10.1103/PhysRevC.75.024312) PACS number(s): 21*.*10*.*Jx, 21*.*10*.*Hw, 25*.*45*.*Hi, 27*.*80*.*+w

I. INTRODUCTION

The nucleus ²⁰⁸Pb offers the singular chance to study a two-level scheme in the space of shell model configurations. Below $E_x = 6.1$ MeV, only two 0⁻ states among about 120 one-particle one-hole configurations are expected from shell model calculations $[1,2]$. They have been identified $[3]$, but their structure is not known in detail. With the average residual interaction known from experiment [\[4,5\]](#page-7-0), they are predicted to consist essentially of the two lowest configurations $s_{1/2}p_{1/2}$ and $d_{5/2} f_{5/2}$, since the next particle-hole configuration is ten times more distant than a mean matrix element (m.e.) of the residual interaction among one-particle one-hole configurations.

We took spectra of the reaction $^{207}Pb(d, p)$ at a resolution of 3 keV [\[6\]](#page-7-0) up to $E_x = 8$ MeV and identified the two 0⁻ states in the region $E_x = 5.2{\text -}5.7$ MeV, where the mean level distance is 6 keV.

Most of the low-lying states in $208Pb$ are considered as excited states created by the coupling of exactly one particle and one hole to the ground state. We postulate that each particle-hole state is completely described as a mixture of a few particle-hole configurations. The ground state of $207Pb$ is assumed to be a pure $p_{1/2}$ neutron-hole state in relation to the ground state of 208μ . In the 207μ B(*d, p*) reaction, the particle-hole states in 208Pb with spin 0[−] are populated by

 $L = 0$ transfer only, whereas the 1⁻ states are populated by both $L = 0$ and $L = 2$ transfer.

For two spin 0^- and nine 1^- states below $E_x = 6.5$ MeV, relative spectroscopic factors are measured. Using the method of Ref. [\[4\]](#page-7-0) and assuming the two lowest configurations to be almost completely contained in the two lowest 0[−] states, we deduced matrix elements of the residual interaction between the 0[−] configurations $s_{1/2}p_{1/2}$ and $d_{5/2}f_{5/2}$.

Results of the inelastic proton scattering on 208Pb via isobaric analog resonances (IAR) in 209Bi populating the two 0[−] states and some 1[−] states [\[6,7\]](#page-7-0) are discussed.

II. RESIDUAL INTERACTION IN THE SHELL MODEL

A. Determination of matrix elements of the residual interaction

We consider states with a certain spin *I* and a certain parity π . In order to distinguish states from configurations, we use the notation $|n, I^{\pi} \rangle$ for configurations and $\boxed{n, I^{\pi}}$ for states. Because of the dense spacing of states, some doublets are not yet resolved, and some spins and parities are not yet known. Therefore, often the alternative notation $\underline{|E_x, I^{\pi}\rangle}$ (simplified to 5280 0−, e.g.) for states is used, as was done in Ref. [\[6\]](#page-7-0).

In the shell model, the states are described to consist of particle-hole configurations $|k, I^{\pi} \rangle$,

$$
|\underline{n}, I^{\pi}\rangle = \sum_{k} t_{nk}(I^{\pi})|k, I^{\pi}\rangle. \tag{1}
$$

^{*}Corresponding author. Email address: A.Heusler@mpi-hd.mpg.de

Inversely, the particle-hole configurations can be described by the physical states as

$$
|k, I^{\pi}\rangle = \sum_{n} t_{nk}^{\dagger}(I^{\pi})|n, I^{\pi}\rangle.
$$
 (2)

Here $t_{nk}(I^{\pi})$ denotes the unitary transformation matrix of the Hilbert space of the physical states $\left| n, I^{\pi} \right\rangle$ into the configuration space $|k, I^{\pi} \rangle$. It is real because of the time reversal invariance of the Hamiltonian. The Hamiltonian **H** acting on the states $\frac{|n(I)|}{\sqrt{I}}$ has the eigenvalues $E_n(I^{\pi})$,

$$
H_{nm}(I^{\pi}) = \delta_{nm} E_n(I^{\pi}), \qquad (3)
$$

and the Hamiltonian h^0 acting on the configurations $|k, I^{\pi} \rangle$ has the eigenvalues $e_k^0(I^{\pi})$,

$$
h_{kl}^{0}(I^{\pi}) = \delta_{kl}e_k^{0}(I^{\pi}).
$$
\n(4)

They differ by the residual interaction

$$
v_{kl}(I^{\pi}) = \langle k(I^{\pi})|H - \mathbf{h}^{0}\rangle |l, I^{\pi}\rangle \tag{5}
$$

or explicitly

$$
v_{kl}(I^{\pi}) = \sum_{nm} t_{kn}(I^{\pi}) H_{nm}(I^{\pi}) t_{ml}^{\dagger}(I^{\pi}) - h_{kl}^{0}(I^{\pi}). \tag{6}
$$

B. Truncated configuration space

From experiments, amplitudes **t** for a *subset* of states can be derived only. When a lower part of the configuration space is separated from the higher configurations by a gap Δ sufficiently large in relation to an average m.e., the m.e. of the residual interaction can be determined in the truncated configuration space by the method described in Ref. [\[4\]](#page-7-0).

Among all levels adopted by the Evaluated Nuclear Structure Data File $[8,9]$ in doubly magic nuclei (including ${}^{88}Sr$ and $90Zr$), few 0⁻ states are known. In ⁴He, three 0⁻ states are known; in 16O, two 0[−] states with different isospin and in 40Ca, two 0[−] states are known. Only in 208Pb are bound 0[−] states known. So, the 0[−] doublet represents a unique case of two-level mixing, especially in view of the extremely large distance Δ to the next 0[−] configuration according to shell model calculations, see Fig. [1.](#page-2-0)

The lowest negative parity states in 208 Pb are assumed to be well described by the shell model as particle-hole states in relation to the ground state of 208Pb. Especially, the two lowest 0⁻ states, $\frac{|1(0^-)|}{2}$ and $\frac{|2(0^-)|}{2}$ at $E_x = 5280$ and 5599 keV, respectively, are assumed to consist of the neutron particlehole configurations $|s_{1/2}p_{1/2}, 0^{-}\rangle$ and $|d_{5/2}f_{5/2}, 0^{-}\rangle$ with weak admixtures of higher configurations $|C_q, 0^-\rangle$,

$$
\frac{|1,0^{-}\rangle}{\langle 1,0^{-}\rangle} = t_{11}(0^{-})|s_{1/2}p_{1/2},0^{-}\rangle + t_{12}(0^{-})|d_{5/2}f_{5/2},0^{-}\rangle
$$

+
$$
\sum_{q>2} t_{1q}(0^{-})|C_q,0^{-}\rangle,
$$

$$
\frac{|2(0^{-})\rangle}{\langle 1,0^{-}\rangle} = t_{21}(0^{-})|s_{1/2}p_{1/2},0^{-}\rangle + t_{22}(0^{-})|d_{5/2}f_{5/2},0^{-}\rangle
$$

+
$$
\sum_{q>2} t_{2q}(0^{-})|C_q,0^{-}\rangle.
$$
 (7)

In the following, amplitudes **t** are derived from experimental data, and the m.e. of the residual interaction can be determined in the truncated configuration space as

$$
v_{kl}(I^{\pi}) = \sum_{n=1,2} t_{kn}(I^{\pi})t_{ln}(I^{\pi})
$$

$$
\times \left[E_n(I^{\pi}) - \frac{1}{2} \left(e_k^{0}(I^{\pi}) + e_l^{0}(I^{\pi})\right)\right] + r_{kl}(I^{\pi}).
$$
 (8)

As extensively explained in Ref. [\[4\]](#page-7-0), the residual matrix $r_{kl}(I^{\pi})$ describes the influence of the higher configurations in the space separated from the lower configurations by the gap Δ . In our application, the residual matrix **r** is negligible.

In the truncated configuration space, the unitarity relation of matrix **t** is only approximately valid, that is,

$$
\sum_{n=1,2} t_{kn}(I^{\pi}) t_{ln}^{\dagger}(I^{\pi}) = \delta_{kl} - d_{kl}(I^{\pi}) \approx \delta_{kl}.
$$
 (9)

The deviation matrix $d_{kl}(I^{\pi})$ is introduced to derive an estimate of the systematic uncertainty of the m.e. of the residual interaction.

C. Two-level scheme of the lowest 0[−] states

The two-level scheme is valid if the amplitudes $t_{1q}(0^{-})$ and *t*2*^q* (0−) are small, thus allowing us to truncate the configuration space to two configurations. We postulate the deviation from unitarity to be small in the truncated two-level space,

$$
\begin{vmatrix} d_{11}(0^{-}) & d_{12}(0^{-}) \ d_{21}(0^{-}) & d_{22}(0^{-}) \end{vmatrix} \approx \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}.
$$
 (10)

By adding a fictitious third configuration with energy $e_3^0(0^-) \approx e_2^0(0^-) + \Delta$ (see Fig. [1\)](#page-2-0) from upper limits of the deviation matrix |**d**|, the value **r** as an estimate for the systematic error of the residual interaction **v** is determined. Indeed, the systematic error is estimated to be similar to the experimental error.

D. Determination of amplitudes by $207Pb(d, p)$

The ground state of 207 Pb is a rather pure single-neutronhole state with the configuration $|p_{1/2} \otimes 208 \text{ Pb}, \text{g.s.}\rangle$. Hence, in 0[−] states of 208Pb, the 207Pb(*d,p*) reaction populates the *s*1*/*2*p*1*/*² component only. This allows us to determine the amplitudes *t*11(0−) and *t*21(0−) in Eq. (7).

In contrast, for spin 1−, two configurations, *s*1*/*2*p*1*/*² and $d_{3/2}p_{1/2}$, are excited by the ²⁰⁷Pb(*d*, *p*) reaction. According to shell model calculations, $d_{3/2}p_{1/2}$ is the fifth configuration. Up to $E_x = 6.5$ MeV, nine 1⁻ states are identified as expected from the shell model (see later in Table [III\)](#page-5-0). Each of them can

be described as

$$
\underline{|n, 1^{-}\rangle} = t_{n1}(1^{-}) |s_{1/2}p_{1/2}, 1^{-}\rangle + t_{n5}(1^{-}) |d_{3/2}p_{1/2}, 1^{-}\rangle
$$

+
$$
\sum_{q=2-4, 6-9} t_{nq}(1^{-}) |C_q, 1^{-}\rangle.
$$
 (11)

For the $1⁻$ states, a deviation matrix similar to Eqs. [\(9\)](#page-1-0) and [\(10\)](#page-1-0) can be defined with elements *dn*1(1−)*, dn*5(1−), referring to the two configurations excited by ²⁰⁷Pb(*d*, *p*), namely, $s_{1/2}p_{1/2}$ and $d_{3/2}p_{1/2}$.

E. Excitation energies

Up to the lowest proton particle-hole configuration, using the energies of the known single-particle and single-hole states in the lead region $[8]$, the lowest 1p-1h configurations in ^{208}Pb with spin 0[−] are predicted as

The gap Δ between the second and third configuration, |2, 0⁻) and |3, 0⁻), is 1276 keV, see Fig. 1. It is more than ten times larger than the m.e. of the residual interaction of about 100 keV according to Refs. $[4,5]$. Hence the mixing between the two lowest 0[−] configurations in 208Pb represents an excellent example of a two-level scheme.

FIG. 1. Two lowest 0[−] configurations in 208Pb, neutron particle-hole configurations $s_{1/2}p_{1/2}$ and $d_{5/2}f_{5/2}$, are separated from the next higher configurations by a large gap Δ , allowing us to discuss the simple case of two-level configuration mixing in the $|1, 0^{-}\rangle$ and $|2, 0^{-}\rangle$ states at $E_x = 5280, 5599$ keV. Residual interaction \overline{v} is decomposed into m.e. v_{11} and v_{22} describing the shift of the two levels and m.e. $v_{12} = v_{21}$ describing the level repulsion.

The excitation energies of the two states are obtained from Table [I,](#page-3-0) $E_1(0^-) = 5280 \,\text{keV}, \quad E_2(0^-) = 5599 \,\text{keV}.$ (13)

III. EXPERIMENTAL DATA

A. Experiments with Q3D magnetic spectrograph

Using the Q3D magnetic spectrograph of the tandem accelerator of the Maier-Leibnitz laboratory at München, experiments of the reactions ²⁰⁷Pb(*d*, *p*) and ²⁰⁸Pb(*p*, *p*[']) via isobaric analog resonances in 209Bi (IAR-*pp*) were performed. They are described in detail in Ref. [\[6\]](#page-7-0). The resolution of about 3 keV, the low background (up to 1:5000), a reliable identification of contamination lines from light nuclei, and a sophisticated fit of the spectra by the computer code GASPAN [\[10\]](#page-7-0), allow us to resolve nearby levels and to detect weakly excited states even as neighbors to hundred times stronger levels. Here we refer to data obtained from the ²⁰⁷Pb(*d*, *p*) experiment in the region $E_x = 5.2 - 5.7$ MeV. Compared with earlier work with a resolution of 18 keV using the Heidelberg multigap magnetic spectrograph [\[11\]](#page-7-0) and following work in Refs. $[3,8,12,13]$, the resolution has been improved and the background lowered.

The mean level spacing is about 6 keV in the regions near the two 0[−] states. Peaks are identified by comparison with the known data [\[3,12–16\]](#page-7-0), see Table [I.](#page-3-0) A comparison to the preliminary analysis of the $^{208}Pb(p, p')$ data on seven IAR in 209 Bi with similar resolution [\[6\]](#page-7-0) allows us to verify the identifications.

Figures [2](#page-4-0) and [3](#page-4-0) show two 0.1 MeV long extracts of $207Pb(d, p)$ spectra, each covering 1.2 MeV totally. Whereas the neighbors of the 5599 0[−] state are 12–15 keV away, the 5280 0[−] state is surrounded by two levels at a 4–7 keV distance. At scattering angles of $\Theta = 20^{\circ} - 30^{\circ}$, the 5276 and 5287 states are excited with cross sections of 1–20% of the 5280 state.

Peaks from light contaminations $(^{12}C, ^{14}N, ^{16}O, ^{23}Na,$ and more) are identified in the whole spectra by the kinematic shift in a series of spectra taken at scattering angles $\Theta = 20^{\circ} - 30^{\circ}$ and the kinematic broadening for different openings of the entrance slit to the Q3D magnetic spectrograph, see Ref. [\[6\]](#page-7-0). In the region of $E_x = 5.5-5.7$ MeV, contamination lines from ¹⁴N with cross sections of a few μ b/sr are detected at scattering angles $\Theta = 20^\circ$ and 30°.

^aThe Coulomb shift is assumed to be 300 keV [5].

TABLE I. Levels near the 5280 0[−] and 5599 0[−] states in 208Pb (marked •). Within 1–2 keV, the energy label corresponds to the energies from Refs. [\[3,13–16\]](#page-7-0) or this work. The values from Refs. [\[13\]](#page-7-0) refer to the reaction ²⁰⁸Pb(p , p') at $E_p = 22$ MeV. Spin and parity I^{π} from Refs. [\[3,6,15,16\]](#page-7-0) are shown. Using the technique [\[17\]](#page-7-0) to decompose a line in a *γ* -ray spectrum into a sum and a direct part, the excitation energies from Ref. [\[14\]](#page-7-0) are updated in Ref. [\[15\]](#page-7-0); in effect, they have changed by about 0.3 keV, more than the given experimental error. For 1[−] states, the corrected excitation energies are generally up to 1 keV lower than those given in Ref. [\[14\]](#page-7-0), but for other spins they tend to be higher.

Energy label	E_x (keV)					Ref.
	This work	Ref. [3]	Ref. [15]	Ref. [13]		
			Region near 52800^- and 52921^-			
5239	5239.5±0.8	5239.35±0.36			$4 -$	[6]
5241		5241.0 \pm 0.4 a		5240.8 ± 1.5	0^+	$[16]$
5245	5245.4 ± 0.3	5245.28±0.06	5245.2 ± 0.1	5244.6 ± 1.0	$3-$	$[3]$
5254	5254.2±0.8	5254.16±0.15				
5261	5261.2 ± 0.8					
5266	5266.6±0.9					
5276	5276.3 ± 0.4			5277.1 ± 1.5	$4-$	[6]
5280	5280.5±0.1	5280.32±0.08	5280.5 ± 0.1	5281.3 ± 1.5	0^{-}	$[3]$
5287	5287.8±1.9			5287.2 ± 1.5		
5292	5292.2 ± 0.1	5292.00±0.20	5292.1 ± 0.1	5292.6 ± 1.5	$1-$	$[3]$
5307	5307.6±1.5					
5316	5313.0±1.0	5317.00 \pm 0.22			(3^{+})	$\lceil 3 \rceil$
5317	5316.9±1.5	5317.30±0.60		5317.7 ± 0.6		
5326				5326.9±0.6		
5339	5340.0±0.9	5339.46±0.16		5340.1 ± 1.5	8^+	$[3]$
5347	5347.4±0.2	5347.15±0.25		5348.4±0.6	$3-$	$[3]$
			Region near 5599 0 ⁻¹			
5548	5548.5±0.4	5548.08±0.20	5548.2±0.1	5547.5 ± 1.5	2^{-}	$\lceil 3 \rceil$
5557	5557.2 ± 1.0			5554.0 ± 2.0		
5563	5563.9±0.3	5563.58±0.14	5563.6±0.1	5564.7±0.6	3^{-} , 4^{-}	$[3]$
5566		5566.00±0.60			$4-$	$[3]$
5572	5572.0 ± 0.8					
5577	5579.0±0.9			5576.6 ± 1.5		
5587	5587.4±1.0			5587.7±0.5		
5599	5599.8±0.5	5599.40±0.08	5601.7 ± 0.1	5599.6±0.4	$0-$	$[3]$
5614	5614.4 ± 1.7			5615.4±0.4		
5641	5640.7±0.6	5641.10±0.50	5641.4±0.5	5639.9±1.5	$(1^-, 2^+)$	[14, 15]
5643				5643.1 ± 1.5		
5649	5648.7±0.5	5649.70±0.28		5649.8±0.9	(5^{-})	$[3]$

 $^{\circ}$ From Ref. [\[16\]](#page-7-0).

B. Extraction of relative spectroscopic factors

By use of the GASPAN code [\[10\]](#page-7-0) with the option of fixed energy distances, and the excitation energies from Table I, the cross sections are precisely determined. Figures [2](#page-4-0) and [3](#page-4-0) show spectra for the regions around the 5280 0⁻ and the 5599 0⁻ levels. Table II shows the cross sections for the 5280 0−, 5292 1[−] and 5599 0[−] levels. They increase by a factor of 4 between $\Theta = 20°$ and 30°. In relation to the 5292 1⁻ state, the cross sections for the two 0[−] states differ by a constant factor (0.32) and 0.05) within the errors. For $\Theta = 20^{\circ} - 30^{\circ}$, distorted-wave Born approximation (DWBA) calculations [\[12,13\]](#page-7-0) yield the steep slope observed for $L = 0$ [\[12,13\]](#page-7-0). In contrast, the angular distributions for the two levels 5924 2−, 5947 1[−] [\[3\]](#page-7-0), bearing the main strength of the $d_{3/2}p_{1/2}$ configuration, vary by less than 10% for $\Theta = 20^{\circ} - 30^{\circ}$.

TABLE II. For the two 0^- states at $E_x = 5280, 5599$ MeV and the 5292 1[−] state, the mean cross section from six runs taken with different slit openings of the Q3D spectrograph [\[6\]](#page-7-0) and evaluated with different methods of background subtraction [\[10\]](#page-7-0). The angular distributions for the 5292 1−, 5280 0−, 5599 0[−] states have similar slopes in congruence with DWBA calculations [\[12,13\]](#page-7-0). They scale as $1: 0.32: 0.05$, respectively, and rise from $\Theta = 20^\circ$ to 30° by a factor of 4.

Energy label	Spin		$d\sigma/d\Omega(\mu b/sr)$	
		$\Theta = 20^{\circ}$	$\Theta = 25^{\circ}$	$\Theta = 30^{\circ}$
5280	$0-$	90.8 ± 5.6	2546 ± 8.0	361.8 ± 15.2
5292	$1 -$	291.8 ± 15.4	7887 ± 19.5	1131.1 ± 36.0
5599	∩−	$11.4 + 2.3$	424 ± 1.6	58.2 ± 2.2

FIG. 2. (Color online) ²⁰⁷Pb(*d*, *p*) spectrum taken at $\Theta = 30^\circ$ for $E_x = 5.23 - 5.36$ MeV. The 5280 0⁻ state (marked •) is resolved from the two neighbors in 4–7 keV distance. It is displayed on a logarithmic scale because the background is 1/2000 of the maximum peak, but many levels with 1% of the maximum are clearly resolved. Curves show the fit by the computer code GASPAN [\[10\]](#page-7-0), where the energies are taken from Table [I](#page-3-0) and only the centroid of all energies together and the peak heights are varied. The widths and tails are interpolated from a table generated by inspection of several strong, rather isolated peaks in the whole spectrum covering about 1.2 MeV, nearly ten times more than shown. A weak contamination line from ²³Na is identified near $E_x = 5.31$ MeV.

In view of the steep rise of the angular distribution from $\Theta = 20^\circ$ to $\Theta = 30^\circ$, we determine relative spectroscopic factors by first calculating a mean angular distribution of the three states,

$$
\widetilde{R}(\Theta) = \sum_{n,I^{\pi}} \left\{ \frac{d\sigma}{d\Omega} (\vert n, I^{\pi}), \Theta \right\} / \sum_{\theta} \frac{d\sigma}{d\Omega} (\vert n, I^{\pi}), \Theta \right\} . (14)
$$

The energy dependence of the cross section is neglected because of the small energy range. In a least squares fit, we then obtain the mean cross section for the state $|n, I^{\pi} \rangle$

$$
\left\langle \frac{d\sigma}{d\Omega}(\underline{n}, I^{\pi}) \right\rangle = \sum_{\theta} \left\{ \frac{d\sigma}{d\Omega}(\underline{n}, I^{\pi}) \Theta \right/ \widetilde{R}(\Theta) \right\} \tag{15}
$$

as a measure of the relative spectroscopic factors. In Table [III](#page-5-0) we adjust the mean values to the cross section of the 5292 1[−] state at the scattering angle $\Theta = 25^\circ$.

C. Determination of mixing amplitudes

The unitarity relation for a two-level space $[Eq. (9)]$ $[Eq. (9)]$ $[Eq. (9)]$ and the assumption of a vanishing deviation matrix $d_{kl}(0⁻)$ [Eq. [\(10\)](#page-1-0)] yields only one independent variable, since t_{11}^2 + $t_{21}^2 = 1$ and $t_{22}^2 + t_{12}^2 = 1$. The reaction ²⁰⁷Pb(*d, p*) excites solely the $s_{1/2}p_{1/2}$ component of the 0⁻ states [Eq. [\(7\)](#page-1-0)]. Thus, the ratio of the measured mean cross sections (Table [III\)](#page-5-0) is

FIG. 3. (Color online) $^{207}Pb(d, p)$ spectrum taken at $\Theta = 25^\circ$ for $E_x = 5.54$ – 5*.*65 MeV. The 5599 0[−] state (marked •) is well isolated. For other details, see Fig. 2.

TABLE III. Up to $E_x = 6.5$ MeV, two states (in bold) with spin 0[−] (marked •) and nine states with spin 1[−] are known. Within 1–2 keV, the energy label reflects the energies E_x from Refs. [\[3,12–15\]](#page-7-0) or this work. Their mean cross section $\langle \frac{d\sigma}{d\Omega}(\mathbf{n}, I^{\pi}) \rangle$ [see Eq. [\(15\)](#page-4-0)] adjusted to reproduce the cross section at $\Theta = 25^{\circ}$ for the 5292 1⁻ state is shown. Spectroscopic factors $S_{(d,p\gamma)}$ [\[3\]](#page-7-0) and S.F. [\[12,13\]](#page-7-0) are given for comparison. The reaction ²⁰⁷Pb(*d*, *p*) was measured with the same deuteron energy $E_d = 22.000 \text{ MeV}$ as in Refs. [\[12,13\]](#page-7-0). In the states with spin 1⁻, the $L = 0$ and *L* = 2 transfer excites the *s*1*/*2*p*1*/*² and *d*3*/*2*p*1*/*² configurations, respectively, but in the two 0[−] states only the $s_{1/2}p_{1/2}$ component is excited by the *L* = 0 transfer [Eqs. [\(7\)](#page-1-0), [\(11\)](#page-2-0)]. For the nine 1[−] states, from the measured angular distributions, we derive the ratio $r_{n51}(1^-)$ of the strength for the configurations $d_{3/2}p_{1/2}$ ($L = 2$) and $s_{1/2}p_{1/2}$ ($L = 0$), see Eq. [\(18\)](#page-6-0).

State	Energy label	I^{π}	L	$S_{(d,p\gamma)} \times 1000$	L	$S.F. \times 1000$	$r_{n51}(1^-)$	$\langle \frac{d\sigma}{d\Omega}(n, I^{\pi} \rangle) \rangle$ $(\mu b/sr)$
				Ref. $[3]$		Refs. $[12, 13]$		This work
$ 1, 1^{-}\rangle$	4841	1^{-}	$\overline{0}$	11 ± 4			> 0.5	22 ± 5
$ 1, 0^{-}\rangle$	5280	0^{-}	Ω	$377 + 32$	θ	650		250 ± 10
$ 2, 1^{-}\rangle$	5292	1^{-}	Ω	1071 ± 325	$\overline{0}$	1550	< 0.1	785 ± 30
$ 3, 1^{-}\rangle$	5512	$1-$	θ	$74 + 22$			> 0.8	160 ± 15
					$\overline{2}$	165		
$ 2, 0^{-}\rangle$	5599	0^{-}	θ	60 ± 6	θ	103		$40 + 5$
$ 4, 1^{-}\rangle$	5641	1^{-a}		4 ^b			> 0.7	22 ± 3
$ 5, 1^{-}\rangle$	5947	1^{-}	$\overline{2}$	1266±488	$\overline{2}$	1390	$>12^{\circ}$	$1300 \pm 80^{\rm d}$
$ 6, 1^{-}\rangle$	6263	1^{-}	$\overline{2}$	$55 + 23$	$\overline{2}$	7	> 0.6	25 ± 10
					$\mathbf{0}$	59		
$ 7, 1^{-}\rangle$	6314	1^{-}	2	$88 + 38$	θ	113	> 0.7	$38 + 12$
$ 8, 1^{-}\rangle$	6360	1^{-}	$\overline{2}$	29 ± 13	$\mathfrak{2}$	13	> 0.7	9 ± 3
$ 9, 1^{-}\rangle$	6486	1^{-e}		30 ^b	$\mathfrak{2}$	38	> 0.8	30±5
					θ	12		

 $A^T = (1^-, 2^+)$ from Refs. [\[14,15\]](#page-7-0). The preliminary analysis of our IAR-*pp'* data excludes spin 2⁺.
^bDerived from the relative population strength (*S*_{exp}).

"By comparison with the 5924 2^- state with $L = 2$ only.

^dThe error includes the variation of the angular distribution with Θ .

 ${}^eI^{\pi} = 1^-$ from Refs. [\[14,15\]](#page-7-0).

used to derive the two-level matrix **t**,

$$
t_{21}^2(0^-) / t_{11}^2(0^-) = \left\langle \frac{d\sigma}{d\Omega} (\underline{12}, 0^-) \right\rangle / \left\langle \frac{d\sigma}{d\Omega} (\underline{11}, 0^-) \right\rangle. \quad (16)
$$

Explicitly, we have

$$
|t_{11}(0^-)| = |t_{22}(0^-)| = 0.928 \pm 0.015,
$$

$$
|t_{12}(0^-)| = |t_{21}(0^-)| = 0.37 \pm 0.04.
$$
 (17)

D. Completeness in the truncated configuration space

An essential assumption is the proportionality of the sum of the $s_{1/2}p_{1/2}$ strength in all states for spins $I^{\pi} = 0^{-}$, 1⁻ to the spin factor $(2*I* + 1)$. Yet the 1⁻ states contain also the configuration $d_{3/2}p_{1/2}$ which is excited by ²⁰⁷Pb(*d*, *p*), too. In the following, we disentangle these two components excited by $L = 0$ and $L = 2$ transfer.

Higher 0[−] states are not known, but they should have energies above $E_x \approx 6.8$ MeV, see Fig. [1.](#page-2-0) In contrast, up to $E_x = 6.5$ MeV, nine 1⁻ states are known as predicted by the shell model.

The cross sections $\langle \frac{d\sigma}{d\Omega}(\underline{n}, \underline{I}^{\pi}) \rangle$ for the two 0⁻ states and all 1[−] states up to $E_x = 6.5$ MeV (Table III) are consistent

with the data of Refs. [\[12,13\]](#page-7-0) within the errors. The ratios agree also with the population strengths of Ref. [\[3\]](#page-7-0), but they are more precise.

The reaction $^{207}Pb(d, p)$ excites the two configurations $s_{1/2}p_{1/2}$ and $d_{3/2}p_{1/2}$ in all 1[−] states but only the configuration $s_{1/2}p_{1/2}$ in the 0⁻ states. The sum of the $s_{1/2}p_{1/2}$ strength in the two 0^- states is derived from Refs. [\[3\]](#page-7-0) and [\[12,13\]](#page-7-0) as 80% and 130%, respectively, see Table III. As noted by Ref. [\[12\]](#page-7-0), the DWBA calculations for $L = 0$ are extremely sensitive to the shape of the potential.

We assume the two 0^- states to contain the $s_{1/2}$ $p_{1/2}$ strength almost completely. Because higher configurations admix little due to the gap Δ between the second and third 0[−] configurations, *d*5*/*2*f*5*/*² and *g*9*/*2*h*9*/*2, being larger than ten times the mean m.e. of the residual interaction (about 100 keV), the deviation matrix $d_{kl}(0^-)$ is expected to almost vanish [Eq. [\(10\)](#page-1-0)]. By comparing the detected strength of the $s_{1/2}p_{1/2}$ 0⁻ and $s_{1/2}p_{1/2}$ 1⁻ configurations, we try to minimize the deviation matrices $d_{n1}(1^-)$, $d_{n5}(1^-)$. In effect, upper limits of the deviation matrix element $d_{11}(0^-) \approx d_{22}(0^-)$ and an estimate of the missing strength $\sum_{n \geq 2} t_{n1}^2(0^-)$ are derived.

The 5292 1[−] state contains less than 93% of the $s_{1/2}p_{1/2}$ strength, since the ratio of its cross section to the sum of the two 0[−] states is less than the ratio 3:1 expected from the spin factor $(2*I* + 1)$, see Table [II.](#page-3-0) Other 1⁻ states contain the remaining *s*1*/*2*p*1*/*² strength, but the 5292 1[−] state contains also some of the *d*3*/*2*p*1*/*² strength [besides other configurations not detected by ²⁰⁷Pb(*d*, *p*) but by IAR-*pp*[']]. The missing $s_{1/2}p_{1/2}$ strength is contained in the other eight 1[−] states.

Whereas the angular distribution for $L = 0$ between $\Theta =$ $20°$ and $30°$ changes by a factor of 4, the angular distribution for $L = 2$ is rather flat [\[12,13\]](#page-7-0). We determine for each 1⁻ state a ratio

$$
r_{n51}(1^-) = t_{n5}^2(1^-) \big/ t_{n1}^2(1^-),\tag{18}
$$

where the amplitudes $t_{n1}(1^-)$, $t_{n5}(1^-)$ are defined in Eq. [\(11\)](#page-2-0). Only upper or lower limits can be given (Table [III\)](#page-5-0) since the configurations $s_{1/2}p_{1/2}$ and $d_{3/2}p_{1/2}$ are concentrated in the 5292 1[−] and 5947 1[−] states, respectively, and all other 1[−] states are weakly excited by $^{207}Pb(d, p)$.

- (i) All 1[−] states except for the 5292 1[−] state listed in Table [III](#page-5-0) have rather flat angular distributions for $\Theta =$ 20° –30 $^\circ$. For the states considered, the dependence of the cross section on the energy E_x for states with the same configuration mixture is negligible [\[12,13\]](#page-7-0).
- (ii) For the 5924 2^- and 5947 1^- states, the angular distribution for $\Theta = 20^{\circ} - 30^{\circ}$ is flat (similar to that for other states with dominant $d_{5/2}p_{1/2}$ strength) in contrast to the steep rise for the $s_{1/2}p_{1/2}$ configuration [\[12,13\]](#page-7-0). The 5924 2[−] and 5947 1[−] states contain most of the $d_{3/2}p_{1/2}$ strength [\[13\]](#page-7-0), and the spin assignments are firm [\[3\]](#page-7-0).
- (iii) In the 5947 1[−] state, the comparison of the shape of the angular distribution to the 5924 2[−] state allows us to deduce an upper limit for the *s*1*/*2*p*1*/*² strength of about 8% or a ratio *rn*51(1−) *>* 12 [Eq. (18)].
- (iv) For the other 1[−] states besides the 5292 and 5947 states, lower limits of the ratio *rn*51(1−) are derived, see Table [III.](#page-5-0)
- (v) The deviation of the slope of the cross section for the 5292 1[−] state compared with that for the two 0[−] states, especially at $\Theta = 20^\circ$, implies up to 10% $d_{3/2}p_{1/2}$ admixture (Table [II\)](#page-3-0).

Summing the thus derived upper limits of $s_{1/2}p_{1/2}$ admixtures $t_{n1}^{2}(1^{-})$ to all other 1^{-} states, we derive a lower limit 86% of the *s*1*/*2*p*1*/*² configuration in the 5292 1[−] state and the $d_{3/2}p_{1/2}$ strength in the 5947 1⁻ state to be 80% ± 5%. Together with the upper limit of 93% derived before, the sum of the $s_{1/2}p_{1/2}$ strength in all nine 1⁻ states is found to be complete within a margin of 8%.

We conclude that the sum of the $s_{1/2}p_{1/2}$ strength in the 5280 0[−] and 5599 0[−] states is complete within better than 97% or *d*₁₁(0[−]) ≈ *d*₂₂(0[−]) < 0.03. The elements *d*₁₂(0[−]) ≈ *d*₂₁(0[−]) are obtained by considering in addition the experimental errors of the amplitudes *tnk*(0−). An upper limit for the deviation matrix $[Eq. (10)]$ $[Eq. (10)]$ $[Eq. (10)]$ is thus obtained,

$$
d_{11}(0^{-}) \approx d_{22}(0^{-}) < 0.03,
$$
\n
$$
|d_{21}(0^{-})| \approx |d_{12}(0^{-})| < 0.02.
$$
\n⁽¹⁹⁾

IV. RESULTS AND DISCUSSION

A. Determination of matrix elements of the residual interaction from $^{207}Pb(d, p)$

Using Eq. [\(8\)](#page-1-0), we derive the m.e. of the residual interaction for the two-level space consisting of the configurations $|s_{1/2}p_{1/2}0^{-}\rangle$ and $|d_{5/2}f_{5/2}0^{-}\rangle$ from experimental data. Omitting the notation referring to spin 0−, we have explicitly

$$
v_{11} = t_{11}^2 E_1 + t_{21}^2 E_2 - (t_{11}^2 + t_{21}^2) e_1^0,
$$

\n
$$
v_{22} = t_{12}^2 E_1 + t_{22}^2 E_2 - (t_{12}^2 + t_{22}^2) e_2^0,
$$

\n
$$
v_{12} = t_{11} t_{12} E_1 + t_{21} t_{22} E_2
$$

\n
$$
- \frac{1}{2} (t_{11} t_{12} + t_{21} t_{22}) (e_1^0 + e_2^0),
$$

\n
$$
v_{21} = t_{12} t_{11} E_1 + t_{22} t_{21} E_2
$$

\n
$$
- \frac{1}{2} (t_{12} t_{11} + t_{22} t_{21}) (e_1^0 + e_2^0).
$$

Here, the shell model energies e_k^0 are given in Eq. [\(12\)](#page-2-0), the energies E_n of the two states in Eq. (13) . From the experimental data, the amplitudes **t** of the two states are derived in Eq. [\(17\)](#page-5-0). We obtain the m.e.

$$
v_{11} = -140 \pm 10 \text{ (exp.)} \pm 20 \text{ (syst.) keV},
$$

\n
$$
v_{22} = -10 \pm 10 \text{ (exp.)} \pm 20 \text{ (syst.) keV},
$$

\n
$$
|v_{12}| = |v_{21}| = 110 \pm 10 \text{ (exp.)} \pm 15 \text{ (syst.) keV}.
$$

\n(21)

The sign of the off-diagonal terms $v_{12} = v_{21}$ cannot be determined from our data. The diagonal terms v_{11} , v_{22} describe the level shift, the off-diagonal terms $v_{12} = v_{21}$ the level repulsion, see Fig. [1.](#page-2-0)

The m.e. of the residual interaction (especially the offdiagonal m.e.) agree with the mean m.e. of about 100 keV obtained from the analysis of the lowest 20 particle-hole configurations in 208Pb [\[4,5\]](#page-7-0). The values **v** are compatible with theoretical calculations [\[1,2\]](#page-7-0), but they are more precise.

The systematic error as given by the uncertainty of the value $r_{kl}(I^{\pi})$ in Eq. [\(8\)](#page-1-0) is estimated from the extension of the twolevel scheme into a three-level scheme. By adding a fictitious configuration at $e_3^0 = e_2^0 + \Delta$ (see Fig. [1\)](#page-2-0) with a fixed strength $t_{33}^2 = 1 - d_{11}$ [see Eq. (19)] and optimizing the unitarity of the 3×3 matrix t_{kn} by varying only the amplitudes t_{13} , t_{23} and *t*31*, t*³² within the uncertainties, estimates of 20 and 15 keV for the systematic errors of the diagonal and off-diagonal m.e., respectively, are obtained. These values can be trusted since all m.e. involved with the fictitious configuration are less than the mean m.e. of about $100 \text{ keV } [4,5]$ $100 \text{ keV } [4,5]$.

B. Data from IAR- *pp*

A preliminary analysis of the IAR-*pp'* data [\[6\]](#page-7-0) is consistent with the spin assignments given in Table [III.](#page-5-0) Especially the 5292 1−, 5924 2−, 5947 1[−] states are selectively excited by the $s_{1/2}$, $d_{3/2}$, and $d_{3/2}$ IAR, respectively.

In early $IAR-pp'$ experiments [\[7\]](#page-7-0), excitation functions were measured for several multiplets with a resolution of 26 keV. The energies given by Ref. [\[7\]](#page-7-0) derive from the calibration of IAR- pp' spectra taken with the Enge split-pole magnetic spectrograph [\[18\]](#page-7-0). They are about 0.13% too low [\[6\]](#page-7-0).

Measurements of the excitation function for the unresolved 5280 0−, 5292 1[−] doublet (5.284 MeV) show a strong excitation by the $s_{1/2}$ IAR. A weak excitation by the $d_{5/2}$ IAR is explained by the *d*5*/*2*f*5*/*² component in the 5280 0[−] state [Eqs. [\(7\)](#page-1-0), [\(17\)](#page-5-0)] and *d*5*/*2*f*5*/*2, *d*5*/*2*p*3*/*² components in the 5292 1[−] state [Eq. [\(11\)](#page-2-0)].

Similarly, the resolved 5924 2^- , 5947 1⁻ doublet (5.914 + 5.936 MeV) is dominantly excited by the $d_{3/2}$ IAR, proving the presence of about equal $d_{3/2}p_{1/2}$ components in both states in agreement with the results from $^{207}Pb(d, p)$. Whereas the 5924 2[−] state clearly resonates on the *s*1*/*² IAR (which is explained by weak $s_{1/2} f_{5/2}$ and $s_{1/2} p_{3/2}$ components), the decay curve of the 5947 1[−] state near the *s*1*/*² IAR is smooth in congruence with the value *rn*51(1−) given in Table [III](#page-5-0) for $n = 5$.

The $d_{5/2}$ and $s_{1/2}$ IAR are overlapping, $E^{\text{res}} =$ 16.496, 16.965 MeV and $\Gamma^{tot} = 308, 319$ keV, respectively [6,7]. Neglecting the interference and using the amplitudes of Eq. [\(17\)](#page-5-0), a calculation of the cross sections for the 5280 0[−] and 5599 0[−] states on the *d*5*/*² and *s*1*/*² IAR (using the IAR parameters of Ref. [6]) roughly agrees with the measured data. An attempt following Ref. [19] to describe the angular distributions by interfering IAR did not yield conclusive results, essentially because of missing data at scattering angles $\Theta < 40^\circ$.

V. SUMMARY

Up to $E_x = 6.1$ MeV, the shell model predicts 120 oneparticle one-hole states in ²⁰⁸Pb (70 states with negative and

- [1] B. A. Brown, Phys. Rev. Lett. **85**, 5300 (2000).
- [2] M. Rejmund, M. Schramm, and K. H. Maier, Phys. Rev. C **59**, 2520 (1999).
- [3] M. Schramm, K. H. Maier, M. Rejmund, L. D. Wood, N. Roy, A. Kuhnert, A. Aprahamian, J. Becker, M. Brinkman, D. J. Decman, E. A. Henry, R. Hoff, D. Manatt, L. G. Mann, R. A. Meyer, W. Stoeffl, G. L. Struble, and T.-F. Wang, Phys. Rev. C **56**, 1320 (1997).
- [4] A. Heusler and P. von Brentano, Ann. Phys. (NY) **75**, 381 (1973).
- [5] A. Heusler, G. Graw, R. Hertenberger, F. Riess, H.-F. Wirth, T. Faestermann, R. Krucken, J. Jolie, N. Pietralla, and P. von ¨ Brentano, http://arXiv.org/abs/nucl-ex/0601016; A. Heusler, http://www.mpi-hd.mpg.de/personalhomes/hsl.
- [6] A. Heusler, G. Graw, R. Hertenberger, F. Riess, H.-F. Wirth, T. Faestermann, R. Krücken, J. Jolie, D. Mücher, N. Pietralla, and P. von Brentano, Phys. Rev. C **74**, 034303 (2006).
- [7] W. R. Wharton, P. von Brentano, W. K. Dawson, and P. Richard, Phys. Rev. **176**, 1424 (1968).
- [8] M. J. Martin, Nucl. Data Sheets **47**, 797 (1986).
- [9] National Nuclear Data Center, Brookhaven, Evaluated Nuclear Structure Data File, http://ie.lbl.gov/ensdf/.
- [10] F. Riess, http://www.cip.physik.uni-muenchen.de/˜riess/.

50 states with positive parity). However, only two states with spin 0[−] are known. From a measurement of the reaction $^{207}Pb(d, p)$ with an energy resolution of 3 keV, we identify the two known states with spin 0[−] among about 150 physical states. The mean level spacing in the region of $E_x = 5.2-$ 5*.*7 MeV around the two 0[−] states is 6 keV. Spectroscopic information from $^{207}Pb(d, p)$ is used to determine their structure. Data from inelastic proton scattering via IAR in 209Bi support the structure information.

Among all levels in doubly magic nuclei [8,9], few states with spin 0[−] are known, all of them are unbound except for two states in 208Pb. The 0[−] doublet in 208Pb represents a rare case of a close pair of 0[−] states with a large distance to the next 0[−] configuration predicted by the shell model. So, this doublet represents a unique case of a two-level mixing.

Matrix elements of the residual interaction between the two lowest 0[−] configurations in 208Pb are derived from the experimental data. Spectroscopic information from the nine lowest 1[−] states is used to quantify the systematic uncertainty. The value of the off-diagonal mixing strength is determined as 110 ± 10 (exp.) ± 15 (syst.) keV, but the sign is not determined. The precision is higher than that attained with current shell model calculations.

ACKNOWLEDGMENTS

This work has been supported by MLL, DFG C4-Gr894/2- 3, and DFG Br799/12-1.

- [11] P. B. Vold, J. O. Andreassen, J. R. Lien, A. Graue, E. R. Cosman, W. Dünnweber, D. Schmitt, and F. Nusslin, Nucl. Phys. A215, 61 (1973).
- [12] B. D. Valnion, Ph.D. thesis, Universität München, (1998), Herbert Utz Verlag, München.
- [13] B. D. Valnion, V. Yu. Ponomarev, Y. Eisermann, A. Gollwitzer, R. Hertenberger, A. Metz, P. Schiemenz, and G. Graw, Phys. Rev. C **63**, 024318 (2001).
- [14] E. Radermacher, M. Wilhelm, S. Albers, J. Eberth, N. Nicolay, H.-G. Thomas, H. Tiesler, P. von Brentano, and R. Schwengner, S. Skoda, G. Winter, and K. H. Maier, Nucl. Phys. **A597**, 408 (1996).
- [15] E. Radermacher, M. Wilhelm, P. von Brentano, and R. V. Jolos, Nucl. Phys. **A620**, 151 (1997).
- [16] M. Yeh, P. E. Garrett, C. A. McGrath, S. W. Yates, and T. Belgya, Phys. Rev. Lett. **76**, 1208 (1996).
- [17] E. Radermacher, M. Wilhelm, and P. von Brentano, Nucl. Instrum. Methods **383**, 480 (1996).
- [18] C. F. Moore, J. G. Kulleck, P. von Brentano, and F. Rickey, Phys. Rev. **164**, 1559 (1967).
- [19] A. Heusler, M. Endriss, C. F. Moore, E. Grosse, and P. von Brentano, Z. Phys. **227**, 55 (1969).