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In the last few years, the low-momentum nucleon-nucleon (NN) interaction Vlow-k derived from free-space NN
potentials has been successfully used in shell-model calculations. Vlow-k is a smooth potential which preserves
the deuteron binding energy as well as the half-on-shell T matrix of the original NN potential up to a momentum
cutoff �. In this paper, we test a new low-momentum NN potential derived from chiral perturbation theory at
next-to-next-to-next-to-leading order with a sharp low-momentum cutoff at 2.1 fm−1. Shell-model calculations
for the oxygen isotopes using effective Hamiltonians derived from both types of low-momentum potential are
performed. We find that the two potentials show the same perturbative behavior and yield very similar results.

DOI: 10.1103/PhysRevC.75.024311 PACS number(s): 21.30.Fe, 21.60.Cs, 27.20.+n, 27.30.+t

I. INTRODUCTION

A challenging goal of nuclear structure theory is to perform
shell-model calculations with single-particle (SP) energies
and residual two-body interactions, both derived from a
realistic nucleon-nucleon (NN) potential VNN . To tackle this
problem, a well-established framework is the time-dependent
degenerate linked-diagram perturbation theory as formulated
by Kuo, Lee, and Ratcliff [1,2], which enables the derivation
of a shell-model effective Hamiltonian Heff starting from
VNN .

As is well known, a main feature of VNN is the presence
of a built-in strong short-range repulsion dealing with high-
momentum components of the potential. This hinders an order-
by-order perturbative calculation of Heff in terms of VNN , as the
matrix elements of the latter are generally very large. However,
in nuclear physics there is a natural separation of energy scales
which can be used to formulate an advantageous theoretical
approach for VNN . As a matter of fact, the characteristic quan-
tum chromodynamics (QCD) energy scale is MQCD ∼ 1 GeV,
while for nuclear systems, we have Mnuc ∼ 100 MeV [3].

This consideration was at the origin of the seminal work
of Weinberg [4,5], who introduced into nuclear physics the
method of effective field theory (EFT) to study the S matrix
for a process involving arbitrary numbers of low-momentum
pions and nucleons. This approach is based on the known
symmetries of QCD and parametrizes the unknown dynamical
details introducing a number of constants to be determined.

Since then, much work has been carried out on this subject
(see, for instance, Refs. [3,6–10]), leading to the construction
of VNN based on chiral perturbation theory that are able to
reproduce accurately the NN data [11,12]. However, these
potentials also cannot be used in a perturbative nuclear
structure calculation.

Inspired by EFT, a new approach based on the renormal-
ization group (RG) has been recently introduced to derive a
low-momentum NN interaction Vlow-k [13–15]. The starting

point in the construction of Vlow-k is a realistic model for VNN

such as the CD-Bonn [16], Nijmegen [17], Argonne V 18 [18],
or N3LO [11] potentials. A cutoff momentum � that separates
fast and slow modes is then introduced, and from the original
VNN an effective potential, satisfying a decoupling condition
between the low- and high-momentum spaces, is derived by
integrating out the high-momentum components. The main
result is that Vlow-k is a smooth potential that preserves exactly
the on-shell properties of the original VNN and is suitable to
be used directly in nuclear structure calculations. In the past
few years, Vlow-k has been fruitfully employed in microscopic
calculations within different perturbative frameworks such as
the realistic shell model [19–24], the Goldstone expansion
for doubly closed-shell nuclei [25–27], and the Hartree-Fock
theory for nuclear matter calculations [28–30].

The success of Vlow-k suggests that there may be a way
to construct a low-momentum NN potential which is more
deeply rooted in EFT and can be used in a perturbative
approach. Namely, instead of taking the detour through a
NN potential with high-momentum components, one may
as well construct a low-momentum potential from scratch
using chiral perturbation theory. We have constructed such
a potential at next-to-next-to-next-to-leading order (N3LO)
using a sharp cutoff at 2.1 fm−1. This potential reproduces
the NN phase shifts up to 200 MeV laboratory energy and
the deuteron binding energy. While Vlow-k allows only a
numerical representation, the new low-momentum potential
(dubbed N3LOW) is given in analytic form. Moreover, the
low-energy constants are explicitly known so that the chiral
three-nucleon forces consistent with N3LOW can be properly
defined.

To investigate the perturbative properties of this new chiral
low-momentum potential, we perform shell-model calcula-
tions for even oxygen isotopes. We employ two different
effective Hamiltonians: one is based on the Vlow-k derived
numerically from a “hard” N3LO potential [11] and the other
on N3LOW.
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FIG. 1. Phase parameters of neutron-proton scattering up to
200 MeV laboratory energy for partial waves with total angular
momentum J � 2. Predictions by the new low-momentum N3LOW
potential (solid lines). Data from the Nijmegen multienergy np phase
shift analysis [35] (solid dots) and the GWU/VPI single-energy np
analysis SM99 [36] (open circles).

The paper is organized as follows. In Sec. II, we give a short
description of how Vlow-k is derived as well as an outline of the
construction of the N3LOW potential. In Sec. III, a summary
of the derivation of the shell-model Heff is presented with some
details of our calculations. In Sec. IV, we present and discuss
our results. Some concluding remarks are given in Sec. V.

II. LOW-MOMENTUM NUCLEON-NUCLEON
POTENTIALS

A. Potential model Vlow-k

First, we outline the derivation of Vlow-k [13–15]. As pointed
out in the Introduction, the repulsive core contained in VNN
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FIG. 2. Same as Fig. 1.

is smoothed by integrating out the high-momentum modes
of VNN down to a cutoff momentum �. This integration is
carried out with the requirement that the deuteron binding
energy and low-energy phase shifts of VNN are preserved by
Vlow-k . This is achieved by the following T -matrix equivalence
approach. We start from the half-on-shell T matrix for
VNN

T (k′, k, k2) = VNN (k′, k)

+P
∫ ∞

0
q2dqVNN (k′, q)

1

k2 − q2
T (q, k, k2),

(1)

where P denotes the principal value and k, k′, and q stand for
the relative momenta. The effective low-momentum T matrix

TABLE I. Ground-state energies (in MeV) of 18O relative to 16O calculated with Heff derived
from the Vlow-k of the hard N3LO potential as a function of the maximum number Nmax of the HO
quanta (see text for details). Results obtained at second and third order in perturbation theory are
reported.

Nmax 2 4 6 8 10 12 14 16

2nd −5.572 −8.191 −10.615 −12.748 −14.318 −15.037 −15.142 −15.168
3rd −4.841 −6.617 −8.987 −11.344 −13.277 −14.294 −14.487 −14.523
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TABLE II. Same as Table I, but with Heff derived from N3LOW.

Nmax 2 4 6 8 10 12 14 16

2nd −2.568 −4.806 −6.789 −9.085 −11.759 −13.671 −14.108 −14.162
3rd −1.927 −3.547 −5.366 −7.683 −10.789 −13.339 −13.992 −14.049

is then defined by

Tlow-k(p′, p, p2) = Vlow-k(p′, p) + P
∫ �

0
q2dqVlow-k(p′, q)

× 1

p2 − q2
Tlow-k(q, p, p2), (2)

where the intermediate state momentum q is integrated from 0
to the momentum space cutoff �, and (p′, p) � �. The above
T matrices are required to satisfy the condition

T (p′, p, p2) = Tlow-k(p′, p, p2); (p′, p) � �. (3)

The above equations define the effective low-momentum
interaction Vlow-k , and it has been shown [14] that they are
satisfied by the solution

Vlow-k = Q̂ − Q̂′
∫

Q̂ + Q̂′
∫

Q̂

∫
Q̂

− Q̂′
∫

Q̂

∫
Q̂

∫
Q̂ + · · · , (4)

which is the well known Kuo-Lee-Ratcliff (KLR) folded-
diagram expansion [1,2], originally designed for construct-
ing shell-model effective interactions. In Eq. (4), Q̂ is an
irreducible vertex function whose intermediate states are all
beyond �, and Q̂′ is obtained by removing from Q̂ its terms
that are first order in the interaction VNN . In addition to the
preservation of the half-on-shell T matrix, which implies
preservation of the phase shifts, this Vlow-k preserves the
deuteron binding energy, since eigenvalues are preserved
by the KLR effective interaction. For any value of �, the
low-momentum potential of Eq. (4) can be calculated very
accurately using iteration methods. Our calculation of Vlow-k
is performed by employing the iteration method proposed
in Ref. [31], which is based on the Lee-Suzuki similarity
transformation [32].

The Vlow-k given by the T -matrix equivalence approach
mentioned above is not Hermitian. Therefore, an additional
transformation is needed to make it Hermitian. To this end, we
resort to the Hermitization procedure suggested in Ref. [31],
which makes use of the Cholesky decomposition of symmetric
positive definite matrices.

B. Potential model N3LOW

The general and fundamental reason why the Vlow-k ap-
proach to nuclear structure physics works is that the dynamics
ruling nuclear physics can be described in the framework of
a low-energy EFT. This nuclear EFT is characterized by the
symmetries of low-energy QCD, in particular, spontaneously
broken chiral symmetry, and the degrees of freedom relevant
for nuclear physics, nucleons and pions. The expansion based
upon this EFT has become known as chiral perturbation theory
(χPT), which is an expansion in terms of (Q/MQCD)ν , where Q

denotes the magnitude of a nucleon three-momentum or a pion
four-momentum, and MQCD is the QCD energy scale [4,5].
For this expansion to converge at the proper rate, we have to
have Q � MQCD. To enforce this, chiral NN potentials are
multiplied by a regulator function that suppresses the potential
for nucleon momenta Q > �, with � � MQCD. Present chiral
NN potentials [11,12] typically apply values for � around
2.5 fm−1.

It is of course not accidental that the latter cutoff value is
not too different from that typically used for Vlow-k , namely,
� = 2.1 fm−1. This fact stimulates an obvious question: Is it
possible to construct a chiral NN potential with � = 2.1 fm−1?
Not surprisingly, the answer is in the affirmative.

Thus, we have constructed a NN potential at N3LO of chiral
perturbation theory that carries a sharp momentum cutoff at
2.1 fm−1. We have dubbed this potential N3LOW.

One advantage of this potential is that it is given in analytic
form. The analytic expressions are the same as for the “hard”
N3LO potential constructed by Entem and Machleidt in 2003
[11] and are given in Ref. [33]. Note that the procedure that
needs to be followed to construct Vlow-k from a free NN
potential (cf. Sec. II A) can be carried out only numerically.

Another important issue are many-body forces. As demon-
strated in Ref. [30], when applying a Vlow-k in certain nuclear
many-body systems, the inclusion of a three-body force
(3NF) may be crucial. For example, nuclear matter does
not saturate without a 3NF when the two-nucleon force
(2NF) is represented by a low-momentum potential. One
great advantage of χPT is that it generates nuclear two- and
many-body forces on an equal footing (for an overview of this
aspect, see Ref. [34]). Most interaction vertices that appear in
the 3NF and in the four-nucleon force (4NF) also occur in the
2NF. The parameters carried by these vertices are fixed in the

TABLE III. Same as Table I, but with experimental SP energies.

Nmax 2 4 6 8 10 12 14 16

2nd −12.269 −12.201 −12.000 −11.847 −11.771 −11.750 −11.748 −11.749
3rd −12.165 −12.373 −12.328 −12.286 −12.281 −12.290 −12.294 −12.296
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TABLE IV. Same as Table II, but with experimental SP energies.

Nmax 2 4 6 8 10 12 14 16

2nd −12.454 −12.386 −12.202 −12.072 −12.002 −11.973 −11.968 −11.967
3rd −12.440 −12.663 −12.637 −12.612 −12.656 −12.722 −12.737 −12.739

construction of the chiral 2NF. Consistency requires that for
the same vertices the same parameter values are used in the
2NF, 3NF, 4NF, etc. If the 2NF is analytic, these parameters
are known, and there is no problem with their consistent
proliferation to the many-body force terms. However, if a
potential exists only in numeric form, then those parameters
are not explicitly known, and the parameters to be used in
the 3NF, 4NF, . . . must be based upon educated guesses. The
firm consistency between two- and many-body forces is lost.
Moreover, if a potential is given only in numeric form, one
does not know to what order of χPT it belongs. Thus, it is
also not clear which orders of 3NF and 4NF to include to be
consistent with the order of the 2NF.

Our newly constructed N3LOW reproduces accurately the
empirical deuteron binding energy, the experimental low-
energy scattering parameters, and the empirical phase shifts
of NN scattering up to at least 200 MeV laboratory energy,
see Figs. 1 and 2. More details about this potential will be
published elsewhere [37]. It is the main purpose of this paper
to test if the perturbative properties of N3LOW when applied
in microscopic nuclear structure are as good as the ones of
typical Vlow-k potentials.

III. DERIVATION OF THE SHELL-MODEL EFFECTIVE
HAMILTONIAN

In the framework of the shell model, an auxiliary one-body
potential U is introduced in order to break up the nuclear
Hamiltonian into the sum of a one-body component H0,
which describes the independent motion of the nucleons, and
a residual interaction H1:

H =
A∑

i=1

p2
i

2m
+

∑
i<j

Vij = T + V

= (T + U ) + (V − U ) = H0 + H1. (5)

Once H0 has been introduced, a reduced model space
is defined in terms of a finite subset of H0 eigenvectors.
The diagonalization of the many-body Hamiltonian (5) in
an infinite Hilbert space, which is obviously unfeasible, is
then reduced to the solution of an eigenvalue problem for an
effective Hamiltonian Heff in a finite space.

In this paper, we derive Heff by way of the time-dependent
perturbation theory [1,2]. Namely, Heff is expressed through
the KLR folded-diagram expansion in terms of the vertex
function Q̂ box, which is composed of irreducible valence-
linked diagrams. We take the Q̂ box to be composed of one- and
two-body Goldstone diagrams through third order in V [38].
Once the Q̂ box has been calculated at this perturbative order,

the series of the folded diagrams is summed up to all orders
using the Lee-Suzuki iteration method [32].

The Hamiltonian Heff contains one-body contributions,
which represent the effective SP energies. In realistic shell-
model calculations, it is customary to use a subtraction
procedure [39] so that only the two-body terms of Heff are
retained – the effective interaction Veff – and the SP energies
are taken from the experimental data.

In this work, we have followed a different approach by
employing the theoretical SP energies obtained from the
calculation of Heff . This allows us to make a consistent study
of the perturbative properties of the input potential V (Vlow-k
or N3LOW) in the shell-model approach.

In this regard, it is worth pointing out that, owing to the
presence of the −U term in H1, U -insertion diagrams arise in
the Q̂ box. In our calculation, we use as auxiliary potential
the harmonic oscillator (HO), U = 1

2mω2r2 + �, and take
into account only the first-order U insertion that appears in the
collection of the one-body contributions, which is the dominant
one [40].

IV. RESULTS

We have performed shell-model calculations for even-mass
oxygen isotopes beyond the doubly closed core 16O. Oxygen
isotopes constitute a quite interesting nuclear chain, both the-
oretically and experimentally, and they have been considered
a testing ground for realistic shell-model calculations since
the pioneering work by Kuo and Brown [41]. Our calcula-
tions have been carried out by using the Oslo shell-model
code [42].
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FIG. 3. (Color online) Experimental and calculated ground-state
energy per valence neutron for even oxygen isotopes with A from 18
to 28. Nval is the number of valence neutrons. Calculated values are
obtained with Heff derived from the Vlow-k of the hard N3LO potential
at third order in perturbation theory, with Nmax = 16.
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FIG. 4. (Color online) Same as Fig. 3, but with Heff derived from
N3LOW.

Two Heff have been obtained; for one of them, we used
a Vlow-k with a cutoff momentum � = 2.1 fm−1 derived
numerically from the hard N3LO chiral NN potential [11], and
for the other, the new N3LOW potential described in Sec. II B.
The Coulomb force between proton-proton intermediate states
was explicitly taken into account. For the HO parameter h̄ω,

we used the value of 14 MeV, as obtained from the expression
h̄ω = 45A−1/3 − 25A−2/3 [43] for A = 16. The value of �

was chosen such that the self-energy and the U -insertion
diagrams almost cancel each other [40]. The numerical value
is −54 MeV, yielding an unperturbed energy of the 0s1d shell
equal to −5 MeV, which is not far from the experimental
value of the ground-state (g.s.) energy of 17O relative to
16O (−4.144 MeV [44]). However, it is worth noting that,
when including only first-order U insertions, our Heff matrix
elements do not depend on the choice of �.

The perturbative behavior of the input potential V rules the
convergence rate of the diagrammatic series for Heff which
has to deal with the convergence of both the order-by-order
perturbative expansion and the sum over the intermediate
states in the Goldstone diagrams. In this context, we found
it interesting to study and compare the convergence properties
of Heff derived from both the Vlow-k and the N3LOW potentials.
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FIG. 5. (Color online) Same as Fig. 3, but with SP energies shifted
upward by 1.1 MeV.

TABLE V. J π = 0+ TBME of Heff (in MeV) obtained from the
Vlow-k of the hard N3LO potential and N3LOW at third order in
perturbation theory with Nmax = 16. Compared with USDA TBME
of Brown and Richter [45].

Configuration Vlow-k N3LOW USDA

(0d5/2)2(0d5/2)2 −2.435 −2.689 −2.480
(0d5/2)2(0d3/2)2 −3.464 −3.741 −3.569
(0d5/2)2(1s1/2)2 −1.269 −1.337 −1.157
(0d3/2)2(0d3/2)2 −0.845 −1.147 −1.505
(0d3/2)2(1s1/2)2 −0.862 −0.967 −0.983
(1s1/2)2(1s1/2)2 −2.385 −2.563 −1.846

In Table I, we present the Vlow-k g.s. energies of 18O
relative to 16O obtained at second- and third-order perturbative
expansion of Heff . In both cases, the energies are reported
as a function of the maximum allowed excitation energy of
the intermediate states, expressed in terms of the oscillator
quanta Nmax. It can be seen that the g.s. energy is practically
convergent at Nmax = 12. As for the order-by-order conver-
gence, it may be considered quite satisfactory, the difference
between second- and third-order results being around 4% for
Nmax = 16, which is the largest Nmax we employed. Similar
results are obtained using the N3LOW potential, as shown in
Table II. In this case, for Nmax = 16 the difference between
second- and third-order results is less than 1%.

It is now worth commenting on the dimension of the
intermediate state space. We have found that when increasing
Nmax, the matrix elements of the two-body effective interaction
Veff (TBME) are much more stable than the calculated
SP energies. In this connection, the results obtained using
experimental SP energies, shown in Tables III and IV, give
evidence of the rapid convergence of the g.s. energy with Nmax.
This supports the choice of moderately large intermediate state
spaces in standard realistic shell-model calculations, where
experimental SP energies are generally employed.

A comparison between the results obtained from the Vlow-k
and the N3LOW potentials (see Tables I and II, respectively)
shows that at third order, with a sufficiently large number
of intermediate states, the two interactions predict very close
values for the relative binding energy of 18O. Note that the
experimental value is −12.187 MeV [44]. From now on, we
refer to calculations with Nmax = 16 and Q̂-box diagrams up
to third order in perturbation theory.

In Tables V and VI, we present the J = 0+ TBME and the
SP energies obtained from the Vlow-k and N3LOW potentials.

TABLE VI. Calculated SP relative energies of Heff (in MeV)
obtained from the Vlow-k of the hard N3LO potential and N3LOW at
third order in perturbation theory with Nmax = 16. Compared with
USDA SP energies of Brown and Richter [45] and experimental data.
Values in parentheses are absolute SP energies.

Orbital Vlow-k N3LOW USDA Expt

ν0d5/2 0.0 (−5.425) 0.0 (−4.909) 0.0 (−3.944) 0.0 (−4.144)
ν0d3/2 7.323 7.117 5.924 5.085
ν1s1/2 1.257 0.818 0.883 0.871
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FIG. 6. (Color online) Same as Fig. 4, but with SP energies shifted
upward by 1 MeV.

It turns out that the results from the two potentials are quite
similar, the largest difference regarding the absolute energy
of the d5/2 SP level. In the last column of Tables V and VI,
we also show the Jπ = 0+ TBME and SP energies obtained
by Brown and Richter [45] from a least-squares fit of a large
set of energy data for the sd-shell nuclei. The reported values
refer to the USDA Hamiltonian, see Ref. [45] for details. It
is interesting to note that the TBME of USDA are closer to
ours than those of the original USD [46,47], which was based
on a smaller set of data. Regarding the SP energies, we see
that the USDA absolute energy of the d5/2 state is in good
agreement with the experimental g.s. state energy of 17O, while
both our calculations give about 1 MeV more binding. On the
other hand, our calculated and the USDA excitation energies
of the s1/2 state come close to each other and do not differ
significantly from the experimental value. As for the relative
energy of the d3/2 state, the USDA value is larger than the
experimental one, in line with our findings.

It is worth recalling that Heff , which was derived in the
framework of the KLR approach, is defined for the two
valence-nucleon problem. It is of interest, however, to test the
theoretical SP energies, as given in Table VI, and the TBME
in systems with many valence nucleons. To this end, we have
calculated for even oxygen isotopes the g.s. energies relative
to the 16O core up to A = 28, and the excitation energies
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FIG. 7. (Color online) Experimental and calculated excitation
energy of the first 2+ state for oxygen isotopes. Calculated values
are obtained with Heff derived from the Vlow-k of the hard N3LO
potential. Experimental data are from Ref. [53].
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FIG. 8. (Color online) Same as in Fig. 7, but with Heff derived
from N3LOW.

of the first 2+ state up to A = 24. In Figs. 3 and 4, the
experimental g.s. energies per valence nucleon are compared
with the calculated ones for the Vlow-k and the N3LOW
potential, respectively. The predictions from both potentials
yield binding energies that are larger than the experimental
ones, with the difference remaining almost constant when
increasing the number of valence neutrons Nval. In fact, if
we shift the Vlow-k and N3LOW SP spectra upward by 1.1
and 1 MeV, respectively, so as to reproduce the experimental
18O binding energy, then we obtain a very good agreement, as
shown in Figs. 5 and 6.

This result is very interesting: our calculations fail to
predict that 26O and 28O are unbound to two-neutron decay
as indicated by experimental studies [48,49]. However, when
the SP energies are shifted upward, then we obtain the correct
binding properties, as seen from Figs. 5 and 6. Some recent
papers [50,51] have argued that with a realistic shell-model
interaction it is not possible to reproduce the correct behavior
of the binding energy of oxygen isotopes. In Refs. [51,52],
this has been ascribed to the lack of both genuine and
effective three-body correlations. Our results suggest that a
major factor is the lack of a real three-body force. In fact,
as discussed above, we have obtained a good description of
the binding energy of oxygen isotopes by modifying the SP
spectrum so as to reproduce the g.s. energy of the two-valence
nucleon 18O. The last quantity is obviously not affected by
effective three-body correlations, but it is sensitive to genuine
three-body forces.

In Figs. 7 and 8, we compare the experimental and
calculated excitation energies of the first 2+ states for the
Vlow-k and N3LOW potential, respectively. In both cases, the
experimental behavior as a function of A is well reproduced.

V. SUMMARY AND CONCLUSIONS

In this paper, we performed shell-model calculations
employing an effective Hamiltonian obtained from a new
low-momentum potential, dubbed N3LOW, which is derived
in the framework of chiral perturbation theory at next-to-next-
to-next-to-leading order with a sharp cutoff at 2.1 fm−1.

We studied the convergence properties of this potential
by calculating the ground-state energy of 18O and compared
the results with those obtained using the Vlow-k derived from
the hard N3LO potential of Entem and Machleidt [11]. It
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turns out that the two low-momentum potentials show the
same perturbative behavior. We also performed calculations
for the heavier oxygen isotopes, obtaining binding energies
that are very similar for the two potentials, but larger than the
experimental ones. However, that by introducing an empirical
shift of the SP spectrum the ground-state energies are well
reproduced up to 24O, while 26O and 28O are unbound to two-
neutron decay, in agreement with the experimental findings.

The main purpose of this work was to test the new
chiral low-momentum NN potential N3LOW. Unlike Vlow-k ,
this potential has the desirable feature that it is given in
analytic form. We have shown here that N3LOW is suitable
for perturbative applications in microscopic nuclear structure
calculations and that it yields results which come quite close

to those obtained from the Vlow-k derived from the hard N3LO
potential.

After this first successful application, there is now motiva-
tion to pursue further nuclear structure calculations with this
new low-momentum potential.
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the U.S. DOE Grant No. DE-FG02-88ER40388, the U.S.
NSF Grant No. PHY-0099444, the Ministerio de Ciencia y
Tecnonologı́a under Contract No. FPA2004-05616, and the
Junta de Castilla y León under Contract No. SA-104/04.

[1] T. T. S. Kuo, S. Y. Lee, and K. F. Ratcliff, Nucl. Phys. A176, 65
(1971).

[2] T. T. S. Kuo and E. Osnes, Lecture Notes in Physics (Springer-
Verlag, Berlin, 1990), Vol. 364.

[3] U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999).
[4] S. Weinberg, Phys. Lett. B251, 288 (1990).
[5] S. Weinberg, Nucl. Phys. B363, 3 (1991).
[6] G. P. Lepage, in Nuclear Physics: Proceedings of the VIII

Jorge Andre’ Swieca Summer School, edited by C. A. Bertulani,
M. E. Bracco, B. V. Carlson, and M. Nielsen (World Scientific,
Singapore, 1997), p. 135.

[7] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424,
390 (1998).
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