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The problem of the microscopic description of excited states of the even-even open-shell atomic nuclei is
considered. A model is formulated which allows one to go beyond the quasiparticle random phase approximation.
The physical content of the model is determined by the quasiparticle time blocking approximation (QTBA) which
enables one to include contributions of the two-quasiparticle and the two-phonon configurations, while excluding
(blocking) more complicated intermediate states. In addition, the QTBA ensures consistent treatment of ground
state correlations in the Fermi systems with pairing. The model is based on the generalized Green function
formalism (GGFF) in which the normal and the anomalous Green functions are treated in a unified way in terms
of the components of generalized Green functions in a space that is double the size of the usual single-particle
space. Modification of the GGFF is considered in the case when the many-body nuclear Hamiltonian contains
two-, three-, and other many-particle effective forces.
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I. INTRODUCTION

One of the most widely used approaches applied to the
description of excitations of the even-even atomic nuclei is
the random phase approximation (RPA, see, e.g., Ref. [1]).
Within this approximation, the nuclear excitations are treated
as the one-phonon states which are superpositions of the
one-particle–one-hole (1p1h) configurations. However, this
approach is applicable only in the case when pairing corre-
lations are not essential, i.e., strictly speaking, only for magic
nuclei. Generalization of the RPA taking into account pairing
correlations explicitly is the quasiparticle RPA (QRPA), in
which the excited states (phonons) are expanded in the two-
quasiparticle (2q) configurations. Thereby the QRPA extends
the range of the RPA to the open-shell (nonmagic) nuclei.
Nevertheless, despite the significant success of both the RPA
and the QRPA, there are several reasons to develop models
that go beyond these approximations.

First of all, description of the nuclear excitations in terms of
the one-phonon wave functions is justified only for low-lying
states. At higher excitation energies, fragmentation of the one-
phonon states becomes important. This means that in addition
to the 1p1h or 2q configurations, more complex configurations
should be incorporated (see Ref. [2]). The role of the effects
related to the complex configurations is well manifested, for
example, in the theory of giant multipole resonances (GMRs).
It is well known (see, e.g., Ref. [3]) that RPA and QRPA enable
one to describe the centroid energies and total strengths of the
GMRs. However, both models fail to reproduce the total widths
of the resonances and their fine structure. The reason is that
these characteristics of the GMRs are significantly affected by
the complex (mainly 2p2h or 4q) configurations which form
the spreading width of the resonance.

Another direction for developing a nuclear structure
theory is associated with the models in which ground state
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correlations (GSC) beyond those in the RPA and QRPA are
taken into account (see Refs. [3–7]). It has been shown that
the GSC caused by complex configurations play an important
role in the theoretical description of the experimental data.
In what follows, we will refer to these GSC as GSC2 in
order to distinguish them from the GSC1 included in the RPA
and QRPA. In some cases, the GSC2 can strongly affect the
transition strengths and can even lead to the appearance of new
transitions that are absent in calculations that include complex
configurations in the excited states only, i.e., in calculations
neglecting this type of GSC and using a restricted basis (see
Refs. [3,5]).

A variety of models have been developed to study the
effects of complex configurations on the structure of excited
states of the even-even atomic nuclei (in addition to the
aforementioned papers, see also Refs. [8–14] and references
therein). Nevertheless, until recently (see Refs. [13,14]), the
quasiparticle-phonon model (QPM, Ref. [2]) developed by
Soloviev and co-workers was the only working approach
that consistently treated the complex configurations and the
pairing correlations on an equal footing. It is no surprise that
comprehensive studies of the excitations of the open-shell
nuclei taking into account complex (mainly two-phonon)
configurations at the microscopic level have been carried out
only within the QPM. In view of this, the development of other
approaches in this direction is particularly important.

The principal goal of the present paper is to generalize
the model of Ref. [11] by including the pairing correlations.
This model was developed to describe the excited states of
the even-even doubly magic nuclei taking into account 2p2h
(more precisely, 1p1h ⊗ phonon) configurations. The model
is based on the Green function (GF) formalism. The GSC2
were completely included within the model approximations.
In the framework of this model, the calculations of the GMRs
in magic stable and unstable nuclei have been performed.
Some of the results are presented in Refs. [3,11]. In these
calculations, reasonable agreement has been obtained with the
experimental data for the integral characteristics of GMRs,
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including the total resonance widths. Thus, one can expect
that the extension of the model [11] to the open-shell nuclei
will also give reasonable results.

The second goal of the paper is to provide a modification
of the GF formalism for Fermi systems with pairing which is
most suitable for solving the problem under consideration. To
this aim, the generalized Green function formalism (GGFF) is
presented, in which normal and anomalous GFs are treated in a
unified way in terms of the components of generalized GFs in a
space that is double the size of the usual single-particle space.
Modification of the GGFF is considered in the case when
the many-body nuclear Hamiltonian contains two-, three-, and
other many-particle effective forces.

The paper is divided into two main parts. The first part
(Sec. II) reviews the basic formulas and equations of the GGFF
and introduces the single-quasiparticle basis functions, which
provide suitable representation of the model equations. The
second part (Sec. III) contains the formulation of the model in
which pairing correlations, 2q, 2q ⊗ phonon, and two-phonon
configurations are included. The model is analyzed within the
sum rule approach. A subtraction procedure is introduced to
eliminate spurious states and to avoid double counting of the
complex configurations within the model. The conclusions are
given Sec. IV.

II. GENERALIZED GREEN FUNCTION FORMALISM

A. Basic definitions

Let a†(x) and a(x) be creation and annihilation operators
of particles (free fermions) in the coordinate representation of
the usual single-particle space. Here symbol x = {r, σ, τ } in-
cludes the spatial coordinate r , spin σ , and isospin τ variables.
Considering the Fermi systems with pairing correlations, it is
convenient to pass from this single-particle space spanned by
the coordinates x to the extended (doubled) space spanned by
the coordinates y = {x, χ}, where χ = ±1 is an additional
index introduced for denoting the different components of the
single-particle functions in the extended space (see Refs. [1,15]
for details). Let us define the operators b(y) = b(x, χ ) by the
relations

b(x,+) = a(x), b(x,−) = a†(x). (2.1)

From this, it follows that b†(y) = b(ȳ), where ȳ = {x,−χ}.
The Heisenberg representation of the b operators (in units

where Planck’s constant h̄ = 1) reads

�(z) = eiHtb(y) e−iH t . (2.2)

Here and in the following, z = {t, y}, t is the time variable,
and H is a many-body Hamiltonian of an interacting fermion
system. Obviously, these � operators possess the property

�†(z) = �(z̄), (2.3)

where z̄ = {t, ȳ}.
We will assume that the motion in the fermion system is

determined by the nonrelativistic Hamiltonian H of the form

H = H 0 + V, (2.4)

where H 0 is a single-particle Hamiltonian including the
external anomalous pair potentials

H 0 =
∫

dx1dx ′
1

(
h0(x1, x

′
1)a†(x1)a(x ′

1) + 1
2 �0(x1, x

′
1)

× a†(x1) a†(x ′
1) − 1

2�0∗
(x1, x

′
1)a(x1) a(x ′

1)
)
, (2.5)

and V is an interaction including two-, three-, and other many-
particle effective forces

V =
K∑

k=2

V (k), (2.6)

V (k) = 1

k!

∫
dx1 · . . . · dxkdx ′

1 · . . . · dx ′
k

× v(k)(x1, . . . , xk; x ′
1, . . . , x

′
k)

× a†(x1) · . . . · a†(xk)a(x ′
k) · . . . · a(x ′

1). (2.7)

Here and in the following equations,
∫

dx means the space
integral over r and the sum over σ and τ indices. Analogously,
in the following,

∫
dy will denote

∫
dx and the sum over χ ,

and
∫

dz will denote
∫

dt dy. In case of the exact nuclear
Hamiltonian, we have

h0(x, x ′) = −
(∇2

r

2m
+ µτ

)
δ(x, x ′), �0(x, x ′) = 0, (2.8)

where δ(x, x ′) = δ(r − r ′) δσ,σ ′δτ,τ ′ , and µτ is the chemical
potential for the nucleons with the isospin projection τ which
is introduced to simplify the following equations. Notice that
the Hamiltonian H 0 can be formally rewritten in terms of the
b operators as

H 0 = 1

2

∫
dy dy ′ H0(y, y ′) b†(y) b(y ′) + ε0, (2.9)

where ε0 = 1
2

∫
dx h0(x, x),

H0(x,+, x ′,+) = h0(x, x ′), H0(x,+, x ′,−) = �0(x, x ′),
H0(x,−, x ′,+) = −�0∗

(x, x ′), H0(x,−, x ′,−) = −h0∗
(x, x ′).

}
(2.10)

Let |0〉 be the wave function of the ground state of the
interacting fermion system. If the Hamiltonian H does not
contain the external anomalous pair potentials �0 [e.g., if
Eqs. (2.8) are fulfilled], the number of particles is conserved,

and |0〉 is an eigenfunction of the particle-number operator.
However, in the general case we will not suppose that �0 = 0
in Eq. (2.5), i.e. , we will not suppose that the condition of the
particle-number conservation is fulfilled for |0〉. Let us define
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the k-particle generalized GF in the time representation by the
formula

G (k)(z1, . . . , zk; z′
1, . . . , z

′
k)

= i−k〈0|T�(z1) · . . . · �(zk) �†(z′
k) · . . . · �†(z′

1)|0〉,
(2.11)

where T is the time-ordering operator. In particular, for the
single-particle GF we have

G(z, z′) ≡ G (1)(z; z′) = −i〈0|T �(z)�†(z′)|0〉. (2.12)

The property

G(z, z′) = −G(z̄′, z̄) (2.13)

follows from Eqs. (2.3) and (2.12). It can be seen from
the definitions (2.1) and (2.2) that the normal and the
anomalous GFs are the components of the generalized GFs
G (k) corresponding to the different values of the χ indices.

B. Equations of motion for the Green functions

In the case of Fermi systems with pairing, the equations
of motion for the many-particle GFs can be obtained with the
help of the same technique based on generating functionals
depending on auxiliary source fields that is frequently used
for the Fermi systems without pairing correlations (see, e.g.,
Ref [16]). Let us define the generating functional W depending
on the source field ξ as

W [ξ ] = ln〈0|TU|0〉, (2.14)

where

U = exp

(
i

∫
dz dz′ ξ (z, z′) �†(z)�(z′)

)
. (2.15)

It follows from Eq. (2.3) that one can consider the equality
ξ (z, z′) = −ξ (z̄′, z̄) to be fulfilled. Let us introduce the GFs
with a source field ξ :

G
(k)
ξ (z1, . . . , zk; z′

1, . . . , z
′
k)

= i−k 〈0|T U�(z1) · . . . · �(zk) �†(z′
k) · . . . · �†(z′

1)|0〉
〈0|TU|0〉 .

(2.16)

Obviously, G
(k)
ξ coincides with G (k) defined by Eq. (2.11) at

ξ = 0.
It is easy to see that the GFs G

(k)
ξ can be obtained from

the generating functional W [ξ ] by a successive differentiation
with respect to ξ . In particular, we obtain

Gξ (z1, z2) ≡ G
(1)
ξ (z1; z2) = δW

δξ (z2, z1)
, (2.17)

Lξ (z1, z2; z3, z4) = δ2W

δξ (z1, z2) δξ (z4, z3)
= δGξ (z2, z1)

δξ (z4, z3)
,

(2.18)

where Lξ is a response function defined as

Lξ (z1, z2; z3, z4) = G
(2)
ξ (z2, z3; z1, z4)

−Gξ (z2, z1)Gξ (z3, z4) (2.19)

(notice that this formula differs from the definition in Ref. [16]
by the permutation of the arguments of Lξ ).

The equation of motion for the single-particle GF is
obtained by the differentiation of Gξ (z1, z2) with respect to
time in analogy to the case of the Fermi systems without
pairing correlations (see Ref [16]). It has the form

(G0)−1(z1, z2) + ξ (z1, z2) − ξ (z̄2, z̄1)

= G−1
ξ (z1, z2) + 	ξ (z1, z2), (2.20)

where

(G0)−1(z1, z2) =
(

iδ(y1, y2)
∂

∂t1
− H0(y1, y2)

)
δ(t1 − t2),

(2.21)

δ(y, y ′) = δχ,χ ′δ(x, x ′), and 	ξ is the mass operator defined
by the equations∫

dz′′	ξ (z, z′′)Gξ (z′′, z′)

=
K∑

k=2

i1−k

k ! (k − 1)

∫
dz′

2 · . . . · dz′
kdz′′

1 · . . . · dz′′
k

×W (k)(z, z′
2, . . . , z

′
k; z′′

1, . . . , z
′′
k )

×G
(k)
ξ (z′′

1, . . . , z
′′
k ; z′, z′

2, . . . , z
′
k), (2.22)

W (k)(z1, . . . , zk; z′
1, . . . , z

′
k)

= δχ1, χ
′
1
δ(t1 − t ′1 − χ1 · 0)

×
(

k−1∏
l=1

δχl,χl+1δχ ′
l ,χ

′
l+1

δ(tl − tl+1)δ(t ′l − t ′l+1)

)

×[
δχ1, +1w

(k)(x1, . . . , xk; x ′
1, . . . , x

′
k)

+ δχ1, −1(−1)kw (k)(x ′
1, . . . , x

′
k; x1, . . . , xk)

]
. (2.23)

In Eq. (2.23), w (k) is the antisymmetrized matrix element of the
k-particle interaction in the coordinate representation defined
through the effective forces v (k) entering Eq. (2.7) and through
the generalized antisymmetrized δ functions by the formulas

w (k)(x1, . . . , xk; x ′
1, . . . , x

′
k)

= 1

k ! (k − 2) !

∫
dx ′′

1 · . . . · dx ′′
k dx ′′′

1 · . . . · dx ′′′
k

× δ

(
x ′′

1 , . . . , x ′′
k

x1, . . . , xk

)
δ

(
x ′′′

1 , . . . , x ′′′
k

x ′
1, . . . , x

′
k

)

× v (k)(x ′′
1 , . . . , x ′′

k ; x ′′′
1 , . . . , x ′′′

k ), (2.24)

where

δ

(
x ′

1, . . . , x
′
k

x1, . . . , xk

)
= det


 δ(x1, x

′
1) . . . δ(x1, x

′
k)

· · · · · · · · ·
δ(xk, x

′
1) . . . δ(xk, x

′
k)


 . (2.25)

Notice that from Eqs. (2.10), (2.13), (2.20), and (2.21) it
follows that

	ξ (z, z′) = −	ξ (z̄′, z̄). (2.26)
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The symmetry property of W (k) follows from its definition
(2.23):

W (k)(z1, . . . , zk; z′
1, . . . , z

′
k)

= (−1)k W (k)(z̄′
1, . . . , z̄

′
k; z̄1, . . . , z̄k). (2.27)

To obtain equations for the other (many-particle) GFs, let
us perform a change of the functional variable ξ to the Gξ and
consider a Legendre transformation of the functional W [ξ ]:

�[Gξ ] = 2 W [ξ ] −
∫

dz1 dz2[ξ (z2, z1)

− ξ (z̄1, z̄2)]Gξ (z1, z2). (2.28)

Using Eqs. (2.13) and (2.17), we obtain

δ�

δ−Gξ (z1, z2)
= ξ (z̄1, z̄2) − ξ (z2, z1). (2.29)

The notation δ− means that the variations of the GF Gξ

conserve the property of antisymmetry (2.13). This condition
should be taken into account since variations of ξ , which
generate the variations of Gξ , obviously do not lead to the
violation of Eq. (2.13). Conservation of the property (2.13)
in the variational procedure can be automatically ensured if
the following substitution is performed in a Gξ -dependent
functional:

Gξ (z, z′) = 1
2 [Gξ (z, z′) − Gξ (z̄′, z̄)]. (2.30)

In case of the vanishing source field, the Eq. (2.29) leads to
the stationarity condition: δ�/δ−G(z1, z2) = 0. Using, further,
Eq. (2.20), we obtain from Eq. (2.29) the relation

δ	ξ (z2, z1)

δ−Gξ (z4, z3)
= 1

2

[
G−1

ξ (z2, z4)G−1
ξ (z3, z1)

−G−1
ξ (z̄1, z4)G−1

ξ (z3, z̄2)
]

− δ2�

δ−Gξ (z1, z2) δ−Gξ (z4, z3)
. (2.31)

Let us introduce an amplitude of the effective interaction
Iξ which includes irreducible amplitudes both in the particle-
hole (ph) and in the particle-particle (pp) channels (for the
sake of simplicity, we do not introduce special terms for the
hole-particle and hole-hole channels which are also included):

Iξ (z1, z2; z3, z4) = i
δ	ξ (z2, z1)

δ−Gξ (z4, z3)
. (2.32)

From Eqs. (2.13) and (2.26), we obtain

Iξ (z1, z2; z3, z4) = −Iξ (z̄2, z̄1; z3, z4)

= −Iξ (z1, z2; z̄4, z̄3). (2.33)

In addition, from Eq. (2.31), it follows that

Iξ (z1, z2; z3, z4) = Iξ (z4, z3; z2, z1). (2.34)

Notice that the response function defined by Eq. (2.18) satisfies
the analogous equalities

Lξ (z1, z2; z3, z4) = −Lξ (z̄2, z̄1; z3, z4)

= −Lξ (z1, z2; z̄4, z̄3), (2.35)

Lξ (z1, z2; z3, z4) = Lξ (z4, z3; z2, z1). (2.36)

Differentiating Eq. (2.20) with respect to ξ and then using
Eqs. (2.18) and (2.32), we obtain the Bethe-Salpeter equation
(BSE) for the response function:

Lξ (z1, z2; z3, z4)

= Gξ (z̄4, z1) Gξ (z2, z̄3) − Gξ (z3, z1) Gξ (z2, z4)

− i

∫
dz5dz6dz7dz8 Gξ (z5, z1) Gξ (z2, z6)

× Iξ (z5, z6; z7, z8)Lξ (z7, z8; z3, z4). (2.37)

The equations for the many-particle GFs G
(k)
ξ with k > 2

are obtained by a differentiation of Eq. (2.16) with respect
to ξ . Taking into account the relation

δ

δξ (z1, z2)
=

∫
dz3dz4Lξ (z1, z2; z3, z4)

δ

δGξ (z3, z4)
, (2.38)

which follows from Eq. (2.18), we come to the recurrence
formula

G
(k)
ξ (z1, . . . , zk; z′

1, . . . , z
′
k)

=
[
Gξ (z1, z

′
1) +

∫
dzdz′Lξ (z′

1, z1; z′, z)

× δ

δGξ (z′, z)

]
G

(k−1)
ξ (z2, . . . , zk; z′

2, . . . , z
′
k). (2.39)

Notice that in Eqs. (2.38) and (2.39) we have δ−Gξ = δGξ

owing to the presence of the response function satisfying
Eqs. (2.35).

Equations (2.19), (2.22), (2.32), (2.37), and (2.39) form the
closed system of the functional differential equations of the
GGFF. An important feature of these equations is that they
do not change their form when the many-particle forces are
added to the two-particle interaction in the total Hamiltonian.
The exception is Eq. (2.22) for the mass operator in which the
many-particle forces enter in the explicit form. This result of
the GGFF could be expected, but it needed to be proved. It
allows one to extend the standard GF methods developed for
the Fermi systems with two-particle interaction to the systems
interacting through the many-particle effective forces.

In the final equations, we can set ξ = 0. So, in what follows,
we will omit the ξ indices of the functions, implying the limit
at ξ = 0 and coming back to the GFs without source field
defined by Eq. (2.11). The independent functional variable is
the single-particle GF G satisfying the Dyson equation which
follows from Eq. (2.20), that is,

G(z1, z2) = G0(z1, z2)

+
∫

dz3dz4G
0(z1, z3)	(z3, z4) G(z4, z2). (2.40)

In the case of Fermi systems without pairing correlations, when
the external anomalous pair potentials vanish in Eq. (2.5),
the above equations can be reduced to ones for the normal
components of GFs which satisfy the condition

k∑
n=1

(χn − χ ′
n)G (k)(z1, . . . , zk; z′

1, . . . , z
′
k) = 0. (2.41)

These reduced equations will coincide with ones obtained
in Ref. [17]. On the other hand, if we restrict consideration
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of Fermi systems with pairing to the case of two-particle
interaction in the Hamiltonian (2.4), i.e., if we assume H =
H 0 + V (2), then Eqs. (2.19), (2.22), (2.32), and (2.37) will
coincide, up to the permutation of the arguments, with the
corresponding equations in Ref. [18].

C. Transformation of the basic equations

For further applications, it is convenient to introduce a
nonantisymmetric response function R satisfying the follow-
ing BSE:

R(z1, z2; z3, z4) = R 0(z1, z2; z3, z4) + i

∫
dz5dz6dz7dz8

× R 0(z1, z2; z5, z6)U(z5, z6; z7, z8)

×R(z7, z8; z3, z4), (2.42)

where

R0(z1, z2; z3, z4) = −G(z3, z1) G(z2, z4), (2.43)

and U is a nonantisymmetric amplitude of the effective
interaction defined by

U(z1, z2; z3, z4) = i
δ	(z2, z1)

δG(z4, z3)
, (2.44)

where the condition (2.13) is not supposed to be fulfilled under
variations of G and substitution (2.30) is not applied. The
amplitude U satisfies the equalities

U(z1, z2; z3, z4) = U(z4, z3; z2, z1) = U(z̄2, z̄1; z̄4, z̄3), (2.45)

but generally U does not possess the property of antisymmetry
(2.33).

It is easy to show that first the equalities

R(z1, z2; z3, z4) = R(z4, z3; z2, z1) = R(z̄2, z̄1; z̄4, z̄3)

(2.46)

hold, while the Eqs. (2.35) do not hold for R. Second, the
amplitude I and the response function L are expressed in
terms of U and R as

I(z1, z2; z3, z4) = 1
2 [U(z1, z2; z3, z4) − U(z̄2, z̄1; z3, z4)],

(2.47)

L(z1, z2; z3, z4) = R(z1, z2; z3, z4) − R(z̄2, z̄1; z3, z4).

(2.48)

Thus, for the determination of the response function L, it
is sufficient to solve Eq. (2.42) for the nonantisymmetric
function R.

Now, following the method described in Ref. [3], we repre-
sent the total mass operator 	 and the total nonantisymmetric
amplitude of the effective interaction U as a sum of two terms

	 = 	̃ + 	 e, U = Ũ + U e, (2.49)

where

	̃(z1, z2) = 	̃(y1, y2) δ(t1 − t2), (2.50)

Ũ(z1, z2; z3, z4) = Ũ(y1, y2; y3, y4) δ(t1 − t2)

× δ(t3 − t4)δ(t1 − t3). (2.51)

After transformation to the energy representation (see
Sec. II D), the first terms in Eqs. (2.49), 	̃ and Ũ , are found
to be energy independent. The term 	̃ corresponds to the
mean-field contribution into the mass operator including the
pair potentials. The term Ũ corresponds to the residual energy-
independent interaction both in the ph and in the pp channels.
The second terms in Eqs. (2.49), 	 e and U e, have a strong
energy dependence and represent dynamic contributions of
complex configurations.

We stress that the quantities 	̃ and Ũ (and, consequently,
	 e and U e) are not defined rigorously by Eqs. (2.49).
They will be specified in the following within the frame-
work of the model to be considered. At the moment, only
the general properties, which are expressed by Eqs. (2.50)
and (2.51), are important. Notice, however, that in the particu-
lar case of the self-consistent Hartree-Fock-Bogoliubov (HFB)
approximation restricted by the two-particle interaction, we
have 	̃ = 	 HFB, Ũ = U HFB, where

	 HFB(z1, z2) = i

∫
dz3dz4

[
W (2)(z1, z4; z3, z2)

− 1
2W

(2)(z1, z̄2; z3, z̄4)
]

G̃(z3, z4),

(2.52)

U HFB(z1, z2; z3, z4) = W (2)(z2, z3; z1, z4)

+ 1
2W

(2)(z2, z̄1; z4, z̄3), (2.53)

and GF G̃ is a solution of Eq. (2.55) (see below).
Using decompositions (2.49), one can transform both

Eqs. (2.40) and (2.42) to the system of two equations. In the
symbolic notations we have

G = G̃ + G̃ 	 e G, (2.54)

G̃ = G0 + G0 	̃ G̃, (2.55)

R = R e + i R e Ũ R, (2.56)

R e = R 0 + i R 0 U e R e. (2.57)

Proceeding by the same method as in Refs. [3,11], the last
equation can be brought to the form

R e(z1, z2; z3, z4)=R̃ 0(z1, z2; z3, z4) + i

∫
dz5dz6dz7dz8

× R̃ 0(z1, z2; z5, z6)W e(z5, z6; z7, z8)

×R e(z7, z8; z3, z4), (2.58)

where

R̃ 0(z1, z2; z3, z4) = −G̃(z3, z1) G̃(z2, z4), (2.59)

W e(z1, z2; z3, z4) = U e(z1, z2; z3, z4) + i	 e(z3, z1)

× G̃−1(z2, z4) + i G̃−1(z3, z1)

×	 e(z2, z4) − i 	e(z3, z1) 	e(z2, z4).

(2.60)

Equation (2.58) is the basic one for building the model which
will be considered in the second part of the paper.
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D. Single-quasiparticle basis functions
and the energy representation

For the following analysis, it is required that we introduce
a set of basis functions {ψ1(y)} in the extended space defined
previously in Sec. II A. The usual conditions of orthonormality
and completeness are supposed to be fulfilled:∫

dy ψ∗
1 (y) ψ1′ (y) = δ1,1′ ,

∑
1

ψ∗
1 (y) ψ1(y ′) = δ(y, y ′).

(2.61)

It is convenient to consider ψ1(y) as the eigenfunctions of the
operator

H(y, y ′) = H0(y, y ′) + 	̃(y, y ′), (2.62)

where H0 defines the single-particle term of the total
Hamiltonian according to Eqs. (2.9) and (2.10), and 	̃ is
the mean-field contribution into the total mass operator in
Eqs. (2.49). Thus, we assume the following equation to be
fulfilled: ∫

dy ′ H(y, y ′) ψ1(y ′) = E 1ψ1(y). (2.63)

Since H possesses the same symmetry properties as the
operators H0 and 	̃, i.e.,

H(y, y ′) = H∗(y ′, y) = −H(ȳ ′, ȳ), (2.64)

it is not difficult to see that the complete set of the eigenfunc-
tions of H is divided into two equal parts which are related by
the operation of conjugation, that is,

ψ1̄(y) = ψ∗
1 (ȳ). (2.65)

For the corresponding eigenvalues, we have E 1̄ = −E 1. So
one can denote 1 = {λ1, η1}, 1̄ = {λ1,−η1}, where λ1 is the
index of the usual single-particle configuration space (e.g., λ =
{τλ, n, l, j,m} for the spherically symmetric system), and η1 =
±1 is the sign of the eigenvalue E 1, that is, E 1 = η1Eλ1 , Eλ1 =
|E 1|.

In the representation of ψ functions, the b operators defined
by Eq. (2.1) have the form

b1 =
∫

dy ψ∗
1 (y) b(y). (2.66)

It is worth noting that the b operators in this representation
are simply related to the creation and annihilation operators
of the quasiparticles α

†
λ and αλ which are usually introduced

in the HFB theory. Namely, we have (see Ref. [15]) bλ,+ =
αλ, bλ,− = α

†
λ. So, in what follows we shall refer to functions

ψ1(y) as the single-quasiparticle functions. A more detailed
form of functions ψ1(y) can be obtained using the Bloch-
Messiah theorem, see Refs. [1,15,19].

Up to now we have not restricted our analysis to systems
in which the number of particles is conserved exactly. The
reason is that our aim was to modify the existing general
GF formalism for the arbitrary Fermi systems with pairing.
However, application of the formalism to the atomic nuclei we
are interested in implies that the particle-number conservation
law is fulfilled. Thus, in what follows, we assume that the total
Hamiltonian H defined by Eqs. (2.4)–(2.7) does not contain

the external anomalous pair potentials �0 and that Eqs. (2.8)
hold. In that case, the ground state wave function |0〉 which
enters the definition of the GFs (2.11) is an eigenfunction of
the particle-number operator. This means that the exact GFs
do not contain anomalous components. In particular, the exact
single-particle GF satisfies the condition [cf. Eq. (2.41)]

(χ − χ ′) G(z, z′) = 0. (2.67)

However, this condition is not fulfilled for the GF G̃ which is
the solution of Eq. (2.55) with the operator 	̃ including the pair
potentials independently of the Hamiltonian H (e.g., within the
HFB approximation). Justification of using such GF G̃ is as
follows. It enables one to take into account pairing correlations
effectively and should be considered only as an approximation
to the exact GF. The latter is found from Eq. (2.54) in which the
mass operator 	 e has to contain all necessary corrections to
	̃, such that the solution of Eq. (2.54) satisfies Eq. (2.67).
Of course this scheme should be considered only as a
philosophy of the approach, i.e., as an ideal program which
is difficult to implement completely in practice.

Let us now define the energy representation of the Green
functions and of the related quantities entering the above
equations. Making use of the basis {ψ1(y)}, let us introduce
the following Fourier transformations:

G12(ε) =
∫

dz1 dz2 ψ∗
1 (y1) ψ2(y2) δ(t2)

× exp(iε (t1 − t2))G(z1, z2), (2.68)

R12,34(ω)

= −i

∫
dz1 dz2 dz3 dz4 ψ1(y1) ψ∗

2 (y2) ψ∗
3 (y3) ψ4(y4)

× δ(t1 − t2 − 0) δ(t4 − t3 − 0) δ(t4)

× exp(iω (t3 − t1))R(z1, z2; z3, z4), (2.69)

U 12,34(ω, ε, ε′)

=
∫

dz1 dz2 dz3 dz4ψ1(y1) ψ∗
2 (y2) ψ∗

3 (y3) ψ4(y4)

× δ(t4) exp(iω (t3 − t1) + iε (t2 − t1) + iε′ (t3 − t4))

×U(z1, z2; z3, z4). (2.70)

The quantities G̃12(ε), 	 e
12(ε), L12,34(ω),U e

12,34(ω, ε, ε′),
and others are defined in analogy to these formulas. In
accordance with Eqs. (2.48), (2.65), and (2.69), we have

L12,34(ω) = R12,34(ω) − R2̄1̄,34(ω). (2.71)

Notice that spectral expansion for the response function L(ω)
has the form

L12,34(ω) = −
∑
η=±1

∑
n�=0

η ρ
n(η)
12 ρ

n(η)∗
34

ω − η (ωn − i · 0)
, (2.72)

which is similar to the analogous formula for Fermi systems
without pairing correlations (see, e.g., Ref. [20]). The differ-
ence consists in the definition of the transition amplitudes. In
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Eq. (2.72), we have

ρ
n(η)
12 = δη,+1〈n| b†1 b2|0〉 + δη,−1 〈0| b†1 b2|n〉,

(2.73)
ωn = En − E0,

where |n〉, |0〉, En, and E0 are the eigenfunctions and eigen-
values of the Hamiltonian H . Taking into account definitions
(2.1) and (2.66), one can see that even if the ground-state
wave function |0〉 is an eigenfunction of the particle-number
operator, the amplitudes ρ

n(η)
12 take nonzero values not only

for the transitions between the states with the same number of
particles, but also for the transitions between the ground state
of the N -particle system |0〉 and the states |n〉 of the systems
consisting of N ± 2 particles. Thus, the spectral expansion
(2.72) contains information about excitations of the N -particle
system in both the ph and pp channels.

III. QUASIPARTICLE TIME BLOCKING
APPROXIMATION

A. General framework

Let us now turn to the question of determining the
physical observables and related quantities in this approach,
namely, excitation energies ωn and transition amplitudes ρ

n(η)
12 .

It follows from Eqs. (2.71) and (2.72) that to find these
characteristics, we need to know the response function R(ω),
i.e., to solve the system of equations (2.56) and (2.58). The
basic difficulty in performing this task is that Eq. (2.58)
contains energy-dependent interaction U e and mass operator
	 e. Notice, however, that these energy-dependent quantities
arise only in the case when the dynamic contributions of
complex configurations are explicitly taken into account. In
the energy representation, Eq. (2.58) is an integral equation
for the function R e(ω, ε, ε′) [defined in analogy to Eq. (2.70)]
over the energy variable ε, which cannot be, strictly speaking,
reduced to the closed equation for R e(ω) because of the energy
dependence of U e and 	 e. Fortunately, there are methods that
allow us to avoid the complicated problem of the exact solution
of this equation, making use of certain approximations. One
such method will be considered here.

We begin by noting that if we use the eigenfunctions of
the operator H, i.e., the set {ψ1(y)}, as the basis functions, the
single-particle GF G̃ is diagonal, that is,

G̃12(ε) = δ12

ε − E1 + i η1 · 0
, (3.1)

as follows from Eqs. (2.21), (2.55), (2.62), and (2.63). In the
time representation, we have

G̃12(t1, t2) = −i η1δ12 θ (η1t12) exp(−iE1t12), (3.2)

where t12 = t1 − t2, θ (τ ) is the step function. These expres-
sions are formally identical with analogous formulas for the
normal GFs, except that they are written in the extended basis
representation. It enables one to apply, practically without
changes, the method of chronological decoupling of diagrams
(MCDD) to the solution of Eqs. (2.56) and (2.58) which
contain the GFs with pairing. The MCDD was developed
in Ref. [11] to solve ph-channel BSE in the normal Fermi

system including dynamic effects both in the interaction and
in the mass operator. The idea of the method is similar to
that used in the other methods developed earlier to solve
the analogous problems in Refs. [21] (ph-channel BSE) and
[22–24] (pp-channel BSE). However, the MCDD differs from
the aforementioned methods in some details, in particular
concerning the treatment of the GSC2. Almost all the resulting
equations obtained by means of this straightforward extension
of the MCDD are found to be formally identical with equations
for the normal Fermi system in the same sense as Eqs. (3.1)
and (3.2). Because derivation of these equations in the latter
case was described in detail in Refs. [3,11], we will draw only
the main formulas and the final results.

First of all, the function R̃ 0 = −G̃G̃ entering Eq. (2.58) is
divided into two parts, R̃ 0 = R̃ 0(a) + R̃ 0(b), where

R̃
0(a)
12,34(t1, t2; t3, t4) = −δη1,−η2

θ (η1t41) θ (η1t32)

× G̃31(t3, t1)G̃24(t2, t4), (3.3)

and R̃ 0(b) is the remainder term, which is absorbed in part in
the renormalization procedure. As compared with the initial
function R̃ 0 defined by Eq. (2.59), the term R̃ 0(a) contains
two additional time-dependent step functions and the factor
δη1,−η2

which play a twofold role. On the one hand, they allow
one to obtain a closed set of algebraic equations in the energy
representation for the main component of the function R e(ω)
[see Eqs. (3.5), (3.18), and (3.19) below] which is much more
simple to solve than the initial Eq. (2.58). On the other hand,
owing to these additional θ and δ functions, an approximate
solution of Eq. (2.58) obtained in this way contains main
contributions of the 2q and 2q ⊗ phonon configurations
(within the model described in the next subsection), while
more complicated intermediate states (e.g., 2q ⊗ 2phonon,
2q ⊗ 3phonon, and so on) are blocked, in part, in the time
representation. So in the following, this scheme will be referred
to as the quasiparticle time blocking approximation (QTBA).
Examples of the blocked intermediate 2q ⊗ 2phonon states
are shown later in Fig. 2.

Further, a renormalization procedure is applied to Eq. (2.56)
for the response function R, which leads to the following
equation for the effective response function R eff in the energy
representation:

R eff
12,34(ω) = A12,34(ω) −

∑
5678

A12,56(ω)F56,78R
eff
78,34(ω), (3.4)

where A(ω) is a joint (ph and pp) correlated propagator, and
F is an amplitude of the effective interaction. The propagator
A(ω) is the main term of the formal decomposition

R e
12,34(ω) = A12,34(ω) + B12,34. (3.5)

It contains (i) the sum of an infinite number of terms to all
orders in R̃ 0(a) and (ii) the terms linear and quadratic in R̃ 0(b)

which are related to the GSC2. The term B in Eq. (3.5) is an
auxiliary quantity which is supposed to be energy independent.
In addition, it is supposed that B contains all the contributions
not included explicitly in the propagator A(ω). The effective
interaction F and the effective charge operator e are defined
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by

F12,34 =
∑

56

e12,56 Ũ 56,34,

(3.6)
e12,34 = δ13 δ24 −

∑
56

F12,56B56,34 = (e †
34,12)∗.

In terms of these quantities, the exact response function R is
related to the effective response function by the ansatz

R12,34(ω) =
∑
5678

e
†
12,56 R eff

56,78(ω)e78,34 +
∑

56

B12,56e56,34.

(3.7)

One of the basic quantities, which determines the physical
observables in this approach, is the nuclear polarizability
�(ω). More precisely, it determines the distribution of the
transition strength caused by an external field V 0(x, x ′). The
function �(ω) is defined as

�(ω) = −1

2

∑
1234

(e V 0)∗21 R eff
12,34(ω)(e V 0)43, (3.8)

where

(e V 0)12 =
∑

34

e21,43V
0

34, (3.9)

V 0
12 =

∫
dy dy ′ ψ∗

1 (y) ψ2(y ′) δχ,χ ′ [δχ,+1 V 0(x, x ′)

− δχ,−1 V 0(x ′, x)] = −V 0
2̄1̄. (3.10)

In particular, the strength function S(E) which is frequently
used for the description of nuclear excitations is expressed in
terms of the polarizability as

S(E) = 1

2π
Im

∑
1234

V 0∗
21 R12,34(E + i �)V 0

43

= − 1

π
Im �(E + i �), (3.11)

where � is a smearing parameter. The formulas (3.4)–(3.9),
(3.11) are completely analogous to the ones for the normal
Fermi system (see Ref. [3]), except for the factors 1

2 in
Eqs. (3.8) and (3.11) which arise due to definition (3.10) of the
operator V 0 in the extended space taken in the antisymmetric
form.

B. Correlated propagator within the QTBA

Eq. (3.4) for the response function is still quite general. To
formulate a model, we have to define the correlated propagator
A(ω). In particular, if we neglect the dynamic contributions of
complex configurations, i.e., if we put U e = 0 and 	 e = 0,
we come to the QRPA. In this case, we have A(ω) = Ã(ω),
where Ã(ω) is the uncorrelated QRPA propagator

Ã12,34(ω) = −η1 δη1,−η2
δ13 δ24

ω − E12
, E12 = E1 − E2. (3.12)

To go beyond the QRPA, we have to find reasonable approx-
imations for the quantities U e and 	 e. In the present work,
we will use a QRPA-based version of the quasiparticle-phonon
coupling (QPC) model (see Ref. [25]). This model is discussed
and used in a variety of papers; see, e.g., Refs. [2,3,8,13,20].
Within the QPC model, one can restrict oneself to the so-called
g2 approximation, where g is an amplitude of the quasiparticle-
phonon interaction (see Ref. [3] for more details). Under some
simplifying assumptions, this approximation can be obtained
in the GF method (see Refs. [26–28]). Within the QPC model
and g2 approximation, we have the following formulas for the
quantities U e and 	 e:

U e
12,34(ω, ε, ε′) =

∑
η,m

η g
m(η)∗
31 g

m(η)
42

ε − ε′ + η (ωm − i · 0)
, (3.13)

	 e
12(ε) =

∑
3,η,m

δη,η3g
m(η)∗
13 g

m(η)
23

ε − E3 − η (ωm − i · 0)
, (3.14)

where m is an index of the phonon, and ωm is the phonon
energy, η = ±1. Representation of the response function Re,
which determines the correlated propagator within this model
according to Eqs. (2.58) and (3.5), in terms of Feynmann
diagrams is shown in Fig. 1.

Figure 2 shows examples of diagrams that correspond to
the intermediate 2q ⊗ 2phonon states and are blocked in the
model.

Hereafter, it is assumed that the quasiparticle-phonon
amplitudes g

m(η)
12 are related to the transition amplitudes ρ

m(η)
12

[see Eq. (2.73)] by means of QRPA equations, that is,

g
m(η)
12 =

∑
34

F̃12,34 ρ
m(η)
34 , ρ

m(η)
12 = η1 δη1,−η2

η ωm − E12
g

m(η)
12 ,

(3.15)

Re
Re = +

ReRe Re++

FIG. 1. Equation (2.58) for the response function R e determining correlated QTBA propagator. Conventional notations are used for
single-particle Green functions G̃ (solid lines with arrows), phonon propagators (wavy lines), and amplitudes of the quasiparticle-phonon
interaction (small circles). First term on the right-hand side corresponds to the uncorrelated QRPA propagator. Diagrams are not ordered in
time.
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FIG. 2. Examples of intermediate 2q ⊗ 2 phonon states, which are blocked in the QTBA. Vertical dashed lines denote the time cut of the
diagrams at fixed time. Diagrams are ordered in time.

where F̃ is an amplitude of the effective interaction which
generally differs from the amplitude F entering Eq. (3.4).
Notice that the QRPA equations acquire very simple form
in the representation of single-quasiparticle ψ functions.
Equations (3.15) have to be supplemented by the normalization
condition

1

2

∑
12

η η1

∣∣ρm(η)
12

∣∣2 = 1 (3.16)

and by the condition of the antisymmetry

ρ
m(η)
12 = −ρ

m(η)
2̄1̄ , (3.17)

which is obviously fulfilled for the exact transition amplitudes
defined by Eq. (2.73). Notice, however, that in contrast to
the case considered in Refs. [3,11], the quasiparticle-phonon
amplitudes g

m(η)
12 in Eqs. (3.13) and (3.14) determine the

coupling with excitations in both the ph and pp channels [see
Eqs. (3.15) and comments after Eq. (2.73)].

The QTBA in combination with Eqs. (3.13) and (3.14) leads
to the following ansatz for the correlated propagator:

A12,34(ω) =
∑
5678

[δ15 δ26 + Q
(+−)
12,56(ω)]A(−−)

56,78(ω)

× [δ73 δ84 + Q
(−+)
78,34(ω)] + P

(++)
12,34 (ω), (3.18)

where the upper indices denote products of the first and second
pairs of lower η indices. In particular, for the component
A

(−−)
12,34(ω) of the propagator, we have η1η2 = η3η4 = −1. This

component is determined by the equation

A
(−−)
12,34(ω) = Ã12,34(ω) −

∑
5678

Ã12,56(ω) �56,78(ω)A(−−)
78,34(ω),

(3.19)

where Ã(ω) is the QRPA propagator defined by Eq. (3.12).
For the remaining quantities in the Eqs. (3.18) and (3.19), we
obtain

Q
(+−)
12,34(ω) = Q

(+−) res
12,34 (ω) + δη1,η2

δη3,−η4

×
(

	 GSC
31

E31

δ24 − δ31

	 GSC
24

E24

)
, (3.20)

Q
(−+)
12,34(ω) = Q

(−+) res
12,34 (ω) − δη1,−η2

δη3,η4

×
(

	 GSC
31

E31

δ24 − δ31

	 GSC
24

E24

)
, (3.21)

�12,34(ω) = � res
12,34(ω) + �̄GSC

12,34 + �GSC s.e.
12,34 (ω). (3.22)

In these formulas, a superscript “res” denotes the resonant
parts of the amplitudes, the quantities �̄GSC and �GSC s.e.(ω)
represent contributions of the GSC. They consist of the static
part arising from the induced interaction (�̄GSC) and the part
arising from the self-energy insertions (�GSC s.e.),

�̄GSC
12,34 = −δη1,−η2

δη3,−η4

∑
η,m

(
δη,η3

ρ
m(η)
13 g

m(η)∗
24

+ δη,η4
g

m(η)
13 ρ

m(η)∗
24

)
, (3.23)

�GSC s.e.
12,34 (ω) = η1 δη1,−η2

δη3,−η4

× (
	 GSC

31 (δ24 + q24 ) − (δ31 + q31 ) 	 GSC
24

−(q31 δ24 + δ31 q24 + q31 q24)

× [
ω − 1

2 (E12 + E34)
])

, (3.24)

where

	 GSC
12 = 1

2

(
1 + δη1,−η2

) ∑
3,η,m

η δη,η3

(
ρ

m(η)∗
13 g

m(η)
23

+ g
m(η)∗
13 ρ

m(η)
23

)
, (3.25)

q12 =
∑
3,η,m

δη,η3
ρ

m(η)∗
13 ρ

m(η)
23 . (3.26)

The component P (++)(ω) of the correlated propagator and the
resonant parts of the amplitudes entering Eqs. (3.20)–(3.22)
are defined as

P
(++)
12,34 (ω) =

∑
5678,η,m

ζ
m56(η)
12 Ã

(η)
56,78(ω − η ωm) ζ

m78(η)∗
34 ,

(3.27)

Q
(+−) res
12,34 (ω) =

∑
5678,η,m

ζ
m56(η)
12 Ã

(η)
56,78(ω − η ωm) γ

m78(η)∗
34 ,

(3.28)

Q
(−+) res
12,34 (ω) =

∑
5678,η,m

γ
m56(η)
12 Ã

(η)
56,78(ω − η ωm) ζ

m78(η)∗
34 ,

(3.29)

� res
12,34(ω) = −

∑
5678,η,m

γ
m56(η)
12 Ã

(η)
56,78(ω − η ωm) γ

m78(η)∗
34 ,

(3.30)

where

γ
m56(η)
12 = δη,η5

δη1,−η2
δη5,−η6

(
δ15 g

m(η)
62 − g

m(η)
15 δ62

)
, (3.31)

ζ
m56(η)
12 = δη,η5

δη1, η2
δη5,−η6

(
δ15 ρ

m(η)
62 − ρ

m(η)
15 δ62

)
, (3.32)

and Ã(+)(ω) and Ã(−)(ω) are the positive and negative
frequency parts of the QRPA propagator defined by Eq. (3.12),
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(a) (b)

(c) (d)

FIG. 3. Examples of the dynamic contributions of the ground state
correlations of order g2 into the correlated propagator. Diagrams a and
b represent contributions of the amplitudes Q(−+)(ω) and Q(+−)(ω),
correspondingly. Diagrams c and d represent contributions of the
component P (++)(ω). Diagrams are ordered in time.

i.e., Ã(ω) = Ã(+)(ω) + Ã(−)(ω),

Ã
(η)
12,34(ω) = −η δη,η1

δη1,−η2
δ13 δ24

ω − η η1E12

. (3.33)

Correlated propagator A(ω) defined by Eq. (3.18) and
subsequent equations includes contributions of three types:
(i) pure 2q configurations associated with uncorrelated QRPA
propagator Ã(ω), (ii) 2q ⊗ phonon+GSC2 configurations in-
troduced by the quantities U e and 	 e, and (iii) uncontrollable
more complicated configurations arising due to the GSC2
effects and their combinations with the above-mentioned
configurations. The GSC2 effects are included both in the
component A(−−)(ω) of the propagator through the amplitude
�(ω) in Eq. (3.19) and in the quantities Q(−+)(ω),Q(+−)(ω),
and P (++)(ω). The latter quantities include dynamic contribu-
tions of the GSC2. Diagram representation of some of these
contributions is shown in Fig. 3.

C. Sum rule analysis and a refinement of the model

The formulas of the previous subsection completely de-
termine the correlated propagator of the model within the g2

approximation. By construction, this propagator contains all
the g2 contributions, including those from GSC. However,
exact fulfillment of the sum rules in this approach is not
guaranteed. Let us consider this question in more detail.
Usually, the sum rule is meant in the sense of relation between
the moment mk of the strength function S(E) and the ground
state expectation value of certain operator (see, e.g., Ref. [29]).
The moment mk is defined as

mk = 1

2

∫ ∞

−∞
S(E) EkdE (3.34)

at � → +0 in Eq. (3.11). Introducing asymptotic expansion
of the exact response function,

R12,34(ω) ∼ −
∞∑

k=0

M
(k)

12,34 ω−k−1, (3.35)

and using Eqs. (2.71), (2.72), (3.10), (3.11), one can show
that the moments mk are expressed through the coefficient

functions M
(k)

12,34 by the formula

mk = 1

4

∑
1234

V 0∗
21 M

(k)
12,34 V 0

43. (3.36)

In particular, by making use of the BSE (2.42) in the energy
representation, one can obtain

M
(0)

12,34 = δ31 ρ 24 − ρ 31 δ24, (3.37)

where ρ 12 = 〈0|b†2 b1|0〉 is the extended density matrix
(EDM). Substituting Eq. (3.37) into Eq. (3.36), we get the
so-called non-energy-weighted sum rule (NEWSR):

m0 = 1
4 Tr (ρ [V 0, V 0† ]). (3.38)

Notice that the factor 1
4 in this formula (instead of the usual

factor 1
2 ) arises from the definition (3.10) of the external field

operator in the extended space taken in the antisymmetric form.
Thus, to ensure exact fulfillment of the NEWSR, the

coefficient function M
(0)

12,34 of the model must have the form
(3.37) with properly normalized EDM ρ. Using the formulas
of the previous subsection and the definition of the quantity
M

(0)
12,34 through the expansion (3.35) one can show that

(i) the NEWSR is fulfilled exactly within the QRPA and
(ii) Eq. (3.37) is not fulfilled rigorously in the considered
version of the QTBA and the NEWSR is fulfilled only up to
the terms of order g2 within this model.

It is not difficult, however, to remedy this drawback within
the above-described scheme based on the g2 approximation.
First of all, let us include energy-independent operator 	 GSC

defined by Eq. (3.25) into the mean-field part 	̃ of the
total mass operator 	(ε). It can be done because the only
constraint on the operator 	̃ was the condition of its energy
independence. On the same grounds in the following we
include the energy-independent amplitude �̄GSC entering
Eq. (3.22) into the amplitude Ũ . Thus, instead of Eq. (2.49),
we now use the decompositions

	 = 	̃′ + 	̄ e, U = Ũ ′ + Ū e, (3.39)

where

	̃′ = 	̃ + 	 GSC, Ũ ′ = Ũ + �̄GSC, (3.40)

	̄ e(ε) = 	 e(ε) − 	 GSC,

Ū e(ω, ε, ε′) = U e(ω, ε, ε′) − �̄GSC, (3.41)

withU e(ω, ε, ε′) and 	 e(ε) defined by Eqs. (3.13) and (3.14).
These redefinitions mean that we have to use in all the

equations the quantities 	̄ e and Ū e instead of 	 e and U e.
The replacement of U e by Ū e leads to disappearance of
the amplitude �̄GSC from the right-hand side of Eq. (3.22).
The replacement of 	 e by 	̄ e leads to disappearance of
all the terms containing 	 GSC in Eqs. (3.20), (3.21), and (3.24).
The remaining part of the amplitude �GSC s.e.(ω) in Eq. (3.22)
can be taken into account through the renormalization of the
QRPA propagator Ã(ω) within the g2 approximation.

To this aim, let us introduce matrix Z̃12,34 defined by∑
56

Z̃12,56 Z̃56,34 = δ31 δ24 − q31 δ24 − δ31 q24,

(3.42)
Z̃12,34 = Z̃ ∗

34,12,
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where the matrix q12 is defined by Eq. (3.26). In addition, it is
supposed that the matrix Z̃12,34 is positive-definite, which can
always be fulfilled if all the eigenvalues qi of the matrix q12
satisfy the condition qi < 1

2 [notice that qi � 0, as follows from
Eq. (3.26)]. Because according to Eqs. (3.15) and (3.26) we
have q12 = O(g2), the pointed condition is consistent with the
previous model assumptions. Thus, from Eq. (3.42) it follows
that

Z̃12,34 = δ31 δ24 − 1
2

(
q31 δ24 + δ31 q24

) + O(g4). (3.43)

Further, using Eqs. (3.12), (3.24) (without terms containing
operator 	 GSC), and (3.43), we obtain

Ã(ω) − Ã(ω) �GSC s.e.(ω) Ã(ω) = Z̃ Ã(ω) Z̃ + O(g4).

(3.44)

It enables one to redefine the correlated propagator replacing
Eq. (3.18) by the ansatz

A12,34(ω) =
∑
5678

ZL
12,56(ω)A(−−)

56,78(ω)ZR
78,34(ω) + P

(++)
12,34 (ω),

(3.45)

where

ZL
12,34(ω) =

∑
56

[
δ15 δ26 + Q

(+−) res
12,56 (ω)

]
Z̃56,34, (3.46)

ZR
12,34(ω) =

∑
56

Z̃12,56

[
δ53 δ64 + Q

(−+) res
56,34 (ω)

]
. (3.47)

In Eq. (3.45), the propagator A(−−)(ω) is determined by
Eq. (3.19), in which the amplitude �(ω) is now defined as

�12,34(ω) =
∑
5678

Z̃12,56 � res
56,78(ω) Z̃78,34, (3.48)

instead of by Eq. (3.22).
It is easy to see that the propagator A(ω) defined by

Eqs. (3.19), (3.42), and (3.45)–(3.48) coincides up to terms of
order g2 with the propagator defined in the previous subsection
[see Eq. (3.18) and subsequent equations], if in addition
we take into account Eqs. (3.39)–(3.41). On the other hand,
assuming that the effective charge in Eq. (3.7) is equal to the
unit operator and making use of the expansion (3.35), one can
find that this new redefined propagator leads to the following
result for the coefficient function M

(0)
12,34:

M
(0)

12,34 = η1 δη1,−η2
(δ31 δ24 − q31 δ24 − δ31 q24) + η1 δη1, η2

× (δ31 q24 − q31 δ24). (3.49)

Here the terms containing δη1,−η2
follow from Eq. (3.42).

The terms containing δη1, η2
arise from the contributions of

the component P (++)(ω) in Eq. (3.45). From Eq. (3.49) we
obtain that in the modified version of the model, the coefficient
function M

(0)
12,34 has the form (3.37) with the correlated EDM

ρ defined as

ρ12 = ρ̃12 + η1 q12, (3.50)

where ρ̃12 = δη1,−1 δ12 is the EDM of the HFB theory in the
representation of ψ functions. Therefore, we conclude that if

the EDM (3.50) is normalized by the usual condition∫
dy ′ δχ ′,+1 δτ ′, τ

∑
12

ψ1(y ′) ψ∗
2 (y ′) ρ12 = Nτ , (3.51)

the NEWSR is fulfilled exactly within the QTBA.
The following remarks are in order. First, the EDM (3.50)

arising in the QTBA coincides with the correlated EDM ρ c,
which can be obtained from the Dyson equation (2.54) and the
Eqs. (3.1), (3.14), (3.25), (3.41) within the g2 approximation:

ρ
12

= ρ c

12
≡

∫ ∞

−∞

dε

2πi
eiετ [G̃(ε) + G̃(ε) 	̄ e(ε) G̃(ε)]12,

τ → + 0. (3.52)

Second, notice that the GSC effects included by means of
renormalization of the QRPA propagator within the QTBA
with the help of the matrix Z̃ are the same as the effects
included in the renormalized QRPA (RQRPA, see, e.g.,
Ref. [7]). It is known (see Ref. [30]) that within the standard
RQRPA, the Ikeda sum rule (being a particular case of
the NEWSR) is violated. The above analysis allows us to
understand the reason for this violation. It follows from
Eq. (3.49) that to satisfy the NEWSR within the QTBA, it
is necessary and sufficient to take into account contributions
of all the terms in Eq. (3.45) including term P (++)(ω). This
term represents dynamic contributions of the GSC into the
QTBA propagator (3.45), which cannot be reduced to the
renormalization of the QRPA propagator Ã(ω) and which are
absent in the RQRPA.

Let us consider in brief the question of the energy-weighted
sum rule (EWSR). Usually, the EWSR is associated with
the moment m1. In contrast to the NEWSR, the model-
independent formula for m1 is not as simple as Eq. (3.38)
(see Ref. [29]). So, in the general case, we are able to calculate
and compare only the values of the EWSR obtained within
different models. It is easy to find the moment m1 within the
QRPA using definitions (3.35), (3.36), and the equation for the
QRPA response function R̃,

R̃(ω) = Ã(ω) − Ã(ω) F̃ R̃(ω), (3.53)

where the QRPA propagator Ã is defined by Eq. (3.12). The
result reads

m
QRPA
1 = 1

4 Tr(ρ̃[[V 0,H], V 0† ]) + 1
4

∑
1234

[V 0† , ρ̃]12

× F̃12,34 [ρ̃, V 0]43, (3.54)

where the single-quasiparticle Hamiltonian H is defined by
Eq. (2.62). The formula for the moment m1 within the
QTBA in the general case is much more complicated and
is not drawn here. However, it is not difficult to find the
value of m

QTBA
1 when the GSC2 are not included. In this

case, the correlated propagator A(ω) in Eq. (3.4) coincides
with component A(−−)(ω) which is a solution of Eq. (3.19)
with �(ω) = � res(ω). Taking into account that the amplitude
� res(ω) goes down as 1/ω when ω → ∞, we obtain the
same result (3.54) in the QTBA as in the QRPA in which,
however, the amplitude of the interaction F̃ should be replaced
by the amplitude F . If, in addition, the QTBA amplitude F
coincides with the QRPA amplitude F̃ , we arrive at the equality
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m
QTBA
1 = m

QRPA
1 . Notice that analogous results are obtained

for the EWSR in the RPA, the second RPA (SRPA), and the
extended RPA (ERPA). Within the SRPA, the GSC2 are not
included and that leads to the equality m SRPA

1 = mRPA
1 . On the

other hand, within the ERPA, the GSC2 are included, and we
have mERPA

1 �= mRPA
1 (see Ref. [29] for more details).

D. Antisymmetrization of the equations and inclusion
of the two-phonon configurations

As can be seen from the spectral expansion (2.72), the
physical observables of the theory are completely deter-
mined by the antisymmetric response function L(ω). Within
the QTBA, this exact function is approximated by the
effective antisymmetric response function Leff(ω) defined as
[cf. Eq. (2.71)] Leff

12,34(ω) = R eff
12,34(ω) − R eff

2̄1̄,34(ω), where

Reff(ω) is the solution of Eq. (3.4). It is easy to prove
the following. First, the polarizability �(ω) [see Eq. (3.8)]
is actually determined by the function Leff(ω), while the
symmetric part of the function R eff(ω) does not contribute to
the Eq. (3.8). In other words, �(ω) is invariant under the trans-
formation R eff(ω) → 1

2Leff(ω). Second, the function Leff(ω) is
the doubled solution of the antisymmetrized QTBA equation
obtained from Eq. (3.4) with the help of antisymmetrization of
the correlated propagator A(ω). This antisymmetrization can
be implemented by means of the following transformations in
Eqs. (3.19), (3.27)–(3.30): Ã(ω) → 1

2 L̃0(ω) and Ã(η)(ω) →
1
2 L̃0(η)(ω), where L̃0(ω) is the antisymmetric (uncorrelated)
QRPA propagator, and L̃0(η)(ω) represents its positive and
negative frequency parts [cf. Eqs. (3.12) and (3.33)], that is,

L̃0
12,34(ω) =

∑
η=±1

L̃
0(η)
12,34(ω),

(3.55)

L̃
0(η)
12,34(ω) = (δ2̄3 δ1̄4 − δ13 δ24)

η δη,η1
δη1,−η2

ω − η η1E12

.

We did not use the antisymmetric form of the QTBA
equations from the very beginning to simplify their derivation
and analysis. However, the antisymmetrization facilitates the
numerical solution because of the reduction of the dimensions
of matrices entering these equations.

The model described above allows for the follow-
ing straightforward extension related to the definition of
the resonant parts of the amplitudes entering Eqs. (3.19)
and (3.45)–(3.48) for the correlated propagator of the
QTBA. Contributions from these resonant parts [defined by
Eqs. (3.27)–(3.30)] to the response function describe si-
multaneous propagation of the phonon and the uncorrelated
quasiparticle pair. Natural generalization of this model is the
inclusion of the correlations in the quasiparticle pair entering
the 2q ⊗ phonon configuration, i.e., replacement of the
uncorrelated pair by the phonon. For the ph-channel BSE in the
normal Fermi system, a similar generalization, corresponding
to the replacement of the 1p1h ⊗ phonon configurations
by the two-phonon intermediate states, was discussed in
Ref. [31]. For the pp-channel BSE, an analogous procedure
was implemented in Ref. [23].

Within the QTBA, two-quasiparticle correlations in the 2q
⊗ phonon intermediate states (i.e., two-phonon configura-
tions) can be included in the following way. The correlated
counterpart of the above-defined quantity L̃0(η)(ω) is L̃(η)(ω)
representing the positive and negative frequency parts of the
antisymmetric QRPA response function L̃(ω):

L̃12,34(ω) =
∑
η=±1

L̃
(η)
12,34(ω),

(3.56)

L̃
(η)
12,34(ω) = −

∑
n

η ρ
n(η)
12 ρ

n(η)∗
34

ω − η ωn

.

In Eq. (3.56), it is supposed that the QRPA energies ωn and
transition amplitudes ρ

n(η)
12 satisfy Eqs. (3.15)–(3.17). The

above considerations imply that transition to the two-phonon
configurations within the QTBA can be accomplished by
means of the replacement Ã(η)(ω) → 1

2 L̃(η)(ω) in Eqs. (3.27)–
(3.30), which leads to

P
(++)
12,34 (ω) = −1

2

∑
η,m,n

η ζ
mn(η)
12 ζ

mn(η)∗
34

ω − η ωmn

, (3.57)

Q
(+−) res
12,34 (ω) = −1

2

∑
η,m,n

η ζ
mn(η)
12 γ

mn(η)∗
34

ω − η ωmn

, (3.58)

Q
(−+) res
12,34 (ω) = −1

2

∑
η,m,n

η γ
mn(η)
12 ζ

mn(η)∗
34

ω − η ωmn

, (3.59)

� res
12,34(ω) = 1

2

∑
η,m,n

η γ
mn(η)
12 γ

mn(η)∗
34

ω − η ωmn

, (3.60)

where ωmn = ωm + ωn, γ
mn(η)
12 = ∑

56 γ
m56(η)
12 ρ

n(η)
56 , and

ζ
mn(η)
12 = ∑

56 ζ
m56(η)
12 ρ

n(η)
56 .

Physical arguments in favor of using Eqs. (3.57)–(3.60)
instead of (3.27)–(3.30) are clear. Notice, however, that the
derivation of Eqs. (3.57)–(3.60) has not been rigorous. It en-
ables one only to assert that these formulas recover the original
Eqs. (3.27)–(3.30) in the limit of vanishing quasiparticle
interaction. One can also show, using the completeness of
the set of QRPA transition amplitudes, that the NEWSR
is fulfilled exactly within the two-phonon version of the
QTBA. The rigorous derivation of Eqs. (3.57)–(3.60) is
based on the inclusion of the additional (third order in the
quasiparticle-quasiparticle interaction) contributions into the
dynamic amplitude U e defined by Eq. (3.13) and will not
be considered here. It is worth noting that inclusion of
the two-phonon configurations in Eqs. (3.57)–(3.60) brings
the model closer to the QPM [2]. Comparing the QTBA
and the QPM, one can infer that treatment of the GSC within
the QTBA is more consistent. A more detailed comparison of
these models is beyond the scope of the present paper.

E. Self-consistent scheme

Finally, we briefly outline the scheme that enables one to
eliminate spurious states within the QTBA. These states, being
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a common problem of the microscopic theories, are associated
with the existence of the nontrivial external field operators
V 0 satisfying the condition: [H,V 0] = [H 0, V 0], where H

and H 0 are the total and the single-particle Hamiltonian,
correspondingly [see Eq. (2.4)]. Elimination of the spurious
states within a consistent theory implies that they must have
zero excitation energy. In terms of the GF method, this means
that the exact response function R(ω) must have a pole at
ω = 0 corresponding to the spurious states. In particular, it is
well known that the QRPA response function R̃(ω) satisfying
Eq. (3.53) has such a pole at ω = 0 if the interaction
amplitude F̃ is related to the mean-field operator 	̃ by the
self-consistency condition

F̃ = δ 	̃ / δ ρ̃. (3.61)

In the QTBA, the situation is more complicated since the
correlated propagator A(ω) in Eq. (3.4) has no simple structure
of the QRPA propagator Ã(ω). To avoid this difficulty, let us
note that the exact solution of the Eq. (3.4) with the propagator
A(ω) defined by Eqs. (3.45) and (3.19) can be represented in
the form

R eff(ω) = [1 − P (++)(ω)F P (ω)]ZL(ω) R̃ eff(ω) ZR(ω)

× [1 − F P (ω) P (++)(ω)] + P (++)(ω) − P (++)(ω)

×F P (ω) P (++)(ω), (3.62)

where the energy-dependent interaction amplitude F P (ω)
and the renormalized response function R̃ eff(ω) satisfy the
equations

F P (ω) = F − F P (++)(ω)F P (ω), (3.63)

R̃ eff(ω) = Ã(ω) − Ã(ω) F̃(ω) R̃ eff(ω), (3.64)

with

F̃(ω) = ZR(ω)F P (ω) ZL(ω) + �(ω). (3.65)

If the energy-dependent amplitude F̃(ω) in Eq. (3.64)
coincides at ω = 0 with the interaction amplitude F̃ in
Eq. (3.53), the renormalized response function R̃ eff(ω) has
the pole at ω = 0 corresponding to the spurious states by the
same reasons as the QRPA response function R̃(ω). To ensure
the fulfillment of the relationship F̃(0) = F̃ , we use the fact
that the interaction amplitudeF entering Eq. (3.4) has not been
constrained so far by any conditions besides the property of its
energy independence. Let us now assume that the amplitude
F satisfies the equation

F = F P + F P P (++)(0)F , (3.66)

where

F P = [ZR(0)]−1[F̃ − �(0)][ZL(0)]−1, (3.67)

and the amplitudes �(0) and F̃ are determined by Eqs. (3.48)
and (3.61) correspondingly. If the Eqs. (3.66) and (3.67) are
fulfilled, then it follows from Eqs. (3.63) and (3.65) that
F̃(0) = F̃ . Consequently, both functions R̃ eff(ω) and R eff(ω)
have the poles at ω = 0 corresponding to the spurious states.
It means that these states are eliminated, at least energetically,
within the self-consistent version of the QTBA defined by the
above equations.

Notice that in the case that the GSC2 are not included,
Eqs. (3.66) and (3.67) are reduced to the ansatz F = F̃ −
� res(0). The difference F̃ − �(0) also enters Eq. (3.67).
Thus, in addition to the elimination of the spurious states,
the procedure described leads to subtraction of the static
contributions of the quasiparticle-phonon coupling from both
the effective interaction and the mass operator [because �(ω)
contains self-energy contributions also]. So, one can refer
to this method as the subtraction procedure. A sense of
this subtraction is to avoid double counting of the static
QPC effects which usually are effectively included in both
the interaction F̃ and the mean-field operator 	̃. For that
reason, the subtraction procedure is applicable also in the
non-self-consistent phenomenological schemes of the type
described in Ref. [3].

IV. CONCLUSIONS

In this paper, the problem of the microscopic description
of excited states of the even-even open-shell atomic nuclei
is considered. The generalized Green function formalism
(GGFF) has been presented and used to formulate the model in-
cluding pairing, two-quasiparticle (2q), and the more complex
quasiparticle-phonon correlations. The GGFF is a modification
of the existing versions of Green function formalism and is
more suitable for solving the problem considered here. Within
the GGFF, the normal and anomalous Green functions in the
Fermi systems with pairing are treated in a unified way in
terms of the components of generalized Green functions in
a space that is double the size of the usual single-particle
space. This treatment is analogous to the method used in
Ref. [18]. In the GGFF, this method is extended to Fermi
systems interacting through two-, three-, and other many-
particle effective forces, which is important to nuclear physics
in which the many-particle forces play an essential role. Within
the framework of this formalism, the generalization of the
model of Ref. [11] including the pairing correlations has been
developed. The physical content of the model is determined
by the quasiparticle time blocking approximation (QTBA)
which allows one to keep the contributions of the 2q and
2q ⊗ phonon configurations, while excluding (blocking) more
complicated intermediate states. It has been shown that within
the QTBA, the non-energy-weighted sum rule is fulfilled
exactly. The model developed has been extended to include
correlations in the quasiparticle pair entering a 2q ⊗ phonon
configuration, i.e., to include two-phonon configurations.
Finally, the method to eliminate the spurious states within
the self-consistent QTBA and to avoid double counting of the
complex configurations in general case has been considered.
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[12] G. Colò, P. F. Bortignon, Nguyen Van Giai, A. Bracco, and

R. A. Broglia, Phys. Lett. B276, 279 (1992).
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