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Negative parity states of 11B and 11C and the similarity with 12C
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The negative parity states of 11B and 11C were studied based on the calculations of antisymmetrized molecular
dynamics (AMD). The calculations reproduced well the experimental strengths of Gamov-Teller (GT), M1, and
monopole transitions. We especially focused on the 3/2−

3 and 5/2−
2 states for which GT transition strengths were

recently measured. The weak M1 and GT transitions for 3/2−
3 in 11B and 11C are described by a well-developed

cluster structure of 2α+t and 2α+3He, respectively, while the strong transitions for 5/2−
2 is characterized by an

intrinsic spin excitation with no cluster structure. It was found that the 3/2−
3 state is a dilute cluster state, and its

features are similar to those of 12C(0+
2 ) which is considered to be a gas state of 3α clusters.
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I. INTRODUCTION

Cluster aspect is known to be an essential feature of light
nuclei. Recently, various new types of cluster structures have
been predicted and found in excited states of light stable
nuclei as well as in light unstable nuclei. In the case of
12C, it was known that 3α-cluster states develop in such
excited states as the 0+

2 (7.65 MeV) state. Tohsaki et al. [1,2]
proposed a new interpretation of the 0+

2 as a dilute gas state
of weakly interacting 3α particles. It is a challenging problem
to determine whether such a cluster gas is a general feature
that appears in other nuclear systems. To search for such dilute
cluster states, we studied the structure of excited states of 11C
and 11B.

The present study was motivated by recent measure-
ments of Gamov-Teller (GT) transitions 11B → 11C∗ with
high energy resolutions [3,4]. In the experiments, the GT
transition strengths to the 3/2−

3 and 5/2−
2 states were sepa-

rately measured, and the transition to 11C(3/2−
3 , 8.10 MeV)

was found to be extremely weak compared with that to
11C(5/2−

2 , 8.42 MeV) and also with those to other low-lying
states. Abnormal features of the 3/2−

3 state have been known
also in the mirror nucleus 11B. For example, the 3/2−

3 state
of 11B has relatively weak M1 transitions into the lower
states compared with the strong transitions among other
low-lying states. Another characteristic of 11B(3/2−

3 ) is the
strong monopole transition observed by recent experiments
on inelastic (d, d ′) scattering, where similarities of 11B(3/2−

3 )
with 12C(0+

2 ) were suggested [5]. On the theoretical side, the
structure of 11B(3/2−

3 ) has been mysterious because this state
cannot be described by any models. No theoretical state can
be assigned to 3/2−

3 in shell-model [6–8] or cluster model
calculations [9]. These facts indicate that the 3/2−

3 state
of 11B and 11C may have an abnormal structure and is a
candidate of the dilute cluster state. On the other hand, the
shell models succeeded in reproducing various properties of
low-lying negative parity states with the excitation energy
Ex < 9 MeV except for 3/2−

3 [8]. This result suggests the
possible coexistence of cluster states and noncluster states in
11B and 11C.

In this paper, we study the negative parity states of 11B
and 11C based on theoretical calculations of antisymmetrized

molecular dynamics (AMD). We apply the method of variation
after spin-parity projections in the AMD framework, which has
proved to be a powerful tool for studying excited states of light
nuclei. We focus on the structures of the 3/2−

3 and 5/2−
2 states

around Ex = 8 MeV and show the similarity of the excited
states of 11B with those of 12C.

The paper is organized as follows. First, we briefly explain
the theoretical method in Sec. II, and then we show the
calculated results in comparison with the experimental data
in Sec. III. In Sec. IV, we discuss the structures of excited
states of 11B and show their similarity with 12C. Finally, we
give a summary in Sec. V.

II. FORMULATION

We perform the energy variation after spin-parity projection
(VAP) within the AMD model space, as was done in the
previous studies [10,11]. The detailed formulation of the
AMD method for nuclear structure studies is described in
Refs. [10–14]. In particular, the formulation of the present
calculations is basically the same as that described in Refs.
[10,11,15].

An AMD wave function is a Slater determinant of Gaussian
wave packets,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the i-th single-particle wave function is written by a
product of spatial (φ), intrinsic spin (χ ), and isospin (τ ) wave
functions as

ϕi = φXi
χiτi, (2)

φXi
(rj ) ∝ exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

φ and χ are represented by complex variational parameters, Xi

and ξi . The isospin function τi is fixed to be up (proton) or down
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(neutron). We use the fixed width parameter ν = 0.19 fm−2,
which is chosen to be the optimum value for 11B. Accordingly,
an AMD wave function is expressed by a set of variational
parameters, Z ≡ {X1, X2, . . . , XA, ξ1, ξ2, . . . , ξA}.

For the lowest Jπ state, we vary the parameters Xi and
ξi (i = 1 ∼ A) to minimize the energy expectation value of
the Hamiltonian 〈�|H |�〉/〈�|�〉 for the spin-parity projected
AMD wave function � = P Jπ

MK ′�AMD(Z). Here, P Jπ
MK ′ is the

spin-parity projection operator. Then we obtain the optimum
solution of the parameter set: ZJπ

1 for the lowest Jπ state. The
solution ZJπ

n for the n-th Jπ state are calculated by varying Z
so as to minimize the energy of the wave function, that is,

|�〉 = ∣∣P Jπ
MK ′�AMD(Z)

〉 − n−1∑
k=1

∣∣P Jπ
MK ′�AMD

(
ZJπ

k

)〉

×
〈
P Jπ

MK ′�AMD
(
ZJπ

k

)∣∣P Jπ
MK ′�AMD(Z)

〉
〈
P Jπ

MK ′�AMD
(
ZJπ

k

)∣∣P Jπ
MK ′�AMD

(
ZJπ

k

)〉 , (5)

which is the orthogonal component to the lower states.
After the VAP calculations of the Jπ

n states for various
J, n and π = ±, we obtained the optimum intrinsic states,
�AMD(ZJπ

n ), which approximately describe the corresponding
Jπ

n states. To improve the wave functions, we superpose all
the obtained AMD wave functions. Namely, we determine the
final wave functions for the Jπ

n states as∣∣Jπ
n

〉 =
∑
i,K

c
(
Jπ

n , i,K
)∣∣P Jπ

MK�AMD
(
ZJiπi

ki

)〉
, (6)

where the coefficients c(Jπ
n , i,K) are determined by the

diagonalization of the Hamiltonian and norm matrices. Here
the number of the independent AMD wave functions, which
are superposed in Eq. (6), is that of the spin-parity states
{Jπ

n } calculated by the VAP. We calculate the expectation
values for various observables with the |Jπ

n 〉 obtained after
diagonalization.

III. RESULTS

We adopt the same effective nuclear interaction as those
used in Ref. [10], which consists of the central, spin-orbit,
and Coulomb forces. The interaction parameters are slightly
modified from the previous ones for better reproduction of the
energy levels of 11B and 11C. Namely, the Bartlett, Heisenberg,
and Majorana parameters in the MV1 force are chosen to be
b = h = 0.25 and m = 0.62, and the strengths of the spin-orbit
force are uI = −uII = 2800 MeV.

The base AMD wave functions are obtained by the VAP
for the ground and excited states of 11B. The number of the
base AMD wave functions in the present calculations are 17.
These independent AMD wave functions are superposed to
calculate the final wave functions. In the calculations of 11C, we
assume the mirror symmetry of the base AMD wave functions
for simplicity. The coefficients of the base wave functions
in the superposition are optimized for each system of 11B
and 11C.

The energy levels of the negative parity states in 11B are
shown in Fig. 1. In the results, we obtain the 3/2−

3 and 5/2−
2

states at about Ex = 10 MeV. We can assign the obtained 3/2−
3

and 5/2−
2 states to the observed 3/2−

3 (Ex = 8.56 MeV) and
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FIG. 1. Energy levels of the negative parity states of 11B.

5/2−
2 (Ex = 8.92 MeV) states because of the good agreements

of transition strengths between theory and experimental data as
shown later, though the excitation energies are overestimated
by the present calculations.

The GT transition strengths from 11Bg.s. to 11C∗ and the M1
and E2 transition strengths in 11B are shown in Tables I, II,
and III, respectively. The calculated values for these transitions
are in good agreement with the observed values. The B(GT) for
the transitions to 11C∗(3/2−

3 ) and 11C∗(5/2−
2 ) at Ex ∼ 8 MeV

were recently measured by charge exchange reactions [3,4],
and it was found that B(GT; 11B → 11C(3/2−

3 )) is abnormally
small, while B(GT; 11B → 11C(5/2−

2 )) is as large as those for
other low-lying states of 11C. The present result describes

TABLE I. Comparison of the GT transition strengths, binding
energies (B.E.), Q moments, µ moments, and 2α − t thresholds
between present results and experimental data. Theoretical values
obtained by the no-core shell model calculation with AV8’+TM’(99)
[8] are also shown. Experimental data are from Ref. [4].

Exp. AMD NCSM

B(GT; 11B → 11C(3/2−
1 )) 0.345(8) 0.40 0.315

B(GT; 11B → 11C(1/2−
1 )) 0.440(22) 0.43 0.591

B(GT; 11B → 11C(5/2−
1 )) 0.526(27) 0.70 0.517

B(GT; 11B → 11C(3/2−
2 )) 0.525(27) 0.67 0.741

B(GT; 11B → 11C(3/2−
3 )) 0.005(2) 0.02

B(GT; 11B → 11C(5/2−
2 )) 0.461(23) 0.56 0.625

B.E.(11Bg.s.) (MeV) 76.205 72.8 73.338
µ(11Bg.s.) (µ2

N ) +2.689 +2.3 +2.176
Q(11Bg.s.) (e fm2) +4.065(26) +4.7 +2.920
B.E.(11Cg.s.) (MeV) 73.440 70.4 70.618
µ(11Cg.s.) (µ2

N ) −0.964 −0.6 −0.460
Q(11Cg.s.) (e fm2) +3.327(24) +3.8 +2.363
2α+t threshold (MeV) 65.07 70.6
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TABLE II. M1 transition strengths in 11B. Theoretical values
were calculated by the AMD (VAP) method.

Ji Jf B(M1; Ji → Jf ) µ2
N

Exp. Theor.

1/2−
1 3/2−

1 1.07 (0.07) 1.2
5/2−

1 3/2−
1 0.52 (0.02) 0.72

3/2−
2 3/2−

1 1.13 (0.04) 1.2
3/2−

2 1/2−
1 0.98 (0.04) 1.0

7/2−
1 5/2−

1 0.006 (0.002) 0.03
3/2−

3 3/2−
1 0.072 (0.007) 0.07

3/2−
3 1/2−

1 0.091 (0.009) 0.16
3/2−

3 5/2−
1 0.057 (0.013) 0.04

3/2−
3 3/2−

2 0.163 (0.023) 0.28
5/2−

2 3/2−
1 0.50 (0.02) 0.45

5/2−
2 5/2−

1 0.21 (0.02) 0.04

well the small B(GT) for the 3/2−
3 state because it has

a well-developed 2α+3He cluster structure, and hence the
structure of the daughter state differs greatly from the normal
structure of the parent state, 11Bg.s.. For the same reason, the
M1 transitions from 11B(3/2−

3 ) to the low-lying states are
generally weak compared with other M1 transitions among the
low-lying states. On the other hand, since 5/2−

2 has no cluster
structure, B(GT) for 11C∗(5/2−

2 ) and B(M1) for 11B∗(5/2−
2 )

are as large as those for the other low-lying states in the
theoretical results. This is consistent with the experimental
data. We also show in Table I the theoretical B(GT) calculated
by the no-core shell model (NCSM) [8]. The strengths of the
GT transitions to 11C∗ are reproduced also by the NCSM except
for the transition to 11C∗(3/2−

3 ). In the NCSM, the 3/2−
3 state

cannot be described because the limited model space in the
shell model is not suitable for describing cluster states with
spatial development.

Recent experiments on inelastic (d, d ′) scattering [5] have
found that the isoscalar monopole transition for 3/2−

1 → 3/2−
3

is as strong as B(E0; IS) = 94 ± 16 fm4. The calculated
strength for this inelastic transition is B(E0; IS) = 94 fm4,
which agrees well with the experimental data.

TABLE III. Quadrupole transition strengths in 11B. Present
results of B(E2), Mp , and Mn are shown with experimental values
of B(E2) [16].

Ji Jf Exp. Theor. Mp (e fm2) Mn (e fm2)
B(E2)

(e2 fm4)
B(E2)

(e2 fm4)

1/2−
1 3/2−

1 4.5 3.0 4.0
5/2−

1 3/2−
1 14(3) 12.8 8.8 7.5

3/2−
2 3/2−

1 0.0 0.3 2.7
7/2−

1 3/2−
1 1.9(0.4) 1.8 3.8 7.9

3/2−
3 3/2−

1 0.8 1.8 2.8
5/2−

2 3/2−
1 1.0(0.7) 0.1 0.8 0.9

5/2−
3 3/2−

1 0.7 2.1 1.2

IV. DISCUSSIONS

In the present calculations of 11B and 11C, we found that the
3/2−

3 states are the well-developed three-center cluster states
such as 2α+t and 2α+3He. We consider that these states are
candidates for being cluster gas states, which are analogous to
the 3α gas state proposed in 12C(0+

2 ). On the other hand, 5/2−
2

at almost the same excitation energy as 3/2−
3 is a noncluster

state. In this section, we theoretically investigate the structure
of 11B while focusing on the cluster aspect, and we show the
analogy of the excited states of 11B with those of 12C.

A. Intrinsic structure

As explained in Sec. II, by performing the VAP calcula-
tions, we obtained the optimum intrinsic states, �AMD(ZJπ

n ).
Although the final wave function |Jπ

n 〉 is expressed by the su-
perposition of all the obtained AMD wave functions as Eq. (6),
the spin-parity eigenstate |P Jπ

MK�AMD(ZJπ
n )〉 projected from

the single AMD wave function is the dominant component
of the |Jπ

n 〉 with an amplitude of more than 70% in most cases,
except for 3/2−

3 . In the case of 3/2−
3 , since the amplitude is

distributed into various AMD wave functions, the amplitude
of the dominant component |P 3/2−

MK �AMD(Z3/2−
3 )〉 in |3/2−

3 〉
is reduced to 50%. Here we regard the obtained �AMD(ZJπ

n )
written by the single Slater determinant as the approximate
intrinsic state of the corresponding Jπ

n state, and discuss the
intrinsic structure.

In Fig. 2, we display the density distribution of the excited
states of 11B. The matter density of the intrinsic wave functions
�AMD(ZJπ

n ) is also shown. As shown in the density, the ground
state (3/2−

1 ) has no cluster structure, while the 3/2−
2 state has

a structure with cluster cores. Since the spatial development of
the clustering is not remarkable, the 3/2−

2 state is considered to
be the SU(3)-limit cluster state. The most striking observation
is that the spatially developed cluster structure of 2α+t appears
in the 3/2−

3 state. On the other hand, the 5/2−
2 state has no

cluster structure, though this state appears at almost the same
excitation energy as the 3/2−

3 state with the developed cluster
structure. In a higher excited state, we found a somewhat
linearlike 2α+t cluster structure in 1/2−

2 . The predicted 1/2−
2

state should be assigned to a 1/2−, T = 1/2 state; however,
the corresponding state has not yet been observed.

Let us show similarities of the cluster features seen in the
intrinsic structure of 11B with those of 12C. When we compare
the present AMD results with those of 12C in Ref. [15], we find
a good correspondence of the intrinsic structure between 11B
and 12C. As shown in Fig. 2, the ground states in both nuclei
have no remarkable cluster structure because of the nature
of the p3/2 subshell closure. The cluster core structure in the
11B(3/2−

2 ) state is similar to that of the 12C(2+
1 ). Both states

show the three-center cluster core structure, but their spatial
development is not remarkable. This means that 11B(3/2−

2 )
and 12C(2+

1 ) can be practically dominated by the SU(3)-limit
cluster states of 2α+t and 3α, respectively. The spatially
developed 2α+t clustering in 11B(3/2−

3 ) is similar to the
developed 3α clustering in C(0+

2 ). The details are discussed
later. The linearlike structure in 11B(1/2−

2 ) is associated with
that of the 12C(0+

3 ) and 12C(1−
1 ) states. Although the structure
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FIG. 2. Density distribution of ground and excited states in 11B
and 12C, and density of the dominant AMD wave function of each
state.

of 12C(0+
3 ) is not yet experimentally and theoretically clarified,

the linearlike 3α structure in 12C was predicted by the generator
coordinate method (GCM) calculation [17] and by fermionic
molecular dynamics [18] as well as the AMD. The 5/2−

2 state
has no cluster structure, because this state appears as a result
of the intrinsic spin excitation, which causes the breaking of
clusters. The situation is similar to the case of 12C(1+

1 ).
As mentioned before, the 11C(3/2−

3 , 8.10 MeV) and
11B(3/2−

3 , 8.65 MeV) states have abnormally small B(GT) and
B(M1) compared with other low-lying states in Ex � 9 MeV.
The quenching of GT and M1 transitions for the 3/2−

3 states
can be described by the above-mentioned exotic structure.
Namely, since 11C(3/2−

3 ) and B(3/2−
3 ) exhibit the well-

developed 2α+3He and 2α+t clustering, they have a small
transition overlap with the other normal low-lying states.

B. Dilute cluster states in 3/2−
3

By analyzing the obtained wave functions, we found that
11B(3/2−

3 ) is a three-center cluster state with a spatially devel-
oped 2α+t clustering. The clustering features of 11B(3/2−

3 )
and 11C(3/2−

3 ) are very similar to those of 12C(0+
2 , 7.65 MeV),
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which is known to be a dilute gaslike 3α state. Therefore, we
consider that 11C(3/2−

3 , 8.10 MeV) and 11B(3/2−
3 , 8.56 MeV)

are candidates for dilute gaslike cluster states with 2α+3He
and 2α+t , respectively. The similarity between B(3/2−

3 )
and 12C(0+

2 ) has been suggested in Ref. [5], in which the
experimental data of (d, d ′) scattering have been analyzed. We
here theoretically discuss the similarity between 11B(3/2−

3 )
and 12C(0+

2 ) by comparing the wave functions of 11B and 12C
obtained by the same AMD as used in the present work [15].

To see the diluteness of the cluster states, first we plot the
matter density ρ(r) as a function of the radius r in Fig. 3.
In the ground states of 11B and 12C, the density distributes
in the small r region because of their compact structures. On
the other hand, the density in the 11B(3/2−

3 ) state is about
half the normal density at the center and has a tail in the
outer region because of the spatial development of clusters.
The density curve of 11B(3/2−

3 ) is similar to that of 12C(0+
2 )

though the outer tail is less remarkable than that of 12C(0+
2 ).

Next we show the matter root-mean-square radii of the ground
and excited states of 11B and 12C in Table IV. In 12C, the 0+

2

TABLE IV. Matter root-mean-square radii (r.m.s.r.) and expec-
tation values of the harmonic oscillator quanta for protons (�Qp)
and neutrons (�Qn). Values of �Q are defined by subtracting the
minimum oscillator quanta. See details in text. Expectation values
of the squared intrinsic spin for neutrons 〈S2

n〉 are also listed. The
observed r.m.s.r. of the 12C(0+

1 ) is estimated to be 2.32–2.33 fm by
the electron scattering data.

r.m.s.r. (fm) �Qp �Qn 〈S2
n〉

11B(3/2−
1 ) 2.5 0.3 0.4 0.7

11B(3/2−
2 ) 2.7 0.9 1.1 0.2

11B(3/2−
3 ) 3.0 2.0 2.6 0.4

11B(1/2−
1 ) 2.7 0.7 0.8 0.3

11B(1/2−
2 ) 3.1 3.0 3.6 0.3

11B(5/2−
1 ) 2.6 0.5 0.7 0.5

11B(5/2−
2 ) 2.6 0.5 0.7 1.3

11B(5/2−
3 ) 2.7 0.7 0.9 0.8

12C(0+
1 ) 2.5 0.4 0.4 0.6

12C(0+
2 ) 3.3 4.4 4.3 0.3

12C(0+
3 ) 4.0 10.0 9.9 0.1

12C(2+
1 ) 2.7 0.8 0.8 0.2

12C(1+
1 ) 2.5 0.2 0.2 1.4
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state has a large radius. The calculated value of 0+
2 is 3.3 fm

in the AMD calculations, while those obtained by the RGM
calculations [19] and the α condensate wave functions [2] are
3.5 and 3.8 fm, respectively. The smaller theoretical radius in
the present method is considered to be caused by the limited
number of base wave functions. In 11B, the radius of the 3/2−

3
state is remarkably large compared with that of the ground
state. Considering the large radius and the density tail in the
outer region, we can say that the 3/2−

3 state exhibits the nature
of a dilute cluster state.

To give a more quantitative discussion of the spatial
development of clusters, we examine the expectation values of
the harmonic oscillator (H.O.) quanta for protons and neutrons
in Table IV. For the width parameters of the H.O., we use the
same width of the Gaussian wave packets adopted in the AMD
wave function. The values �Q are defined by subtracting the
minimum oscillator quanta from the expectation values of the
principal quantum number of H.O., namely,

�Q ≡ 〈a†a〉 − Qmin, (7)

where Qmin is 3(4) and 4(4) for protons(neutrons) of 11B
and 12C, respectively. The expectation values of the oscillator
quanta indicate the higher shell components in terms of
the H.O. shell model. It is generally enhanced when the
clustering spatially develops, because it necessarily increases
the higher shell components. In 12C(0+

2 ) and 11B(3/2−
3 ), the

large �Q values are caused by the developed three-center
cluster structure. Such higher shell components due to the
cluster correlation in the developed cluster states cannot be
treated in the truncated space of the shell model. This is why
the shell-model calculations fail to describe the 12C(0+

2 ) and
11B(3/2−

3 ) states. On the other hand, the �Q values in the
11B(3/2−

2 ) are rather small compared with those of the 3/2−
3 .

It means that the major component of the 3/2−
2 is the 0h̄ω

configuration. Since it has a compact state with cluster cores,
as shown in Fig. 2, this state is interpreted to be almost the
SU(3)-limit cluster state.

The similarity between the 11B(3/2−
3 ) and 12C(0+

2 ) states
has been suggested in Refs. [3,5], where the multipole
decomposition analysis of the inelastic (d, d ′) scattering
has been performed. The remarkable strengths of inelastic
monopole transitions are the characteristics of these states.
Figure 4 shows the calculated electron form factors for the
monopole transitions 12C(0+

1 → 0+
2 ), 11B(3/2−

1 → 3/2−
2 ), and

11B(3/2−
1 → 3/2−

3 ). The profile and absolute value of the form
factor are similar for 11B(3/2−

1 → 3/2−
3 ) and 12C(0+

1 → 0+
2 ),

while the form factor for 11B(3/2−
1 → 3/2−

2 ) is more than a
factor of 102 smaller. This is consistent with the experimental
results of (d, d ′) scattering [3,5].

As mentioned above, we can see the developed cluster
structure with dilute density in 11B(3/2−

3 ) as well as 12C(0+
2 ).

The 12C(0+
2 ) state is interpreted as a cluster gas state, where

3α clusters are moving rather freely [1,2]. Here “cluster gas”
means the well-developed cluster state with dilute density,
where the clusters are freely moving in terms of the weak
coupling picture. Such a gaslike nature is reflected not only
in the dilute density but also in the fragmentation of the
amplitudes in the AMD model space. Let us remind the reader
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FIG. 4. Squared inelastic form factors for the electron scattering
on (a) 11B and (b) 12C. The experimental form factors for the
transitions to 11B(3/2−, 8.56 MeV) and 12C(0+

2 ) are taken from
Refs. [20] and [21], respectively. Lines are calculated form factors of
E0 components.

that a base AMD wave function is expressed by a Slater
determinant. If the cluster state is written by an AMD wave
function, it has a certain spatial configuration of the cluster
centers like a single Brink-type cluster wave function [22]. On
the contrary, when the state has a cluster gaslike feature, its
wave function is written by a superposition of various AMD
wave functions with different configurations of cluster centers.
As a result, the cluster gas state is not dominated by a single
AMD wave function, but the amplitudes distribute in various
base wave functions. Actually, in 12C(0+

2 ), the amplitude of
|P 0+

MK�AMD(Z0+
2 )〉 is reduced to about 50% because of the

cluster gas nature, as discussed in Ref. [15]. Similarly, in the
case of 11B(3/2−

3 ), the amplitude of the dominant component
is only 50%, while those for 11B(3/2−

1 ) and 11B(3/2−
2 ) are

more than 90%. This indicates the gaslike nature of the 2α+t

cluster in 11B(3/2−
3 ) as well as the 3α cluster in 12C(0+

2 ).
Considering the smaller radius of 11B(3/2−

3 ) than 12C(0+
2 ),

the cluster gaslike nature in 11B(3/2−
3 ) is not as remarkable as

that in 12C(0+
2 ). We consider the reasons for the less gaslike

nature in 11B(3/2−
3 ) as follows. First, the intercluster potential

is more attractive in the α-t channel than the α-α channel.
This is already known in the comparison of the binding energy
between 7Li and 8Be. The origin is that the repulsive Pauli
effect is smaller in the α-t than the α-α. Second, from the
natural extension of the ground state properties of 7Li and
8Be, it is expected that the triton motion may have the orbital
angular-momentum L = 1, while the motion of the α clusters
has L = 0. The L = 1 should be less favored to form a dilute
cluster gas state than the L = 0. Third, it might be important
that the symmetry of three clusters is not as good in the 2α+t

system as in the 3α system. Because of the symmetry of 3α

orbits, the 12C(0+
2 ) state is understood as the α condensate

state, as argued in Refs. [1,2,23,24]. However, it is not easy to
define the bosonic behavior or to discuss the condensation
in the 2α+t system, which contains only two identical
bosons.

In the stabilizing mechanism of dilute cluster states, one
of the key factors preventing the states from shrinking is
the orthogonality to the compact states in the lower energy
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region. In both cases of 12C and 11B, there exist lower states
with compact cluster components. In higher cluster states, the
cluster distribution avoids the compact inner region and must
spread out to satisfy the orthogonality to the lower states. It is
interesting that the number of lower compact states is one (0+

1 )
in 12C and two (3/2−

1 , 3/2−
2 ) in 11B, which is just the number

of low-lying states described by the 0h̄ω configurations. This
is why the dilute cluster state appears in the third 3/2− state
in the 11B system.

The diluteness of the cluster states should be sensitive
also to the relative energy against the threshold energy of
the corresponding cluster channel. In the present results, the
threshold energy for the three-body cluster breakup is not
reproduced. To check the dependence of the structure of the
excited states on the threshold energy, we varied the relative
energy by changing the interaction parameters and found that
the structure of the excited states are qualitatively unchanged.
It means that the present results are not sensitive to the relative
position of the threshold. It is because the present framework
is a kind of bound state approximation. Since the number
of base wave functions is limited, the long tail part of the
intercluster motion may not be taken into account enough,
and therefore the description of the detailed resonant behavior
is insufficient in the present framework. In fact, the AMD
calculations give a smaller radius for the 12C(0+

2 ) state than
that obtained by the 3α cluster models. However, we should
stress that the features of the 3α system obtained by the present
method are qualitatively similar to those of the 3α-GCM
calculations by Uegaki et al. [17]; they are also consistent
with the 3α model of the orthogonal condition method (OCM)
with the complex scaling method (CSM) [25], which treated
the resonant behavior appropriately. This implies that the
present results are useful for qualitative discussions, though
the long tail part of the intercluster motion and its boundary
conditions should be carefully treated for further quantitative
study.

We should comment that the loosely bound cluster states
have been predicted by Nishioka et al. with a 2α+t-OCM
cluster model [9]. However, they could not assign the
3/2−

3 state because the reproduction of the energy spectra
in the low-energy region was poor in the cluster model
space.

C. Intrinsic spin excitation

In the ideal 2α+t and 3α cluster states, the expectation
values of the squared total intrinsic spin for neutrons 〈S2

n〉
should be zero, because spin-up and spin-down neutrons
couple to become spin-zero pairs. In 11B and 12C, nonzero
values of 〈S2

n〉 is caused by the component of the cluster
breaking. We show the values of 〈S2

n〉 in 11B and 12C in
Table IV. The 〈S2

n〉 values are small in cluster states such
as 11B(3/2−

2 ),11 B(3/2−
3 ), and 11B(1/2−

2 ); while that of 11Bg.s.

is 〈Sn〉2 = 0.7 and is as large as that of 12Cg.s. due to
the component of the p3/2 subshell closure. An interesting
point is the large value, 〈S2

n〉 = 1.3, in 11B(5/2−
2 ). This

means that the 5/2−
2 state is characterized by the intrinsic

spin excitation of neutrons within the p shell. This feature
corresponds well to the structure of 12C(1+

1 ), which is assigned

to the observed 1+
1 (12.7 MeV) state. In the comparison of

the experimental excitation energies between 11B(5/2−
2 ) and

12C(1+
1 ) with the intrinsic spin excitation, it is interesting

that 11B(5/2−
2 , 8.92 MeV) appears in the low-energy region

and almost degenerates with the cluster gaslike 11B(3/2−
3 ,

8.56 MeV), while 12C(1+
1 , 12.7 MeV) exists at a much higher

excitation energy than 12C(0+
2 , 7.6 MeV). This implies that the

intrinsic spin excitation more easily occurs in 11B than in 12C,
and that the excitation energy of the intrinsic spin excitation is
almost the same as that of the cluster excitation in 11B.

V. SUMMARY

We studied the negative parity states in 11B and 11C based
on the theoretical calculations of antisymmetrized molecular
dynamics (AMD). It is concluded that various types of cluster
states appear in the excited states of 11B and 11C. Recent
experimental data of GT transition strengths for the 3/2−

3 and
the 5/2−

2 states at Ex ∼ 8 MeV are well reproduced by the
cluster state and the noncluster state, respectively. It was found
that the excitation energy of the intrinsic spin excitation is
almost the same as that of the cluster excitation in 11B. We
compared the cluster aspect in the excited states of 11B with
that of 12C and showed a good similarity between the 2α+t

and 3α systems.
We succeeded in describing the 11B(3/2−

3 , 8.56 MeV) and
11C(3/2−

3 , 8.10 MeV) states, which have not been reproduced
by any other models. For the assignment of the theoretical
states to the observed ones, it is essential to systematically
describe the properties of the coexisting cluster and noncluster
states in 11C and 11B. One of the new revelations in the present
work is that 11C(3/2−

3 ) and 11B(3/2−
3 ) are the well-developed

cluster states of 2α+3He and 2α+t with dilute density,
respectively. The features of these dilute cluster states in 11C
and 11B are similar to those of the 0+

2 state of 12C, which
is understood to be a cluster gas of weakly interacting 3α

particles.
Since the present framework is a kind of bound state

approximation, the description of resonant behavior is not
sufficient. The boundary conditions of the intercluster motion
should be taken into account more carefully in more detailed
investigations of the developed cluster states.
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