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Radial sensitivity of kaonic atoms and strongly bound K̄ states
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The strength of the low-energy K−-nucleus real potential has recently received renewed attention in view of
experimental evidence for the possible existence of strongly bound K− states. Previous fits to kaonic atom data
led to either “shallow” or “deep” potentials, where only the former are in agreement with chiral approaches but
only the latter can produce strongly bound states. Here we explore the uncertainties of the K−-nucleus optical
potentials, obtained from fits to kaonic atom data, using the functional derivatives of the best-fit χ2 values with
respect to the potential. We find that only the deep type of potential provides information that is applicable to the
K− interaction in the nuclear interior.
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Since the early days of kaonic atom experiments it was
known [1,2] that due to the strength of the K− nuclear
absorption the real part of the K−-nucleus potential played a
secondary role compared to the imaginary part of the potential
and consequently it could not be determined uniquely from fits
to the data for a single target nucleus. More recent “global” fits
to large sets of data encompassing the whole of the periodic
table showed [3] that although traditional “tρ” potentials yield
reasonably good fits to the data, the use of phenomenological
density-dependent t(ρ) amplitudes leads to significantly better
fits. When extrapolated into the interior of nuclei the real part
of the potentials is typically 180 MeV deep for the density-
dependent variety, whereas for the tρ potentials it is typically
less than 100 MeV. We note that chiral-motivated K−-nucleus
potentials [4,5] are shallower than the phenomenological tρ

potentials.
Figure 1 shows, as an example, the real part of the K−

optical potential for Ni obtained from global fits to kaonic
atoms data using several phenomenological models for the
interaction. The simplest tρ approach where the real and
imaginary parts of the effective t matrix are determined from
fits to the data yields a χ2 of 130 for the 65 data points used
in the fit. Adding an adjustable nonlinear term leads to the
deep potential DD of Ref. [3] with a χ2 of 103 and a greatly
increased depth. Also shown in the figure is another potential
using a geometrical approach to the density-dependence of
t (the F potential of Ref. [6]), leading to χ2 of 84. The
similarity of the two deep potentials and the great difference
compared to the shallow one are clearly observed. The other
curve FB with its error band, also of χ2 = 84, is discussed
below. A consequence of the depth of the potential is the
ability to support a strongly bound state, a question that
was highlighted again recently by experimental reports on
candidates for K̄-nuclear bound states in the range of binding
energy BK̄ ∼ 100–200 MeV [7–10]. However, very recently
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a possible explanation of the experimental results of FINUDA
[10] was given in terms of �p final-state interaction [11]
and the observed width was shown to be at odds with recent
Faddeev calculations [12].

Obviously, the tρ-type of potential cannot generate strongly
bound nuclear states in the energy range BK̄ ∼ 100–
200 MeV, whereas the deeper potentials (DD and F) might
do. In the present work we address the question of how well
is the real part of the K−-nucleus potential determined, with
its ability to support strongly bound states as the topic of
interest.

Estimating the uncertainties of hadron-nucleus potentials
as function of position is not a simple task. For example,
in the tρ approach the shape of the potential is determined
by the nuclear density distribution and the uncertainty in
the strength parameter, as obtained from χ2 fits to the data,
implies a fixed relative uncertainty at all radii, which is, of
course, baseless. Details vary when more elaborate forms
such as DD or F are used, but one is left essentially with
analytical continuation into the nuclear interior of potentials
that might be well determined only close to the nuclear surface.
“Model-independent” methods have been used in analyses of
elastic scattering data for various particles [13] to alleviate
this problem. However, applying, e.g., the Fourier-Bessel (FB)
method in global analyses of kaonic atom data end up in
too few terms in the series, thus making the uncertainties
unrealistic in their dependence on position. This is illustrated
in Fig. 1 by the FB curve, obtained by adding a Fourier-Bessel
series to a tρ potential. Only three terms in the series are
needed to achieve a χ2 of 84 and the potential becomes deep,
in agreement with the other two deep solutions. The error band
obtained from the FB method [13] is, nevertheless, unrealistic
because only three FB terms are used. However, an increase
in the number of terms is found to be unjustified numerically
in this case.

In the present work we adopt a functional-derivative
approach to get more realistic position dependence of the
uncertainties of K−-nucleus potentials. The method is applied
to the two types of potentials (shallow and deep) mentioned
above and it is shown that deep potentials within nuclei are
reliably obtained from fits to experimental results for kaonic
atoms.
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FIG. 1. (Color online) Real part of the K−-Ni optical potential for
various models and the values of χ 2 for 65 data points in parentheses,
see text.

The radial sensitivity of exotic atom data was addressed
before [3] with the help of a notch test, introducing a local
perturbation into the potential and studying the changes in
the fit to the data as function of position of the perturbation.
The results gave at least a semiquantitative information on
what are the radial regions that are being probed by the
various types of exotic atoms. In fact, the difference in that
respect between deep and shallow kaonic atom potentials
could be observed. However, the extent of the perturbation
was somewhat arbitrary and in the present work we report
on extending that approach to a mathematically well-defined
limit.

To study the radial sensitivity of global fits to kaonic atom
data, it is instructive to define the radial position parameter
in a “natural” way using, e.g., the known charge distribution
for each nuclear species in the data base. The radial position
r is then defined as r = Rc + ηac, where Rc and ac are
the radius and diffuseness parameters, respectively, of a two-
parameter Fermi (2pF) charge distribution [14]. In that way η

becomes the relevant radial parameter when handling together
data for several nuclear species along the periodic table. The
value of χ2 can be regarded now as a functional of a global
optical potential V (η), i.e., χ2 = χ2[V (η)]. The parameter η

is a continuous variable, however it is instructive to start the
discussion of variations by assuming that the global optical
potential is defined on a discrete set of grid points {ηi, i =
1 . . . N}, so that χ2 depends on a set of N parameters Vi =
V (ηi). The variation of χ2 due to a small change in these
parameters is simply

dχ2 =
N∑

i=1

∂χ2

∂Vi

dVi. (1)

The equivalent expression for the continuous function V (η)
can be obtained by taking the limit for a very dense grid,

leading to [15]

dχ2 =
∫

dη
δχ2

δV (η)
δV (η), (2)

where

δχ2[V (η)]

δV (η′)

= lim
σ→0

lim
ε→0

χ2[V (η) + εδσ (η − η′)] − χ2[V (η)]

ε
(3)

is the functional derivatives (FD) of χ2[V ]. The notation
δσ (η−η′) stands for an approximated δ function. From Eq. (2)
it is seen that the FD determines the effect of a local change
in the optical potential on χ2. Conversely it can be said
that the optical potential sensitivity to the experimental data
is determined by the magnitude of the FD. In practice the
calculation of the FD was carried out by multiplying the best
fit potential by a factor

f = 1 + εδσ (η − η′) (4)

using a normalized Gaussian with a range parameter σ for the
smeared δ function,

δσ (η − η′) = 1√
2πσ

e−(η−η′)2/2σ 2
. (5)

For finite values of ε and σ the FD can be approximated by

δχ2[V (η)]

δV (η′)

≈ 1

V (η′)
χ2[V (η)(1 + εδσ (η − η′))] − χ2[V (η)]

ε
. (6)

The parameter ε was used for a fractional change in the
potential and the limit ε → 0 was obtained numerically for
several values of σ and then extrapolated to σ = 0. Good
numerical stability and good convergence were obtained in all
cases. Here η and σ are dimensionless variables.

The K−-nucleus potentials used in the present work are
taken from recent global fits [6] to kaonic atom data from 6Li
to U, a total of 65 data points. A two-parameter fit with a
tρ potential yields a total χ2 value of 130, whereas a four-
parameter fit with t(ρ) amplitudes yields χ2 = 84 for the 65
data points. In calculating FD for global fits radial positions
were defined in terms of units of diffuseness relative to the
charge radius, as described above. For several of the lightest
nuclei harmonic oscillator densities are more appropriate and
had indeed been used in the fits of Ref. [6]. These nuclei
have been excluded from the calculations of FD for the global
fits so as to have full consistency in the use of 2pF density
distributions. That left 50 data points in the calculations of
the FD.

Figure 2 shows the FD for relative variations in the real
potential and in the full complex potential. Inspecting the FD
with respect to the imaginary potential (not shown) reveals
additivity of the FD, hence the differences between the FD for
the complex potential and for the real potential in the figure are
the corresponding FD with respect to the imaginary potential.
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FIG. 2. (Color online) Functional derivatives of χ2 with respect
to the full complex (C) and real (R) potential as function of η, where
r = Rc + ηac, with Rc and ac the radius and diffuseness parameters,
respectively, of the charge distribution. Results are shown for the tρ

potential and for the t(ρ) F potential of Ref. [6].

We note that the FD for the deep F potential is dominated by the
real part of the potential, whereas for the tρ potential the two
parts make similar contributions to the FD. The appearance
of regions with negative FD need not be surprising because it
means that some local variations in the shape of the potentials
may cause further reduction in the values of χ2. Such variations
are impossible in the tρ potential. However, such variations
are included when the more flexible F potential is introduced,
and the minimization process essentially follows implicitly the
various FD. We avoid at present making a quantitative use of
the local values of the FD, rather we identify with the help of
the FD the radial regions to which the kaonic atom data are
sensitive.

From Fig. 2 it can be inferred that the sensitive region for the
real tρ potential is between η = −1.5 and 6, whereas for the F
potential it is between η = −3.5 and 4. Recall that η = −2.2
correspond to 90% of the central charge density and η = 2.2
correspond to 10% of that density. It therefore becomes clear
that within the tρ potential there is no sensitivity to the interior
of the nucleus whereas with the t(ρ) F potential, which yields
greatly improved fit to the data, there is sensitivity to regions
within the full nuclear density.

Figure 3 shows similar results for Ni, this time the radial
variable is r , the radial position. Here σ is in units of fm and
therefore the FD is in units of fm−1. On the left are shown the
real potential (top) and the FD (bottom) for the real F potential
and on the right are shown the corresponding quantities for the
tρ potential. The regions between the two vertical dotted lines
indicate where variation of the potential will affect the fit to
the data, thus suggesting the regions where the potentials are
determined by experiment. The vertical dashed line indicates
50% of the central charge density. It is evident that for the
F potential the sensitivity extends to depths of 180 MeV at
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FIG. 3. (Color online) Real potentials (top) and FD (bottom) for
the F potential (left) and the tρ potential (right) for K− interaction
with Ni. The regions between the vertical dotted lines indicate where
the potentials are determined reliably, see text.

radii where the density is essentially the full nuclear density.
Very similar results are obtained also for heavier nuclei, where,
e.g., for Pb the distinction between the tρ and the F potential
is even greater than for Ni, with respect to the sensitivity of
the experiment to depths and densities.

Finally, in Fig. 4 are shown similar results for 12C, which is
one of the targets studied experimentally [10] and theoretically
[6]. Again it is seen that with the F potential the sensitive region
is at smaller radii and higher densities compared to that for the
tρ potentials.
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FIG. 4. (Color online) Same as fig. 3 but for 12C.
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In summary, it is found that the deep K̄-nucleus potentials,
which yield excellent fits to all the kaonic atom data, are
determined reliably to depths of 150–180 MeV at regions of
almost the full nuclear matter density and consequently they
may be reliably extrapolated to the nuclear interior. In contrast
the shallow type of potentials, which yield inferior fits to the
data, are well determined only at the nuclear surface and one
cannot infer from these what is the depth of the K̄-nucleus
potential in the nuclear interior. The different sensitivities
result from the potentials themselves: the additional attraction
provided by the deep potentials enhances the atomic wave
functions within the nucleus [3], thus creating the sensitivity

at smaller radii. We conclude that optical potentials derived
from the observed strong-interaction effects in kaonic atoms
are sufficiently deep to support strongly bound antikaon states,
but it does not necessarily imply that such states do exist.
Moreover, the discrepancy between the very shallow chiral-
motivated potentials [4,5] and the deep phenomenological
potentials remains an open problem.
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