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Narrowing of the charge balance function and hadronization time in relativistic heavy-ion collisions
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The width of charge balance function in high energy hadron-hadron and relativistic heavy-ion collisions are
studied using the Monte Carlo generators PYTHIA and AMPT, respectively. The narrowing of balance function as
the increase of multiplicity is found in both cases. The mean parton-freeze-out time of a heavy-ion collision event
is used as the characteristic hadronization time for the event. It turns out that for a fixed multiplicity interval the
width of balance function is consistent with being independent of hadronization time.
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The relativistic heavy-ion collision experiments at
CERN-SPS and especially at the relativistic heavy-ion collider
RHIC in Brookhaven National Lab provide clear evidence for
the production of a dense matter in the collision processes [1].
The central question is whether this matter is purely hadronic
or has been going through a quark-parton phase. There exist ex-
perimental evidences in favor of the existence of a quark-parton
phase at the early stage of collision processes [2], but in view
of the importance of this issue, further confirmation is needed.

Recently, the rapidity correlation between oppositely
charged particles, which has been used in e+e− [3] and hadron-
hadron collisions [4] to study the hadronization in these
processes, is proposed [5] as a measure of the hadronization
time in relativistic heavy-ion collisions. It is argued that if
the system produced in heavy-ion collisions has undergone
a quark-parton phase, the hadronization will occur at a later
time and, therefore, the temperature will be lower and the
diffusive interaction with other particles will be lesser than
those in the direct hadronization without going through a
quark-parton phase. These will result in a narrower charge
balance function for a system with quark-parton phase than
that without such a phase.

Two heavy-ion experiments [6,7] have measured the bal-
ance function at various centralities and for different colliding
nuclei. A narrowing of the balance function is indeed observed
with increasing centrality of the collision and with increasing
size of the colliding nuclei. These observations are consistent
with the assumption that the narrowing of balance function is
correlated with late hadronization.

However, recently it is reported [8] that in hadron-hadron
collisions at

√
s = 22 GeV the balance function also becomes

narrower as the increasing of multiplicity. Therefore, whether
the observed narrowing of balance function in relativistic
heavy-ion collisions is due to late hadronization or is simply
due to the multiplicity effect is an open question.

In this letter this question is examined using the Monte
Carlo generators PYTHIA [9] and AMPT [10]. The former is a
standard Monte Carlo generator with string fragmentation as
hadronization scheme. There is no quark-parton phase in this

*Electronic address: liuls@iopp.ccnu.edu.cn

model and the hadronization is almost instantaneous. However,
the latter is a “multiphase” model, with a transport of quark-
parton before hadronization.

The results from PYTHIA will first be presented. Then
the hadronization time in AMPT model is described, and its
connection with the width of balance function is presented. A
summary and discussion then follow.

The balance function is defined as [7]

B(δy|Yw) = 1

2

[ 〈n+−(δy)〉 − 〈n++(δy)〉
〈n+〉

+ 〈n−+(δy)〉 − 〈n−−(δy)〉
〈n−〉

]
, (1)

where n+−(δy), n++(δy) and n−−(δy) are the numbers of pairs
of opposite- and like-charged particles satisfying the criteria
that all of them fall into the rapidity window Yw and that their
relative rapidity equals δy; n+ and n− are the numbers of
positively and negatively charged particles in the interval Yw,
respectively.

The balance function B(δy|Yw) represents the probability
that the balancing charges are separated by δy [5]. The mean
of δy [7]

〈δy〉Yw
=

∑
i B(δyi |Yw)δyi∑

i B(δyi |Yw)
(2)

is defined as the width of balance function.
Proton-proton collision events are generated at four center-

of-mass (c.m.) energies—22, 64, 130, and 200 GeV using
PYTHIA5.720 generator. The event number for each sample
is 100,000. The widths 〈δy〉∞ of balance function in the full
phase space are calculated for different (charged) multiplicity
bins and plotted in Fig. 1.

It can be seen from the figure that in this model even
for p-p collision, where no quark-parton phase is expected and
the hadronization is almost instantaneous, the width of balance
function decreases with the increase of multiplicity, i.e.,
the width of balance function is narrower for higher multi-
plicity. This effect has nothing to do with hadronization time.

However, by definition balance function measures the
correlation length between oppositely charged particles.
For comparison we have calculated the standard 2-particle
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FIG. 1. The width of full-phase-space balance function for
different multiplicity in p-p collisions at

√
s = 22, 64, 130, 200 GeV.

correlation function [11] of oppositely charged particles

R+−(y1, y2) = 1

2

[
ρ(2)(y+

1 , y−
2 )

ρ(1)(y+
1 )ρ(1)(y−

2 )
+ ρ(2)(y−

1 , y+
2 )

ρ(1)(y−
1 )ρ(1)(y+

2 )

]
−1

(3)

for different multiplicities in p-p collision at c.m. energy√
s = 200 GeV, for y1 = 0, y2 = y. The results plotted in

Fig. 2 show that the width of R is consistent with being inde-
pendent of multiplicity. A possible explanation of the width of
R is cluster decay. Comparing with the definition of balance
function, Eq. (1), we see that it is the difference between the
correlations of opposite- and like-charged particles that shows
a clear multiplicity dependence, which is unrelated with cluster
decay and is mainly due to the string fragmentation mechanism
implemented in PYTHIA model.

It can also be seen from Fig. 1 that the width of balance
function depends on collision energy. For the same multiplic-
ity, the higher the collision energy is, the wider the width of
balance function.

However, it should be noticed that the full rapidity region is
wider for higher energy, cf. Fig. 3. To get rid of the influence of
the width of rapidity region we calculate the width of balance
function in the region −3 � y � 3 for all four energies. The
results, presented in Fig. 4, show that when the (average)
rapidity density �n/�y is the same, the width of balance
function is almost independent of energy, especially for high
�n/�y. That is, in hadron-hadron collisions the width of
balance function depends essentially only on multiplicity and
is consistent with being independent of energy.

Let us now turn to discuss how does the width of balance
function behave in nucleus-nucleus collisions.
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FIG. 2. The 2-particle correlation function R(0, y) as function of
y for different multiplicities in p-p collision at c.m. energy

√
s =

200 GeV.
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FIG. 3. The rapidity distribution of all charged particles in p-p
collision at

√
s = 22, 64, 130, 200 GeV.

The Monte Carlo generator AMPT1.11 [11] is a multiphase
transport model, which contains a quark-parton transport
phase before hadronization. The initial spatial and momentum
distributions of hard partons and soft string excitations are
obtained from the HIJING [12] model. The parton cascade
follows Zhang’s parton-cascade (ZPC) model [13], which is
based on two-body pQCD scattering with screening masses.
When interaction ceases, the partons are hadronized [14]
according to LUND string fragmentation mechanism [10].
Then the scatterings among the resulting hadrons are described
by a relativistic transport (ART) model [15] that includes
baryon-baryon, baryon-meson, and meson-meson elastic and
inelastic scatterings.

AMPT is a nonequilibrium transport model. The partons are,
by definition, hadronized after their last collisions. Therefore,
there is no unique hadronization time for the whole system.
Each parton has its own hadronization time, or freeze-out
time tfr. To study the correlation, if any, between the width
of balance function and hadronization time, we use the event
mean of tfr

tfr = 1

nparton

nparton∑
i=1

tfri (4)

as the characteristic hadronization time for an event, where
nparton is the number of partons in the event, tfri is the freeze-out
time of the ith parton.

The AMPT1.11 (default) generator is utilized to generate
Au-Au collision events at

√
sNN = 200 GeV. The default

values of the parameters are used, in particular, the cross
section is chosen to be 3 mb [11]. Two event samples with
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FIG. 4. The width of balance function in the rapidity re-
gion [−3, 3] for different multiplicity in p-p collision at

√
s =

22, 64, 130, 200 GeV.
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FIG. 5. Scattering plots of tfr vs. nch in Au-Au collision at√
sNN = 200 GeV for two different centralities.

250,000 and 770,000 events, respectively, are generated for
two centralities b � 7 fm and b > 7 fm.

Fig. 5 shows the scattering plots of tfr vs. nch in
Au-Au collisions at

√
sNN = 200 GeV for the two different

centralities—b � 7 fm and b > 7 fm, respectively. It can be
seen that in central collisions (b � 7 fm) tfr is larger than
3–4 fm, whereas in peripheral collisions (b > 7 fm) tfr is
concentrated at tfr ∼ 3–4 fm. That is, central collision events
hadronize later than peripheral ones.

The distributions of event-mean freeze-out time tfr for
the two different centralities in Au-Au collision at

√
sNN =

200 GeV are shown in Fig. 6. For reference, in the same figure
are also shown the distributions of single-particle freeze-out
time tfr for two fixed centralities b = 2 fm (dotted line) and
10 fm (dashed-dotted line), respectively.

To study the correlation between the width of balance
function and the characteristics of single event-event-mean
freeze-out time tfr and/or multiplicity nch, each centrality
sample is divided into subsamples according to the intervals
of mean freeze-out time tfr and the resulting subsamples
are further divided into subsamples by different multiplicity
intervals.

The width of balance function in the rapidity region YW =
[−3, 3] for different mean freeze-out time tfr intervals versus
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FIG. 6. (Color online) The distributions of event-mean freeze-out
time tfr for two different centralities in Au-Au collision at

√
sNN =

200 GeV. The dotted and dashed-dotted lines are the distributions of
single-particle freeze-out time tfr for two fixed centralities b = 2 and
10 fm, respectively.
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FIG. 7. The width of balance function in the rapidity region YW =
[−3, 3] in Au-Au collision at

√
sNN = 200 GeV. (a) for different

mean freeze-out time tfr intervals versus multiplicity nch, where the
freeze-out time intervals are tfr ∈ [0, 1] (♦), [1, 3] (�), [3, 5] (�), [5,
12] (�), [3, 6] (�), [6, 12] (�) fm; and (b) for different multiplicity
nch intervals versus mean freeze-out time tfr, where the multiplicity
intervals are nch ∈ [0, 500] (�), [500, 1000] (�), [1000, 1500]
(�), [2000, 2500] (�), [2500, 3000] (�), [3000, 3500] (�), [3500,
4000] (�).

multiplicity nch and for different multiplicity nch intervals
versus mean freeze-out time tfr in Au-Au collision at

√
sNN =

200 GeV are shown in Figs. 7(a) and 7(b), respectively.
It can be seen from Fig. 7(a) that the width of balance func-

tion decreases with the increasing of multiplicity, whereas in
the same multiplicity interval, the width of balance function is
consistent of being constant, independent of the hadronization
time. However, it can be seen from Fig. 7(b) that although there
is a weak anticorrelation between the width of balance function
and the hadronization time tfr, the former varies a lot with
the varying of multiplicity even for the same hadronization
time tfr.

It is found using PYTHIA Monte Carlo that the width of
charge balance function decreases with the increasing of
multiplicity in high-energy hadron-hadron collisions, where
the hadronization is almost instantaneous.

The relation between the hadronization time and the
width of charge balance function in relativistic heavy ion
collisions is examined using the default AMPT1.11 Monte Carlo
generator. The mean freeze-out time of an event is used as the
characteristic hadronization time of the event. The narrowing
of balance function as the increase of multiplicity is observed
also for relativistic heavy-ion collisions, whereas for a fixed
multiplicity interval the width of balance function is consistent
with being independent of hadronization time.

However, it is still hard to conclude whether the width
of balance function is dependent on or independent of the
hadronization time. Due to the correlation between hadroniza-
tion time and multiplicity, cf. Fig. 5, the dependence of the
width of balance function on hadronization time, even if it
exists, will be submerged in the strong dependence of the
width of balance function on multiplicity and is unobservable.
Therefore, to use the narrowing of balance function in
relativistic heavy-ion collisions as a measure of hadronization
time and as a signal of QGP is unrealistic.

It should be noticed that the AMPT model is a multiphase
transport model. In this model there is no unique hadronization
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time for an event. To use the average of parton freeze-out time
in an event as the characteristic hadronization time of the event
is a crude approximation. Further investigation along this line
is needed.
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