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Generalized emission functions for photon emission from quark-gluon plasma
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The Landau-Pomeranchuk-Migdal effects on photon emission from the quark-gluon plasma have been studied
as a function of photon mass, at a fixed temperature of the plasma. The integral equations for the transverse
vector function [f̃(p̃⊥)] and the longitudinal function [g̃(p̃⊥)] consisting of multiple scattering effects are solved
by the self-consistent iterations method and also by the variational method for the variable set {p0, q0, Q

2}. We
considered the bremsstrahlung and the off shell annihilation (aws) processes. We define two new dynamical
scaling variables, xT , xL, for bremsstrahlung and aws processes which are functions of variables p0, q0, Q

2.
We define four new emission functions for massive photon emission represented by gb

T , ga
T , gb

L, ga
L and we

constructed these using the exact numerical solutions of the integral equations. These four emission functions
have been parametrized by suitable simple empirical fits. Using the empirical emission functions, we calculated
the imaginary part of the photon polarization tensor as a function of photon mass and energy.
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The quark gluon plasma (QGP) state is expected to be
formed in the relativistic heavy ion collisions. In order to
identify the plasma or a deconfined state, one needs to study
the physical processes in quark matter, that can distinctly and
conclusively identify this state of matter, such as parton energy
loss leading to jet suppression mechanism. In this context,
electromagnetic processes such as photons and dilepton
emission are also considered as important signals. Photons and
dileptons are emitted at various stages during plasma evolution,
for an overview one may see [1–3] and the references therein.
In-depth studies of photon emission processes in quark-gluon
plasma were presented [4,5] including processes also from
hot hadron gas [4]. Following hard thermal loops [6] (HTL)
effective theory, the processes of bremsstrahlung [7] and a
crossed process of off-shell annihilation called aws [8,9]
contribute to photon emission at the two loop level. These
two processes contribute at the leading order O(ααs) owing
to the collinear singularity that is regularized by the effective
thermal masses. Higher loop multiple scatterings having a
ladder topology also contribute at the same order as the one and
two loop processes [10,11]. These higher loop rescatterings,
each giving finite decoherent correction to the two loop
processes, need to be resummed. This resummation effectively
implements the Landau-Pomarenchuk-Migdal (LPM) effects
[12,13] arising due to rescattering of quarks in the medium
during the photon formation time. This results in an integral
equation of a transverse vector function for the real photons.
The real photon emission rates are suppressed owing to the
LPM effects [10,11]. The LPM modification of the photon
spectrum is important at very low or at high photon energies
[11,14].

The processes that contribute to virtual photon emission in
QGP at ααs order [15] and the higher order corrections [16]
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were well studied. The processes qq̄ → gγ ∗, and qg → qγ ∗
contribute to photon polarization tensor at the order of ααs

and appear as the one loop processes in the HTL method.
Further considering LPM effects, photon emission from QGP
as a function of photon mass was also reported [17]. For the
case of virtual photons, these multiple scatterings modify the
imaginary part of self-energy as a function of photon energy
and momentum both. The dilepton emission rates are estimated
in terms of the imaginary part of retarded photon polarization
tensor, Bose-Einstein factor and Q2 as given by Eq. 1 of [17],
hence it suffices to study this polarization tensor.

For the case of virtual photon emission having small
virtuality, the transverse vector function f(p⊥) is determined
by the Arnold-Moore-Yaffe (AMY) equation [Eq. (1)] together
with the energy transfer function δE(p⊥, p0, q0,Q

2) as given
in [17]. For the case of massive photon emission, this energy
denominator is modified by replacing M2

∞ → Meff = M2
∞ +

Q2

q2
0
p0r0, where r0 = p0 + q0. For Q2 > 4M2

∞, this Meff can

vanish or even become negative. We solved the AMY equation
for real photons by the variational method and a new method
called iterations method [14]. These methods are formulated
in terms of tilde variables defined in [11], accordingly, f̃(p̃⊥)
and δẼ are given by

2p̃⊥ = iδẼ(p̃⊥, p0, q0,Q
2)f̃(p̃⊥)

+
∫

d2�̃⊥
(2π )2 C̃(�̃⊥)[f̃(p̃⊥) − f̃(p̃⊥+�̃⊥)], (1)

δẼ = q0T

2p0(q0 + p0)

[
p̃

2
⊥ + κeff

]
. (2)

In the above κeff = M2
eff

m2
D

and C̃ is the collision kernel taken from
[18]. For virtual photons, the coupling of quarks to longitudinal
mode must be considered. This results in a scalar function
g(p⊥) determined by an integral equation [17] given by
Eq. (3). We refer to Eq. (3) as Aurenche-Gelis-Moore-Zaraket
(AGMZ) equation. We will divide Eq. (3), by mD in order
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to get a dimensionless equation in tilde variables given by
Eq. (4), where absorbing 1/mD factor, the function g is now
redefined. Here, g transforms as g̃(p̃⊥) = mD

T
g(p⊥), similar

to the f(p⊥) function. It implies that this g̃ is larger than
g of Eq. (3) by a factor mD . Therefore, when the solution
of Eq. (4) is used to get

∫
d2p̃⊥
(2π)2 �g̃(p̃⊥), the result will be

larger than the true result [from Eq. (3)] by exactly mD

factor. This problem was not present for the transverse part
because p⊥·f(p⊥) remains unchanged. Therefore to correct this
anomaly, we will introduce the 1

mD
factor for the longitudinal

contribution to the imaginary part of photon polarization
tensor. We have solved the above Eqs. (1) and (4) by iterations
and variational method [19] and compared their results, these
details will be discussed elsewhere. We obtained the p⊥
distributions for the bremsstrahlung and aws cases for both
transverse and longitudinal components. We considered five
photon energy values, for each energy ten photon momenta and
ten quark momenta, i.e., about 500 distributions for each of
the transverse and longitudinal components of bremsstrahlung
and aws processes.

2
√

|p0r0| = iδE(p⊥, p0, q0,Q
2)g(p⊥) + g2CF T

×
∫

d2�⊥
(2π )2 C(�⊥)[g(p⊥) − g(p⊥ + �⊥)],

(3)

2

√
|p0r0|
m2

D

= iδẼ((p̃⊥, p0, q0,Q
2)g̃(p̃⊥)

+
∫

d2�̃⊥
(2π )2 C̃(�̃⊥)[g̃(p̃⊥) − g̃(p̃⊥+�̃⊥)],

(4)

x0 = |(p0 + q0)p0|
q0T

; x3 = q0T

Q2
, (5)

x1 = x0
M2

∞
m2

D

, (6)

x2 = x0
Q2

q0T
, (7)

I
b,a
T =

∫
d2p̃⊥
(2π )2 p̃⊥·�f̃(p̃⊥), (8)

I
b,a
L =

∫
d2p̃⊥
(2π )2 �g̃(p̃⊥), (9)

g
b,a
T ,L(xT,L) = I

b,a
T ,L(xT,L)cb,a

T ,L. (10)

In the following calculations, we have used two flavors,
three colors, αs = 0.30 and T = 1.0 GeV. In Eqs. (5), (6),
(7) we define four dimensionless variables. Here, the variable
x1 is the inverse of x variable used in [14] for real photon
production. I

b,a
T ,L are defined in Eqs. (8) and (9) which are

obtained by integrating the p⊥·f(p⊥), g(p⊥) distributions (in
Ref. [14] there was a 2 factor extra for I as given by 2p⊥·f(p⊥).
I

b,a
T ,L are the quantities required for the imaginary part of the

polarization tensor. The superscripts b, a in these equations
represent bremsstrahlung or aws processes depending on the

p0 value used. The subscripts T ,L represent contributions
from transverse [f(p⊥)] or longitudinal [g(p⊥)] parts. Using
the iterations data, we obtained the integrated values of p⊥
distributions as given by I

b,a
T ,L of Eqs. (8) and (9). We define

the emission functions g
b,a
T ,L in Eq. (10) which are functions of

variables xT,L. These xT,L variables are given in Eqs. (11) and
(12). The g

b,a
T ,L are obtained from corresponding I

b,a
T ,L values by

multiplying with c
b,a
T ,L coefficient factors given in Eqs. (13)–

(16). The quantities xT,L and c
b,a
T ,L in Eqs. (11)–(16) are not

definitions, but are results of a search for dynamical variables
hidden in the solutions of AMY and AGMZ equations:

xT = x1 + x2, (11)

xL = x2, (12)

cb
T = 1

x2
1

, (13)

ca
T = 1

x1x2 (14)
ca
T = cb

T

x3

1.0 + x3
for x2 � 2.0

cb
L = Q2

(p0(p0 + q0))1.50

(1.50 + x0.75
3 )

x
1/3
2

, (15)

ca
L = 1

x1.4
1 q0.5

0 (1 + x0.5
3 )

x0.2
2 , (16)

gb
T (x) = 10.0

5.0 + 3.0
√

x + x
, (17)

ga
T (x) = 0.80

1 + (3.0/x1.2) (18)

ga
T = gb

T for x2 � 2.0

gb
L(x) = 0.0876

1 + (x/3.7727)1.18 (19)

ga
L(x) = 0.2703x0.65 + 0.20x2,

if x > 2.5 then ga
L(x) = 1.8x0.3. (20)

The I b
T (x) when plotted as a function of x2 variable exhibits

some trends as a function of p0, q0,Q
2 values, but still does

not bring out the underlying dynamical scale hidden in the
data [20]. In Figure 1(a), we show the same data transformed to
gb

T (xT ) as a function of xT (=x2+x1) variable. The hidden scale
is revealed in this plot, where data for all different p0, q0,Q

2

values merged into a single curve. This is the transverse mode
bremsstrahlung emission function. Importantly, the crosses in
the figure represent low Q2 data for transverse mode of the
aws process, intentionally plotted here. The empirical fit to
this data (curve in figure) is given by gb

T (x) in Eq. (17). A
similar exercise for transverse aws is shown in Fig. 1(b). The
ca
T that transform the integrated values into g functions are very

complex. We have parametrized these data by an empirical
function given in Eq. (18). For Q2 < 2.0 GeV2 (possibly the
data for Q2 < 4M2

∞), the data deviate from general trends as
shown by crosses in Fig. 1(b). It was noticed that the same
data, when transformed as required in Fig. 1(a) and plotted
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(a)

(b)

FIG. 1. (a) The dimensionless emission function gb
T (x) versus

dynamical variable xT defined in Eq. (11). The symbols represent
the integrated values of p⊥ distributions of about 500 cases of
{p0, q0,Q

2}values and are transformed by cb
T coefficient function

given in Eq. (13). Essentially, various symbols merge and can not be
distinguished. The solid curve is an empirical fit given by Eq. (17).
(b) The dimensionless emission function ga

T (x) versus dynamical
variable xT . The transformation coefficients ca

T and empirical fit are
given by Eqs. (14), (18).

versus xT , are very close to the bremsstrahlung function [see
crosses in Fig.1(a)].

Figure 2(a) shows the results for bremsstrahlung longitudi-
nal component. The corresponding cb

L coefficient functions
and the empirical fits represented by gb

L(x) are given in
Eqs. (15) and (19). Similarly, Fig. 2(b) shows the results for
the aws longitudinal component. The corresponding ca

L, ga
L(x)

are given in Eqs. (16) and (20).
The imaginary part of the retarded photon polarization

tensor can be calculated using the p⊥ integrated values as
given in Eq. 16 of [17]. Previously, we used the results from
variational and iteration methods to obtain the I

b,a
T ,L values

by integrating the distributions. We transformed these into
g

b,a
T ,L functions shown in Figs. 1 and 2 and we fitted these

by empirical functions Eqs. (17)–(20). Using the empirical
functions, for any p0, q0,Q

2 values, we can generate the
integrated value I

b,a
T ,L(x) values, circumventing the need to

solve the integral equations. Thus, the imaginary part of the
retarded photon polarization tensor (��R) is calculated, as in
Eq. (21). Here, the superscript i denotes {b, a} depending on

(a)

(b)

FIG. 2. (a)The dimensionless emission function gb
L(x) versus

dynamical variable xL defined in Eq. (12). The transforma-
tion coefficients cb

L and empirical fit (solid curve) are given in
Eqs. (15), (19). In Fig. (b) the dimensionless emission function
ga

L(x) for longitudinal contribution to aws is shown. The cb
T and

the empirical fit (solid curve) are given in Eqs. (16), (20).

the value of the integration variable p0. In this Eq. (21), one
should note the factor 1

mD
in the longitudinal part for reasons

explained before. All terms in this equation contributing to
polarization tensor are calculated and plotted in Fig. 3. The
contribution of one loop processes to the imaginary part of the
photon polarization tensor [15] is added to our empirical result
to obtain the total result for ��R:

��
µ

Rµ = e2Nc

2π

∫ ∞

−∞
dp0[nF (r0) − nF (p0)]

⊗ (
m2

D

) [
p2

0 + r2
0

2(p0r0)2

(
gi

T (xT )

ci
T

)

+ 1√|p0r0|
Q2

q2

(
1

mD

) (
gi

L(xL)

ci
L

) ]
. (21)

Figure 3 shows the ��R plotted as a function of Q2/T 2 for
a photon energy of 50 GeV. It can be seen that the empirical
approach has predicted rather remarkably well the the results
of [17] (circles in figure) over the Q2/T 2 in the range of
1–100. The bremsstrahlung is insignificant because the q0 is
very high. The transverse component of aws only contributes,
with a small contribution from a longitudinal component above
Q2 > 20 GeV2. As shown in [17], the multiple rescatterings
in the medium only marginally increase the ��R at low
Q2. However, the rescattering corrections smooth out the
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FIG. 3. ��R plotted as a function of Q2/T 2 for a photon energy
of 50 GeV. The transverse components of bremsstrahlung, aws, the
insignificant contribution from longitudinal parts, and the 2 → 2
processes contribution are all shown. The one loop results are obtained
using the formula as given in Eq. 2.13 of [15] (as mentioned in
Eq. 5.18 of [9]). The results of Fig.3 of [17] shown by circles for
reference.

discontinuity at the tree level threshold Q2 = 4M2
∞ [17]. These

calculations were repeated for five photon energies [20].

In conclusion, the photon emission rates from the quark
gluon plasma have been studied as a function of photon
mass, considering LPM effects. The self-consistent iteration
method and the variational method have been used to solve
the AMY and AGMZ integral equations. We obtained the
�f̃(p̃⊥),�g̃(p̃⊥) distributions as a function of photon mass,
photon energy, and quark momentum. We defined two new
dynamical variables xT , xL for transverse and longitudinal
components of the bremsstrahlung and aws mechanism. In
addition, we defined four new emission functions, namely,
gb

T (xT ), ga
T (xT ), gb

L(xL)ga
L(xL), and these have been con-

structed using the solutions of integral equations. In terms
of the empirical emission functions, we have calculated the
imaginary part of retarded photon polarization tensor as a
function of photon energy and mass.
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