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Coulomb phase shift calculation in momentum space
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By using a new boundary condition model, we calculate Coulomb phase shifts in “momentum space.” The
K-matrix equation for the auxiliary potential is introduced by a Lemma under the boundary condition. The
equation permits one to avoid many prohibited rules for the long-range property. Our numerical phase shift
shows good agreement with the analytical phase shift. The usual renormalized phase shifts are also presented for
comparison.
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Recently, one of the authors (S.O.) introduced a Coulomb
boundary condition in momentum space where the screened
Coulomb potential has an energy dependent screening range
parameter [1] (hereafter the article will be referred as “A”).
In this method, the two-potential theory is used [2,3]. Fur-
thermore, the unitary relation for the given amplitudes was
proven not only for the single channel integral equation but
also the multichannel one. It was shown that the method is
applicable for the three-body Faddeev equation [4,5]. On the
other hand, there are some prior numerical calculations [6–12]
based on the Mainz-Bonn-Tübingen (MBT) model [7–9].
The MBT-model used a screened Coulomb potential (SCP)
with a phase shift renormalization which was investigated in
two historical articles [13,14]; also, application to three-body
problems [15–17] was explored. However, there are essential
handicaps in the theory which was pointed out in A. For
the negative energy case, the Coulomb problem is not very
difficult, because the binding energy has a limit when the
screening range reaches infinity. The positive energy cases are
completely different from the usual scattering theory [18–37].
There are many investigations of two-and three-body Coulomb
problems in momentum space regarding what kind of special
properties exist [38–46].

In this Rapid Communication we obtain the two-body
Coulomb phase shift in momentum space, in a manner in which
the two-potential theory is extensively used with respect to the
SCP(V R

l ) and the “auxiliary potential” (AP: V φ = V C
l − V R

l ).
However, the direct application should be avoided because the
long range nature still exists in the formulae. In the process, the
Lemma for the auxiliary amplitude with respect to the auxiliary
potential, which was required in A, is essential to carry out
practical calculations. Therefore, we calculate the “K-matrix”
which has no “overlapping singularity” where the Green’s
function pole coincides with the logarithmic singularity of the
long-range potential. The Lemma is only satisfied for a bound-
ary condition at the special range Rcl of SCP. The effects of
the on- and half-shell auxiliary amplitudes in the two-potential
formulas will vanish. Consequently, the off-shell Coulomb
amplitude is correctly given by the two-potential theory.
We would like to guide the reader thoroughly through
the process to obtain the Coulomb phase shift, because
there are many “prohibited rules” for the usual scattering
theory.

The two-potential theory has been used for the scattering
problem governed by two potentials which consist of a primary
potential and a secondary one. One example is the nuclear
scattering problem in which the short range nuclear part is
distorted by the long-range Coulomb interaction. However,
the boundary condition is not the same for both potentials, i.e.,
one is for the plane wave and the other is for the Coulomb wave
function. Therefore, we have to start from the SCP plus the
nuclear potential to introduce the LS equation. Let us take up
the Coulomb part with an SCP which is given by a parameter
λ �= 0. Then the Lippmann-Schwinger (LS) equation for the
partial wave l could be expressed for the plane wave boundary
by

T C
l (p, p′, λ; z) = V C

l (p, p′, λ)

+
∫ ∞

0
V C

l (p, p′′, λ)G0(p′′; z)T C
l (p′′, p′, λ; z)dp′′, (1)

where the SCP becomes the Coulomb potential (CP), when
λ → 0. In an abbreviated form, the LS equation can be written
as

T C
l (λ; z) = V C

l (λ) + V C
l (λ)G0(z)T C

l (λ; z). (2)

In this paper we concentrate on obtaining the Coulomb
phase shift in the momentum space representation. In order
to carry this out, we adopt again the two potential theory in
which two potentials are defined by the SCP as a short-range
potential (SP: V R

l ) and an auxiliary potential (AP: V
φ

l ),

V C
l (λ) = V R

l + (
V C

l (λ) − V R
l

) ≡ V R
l + V

φ

l (λ). (3)

Therefore, two-potential theory is applicable to these poten-
tials, and we obtain

T C
l (λ; z) = T

Rφ

l (λ; z) + T
φ

l (λ; z) (4)

= ω
φ

l (λ; z)tRφ

l (λ; z)ωφ

l (λ; z) + T
φ

l (λ; z), (5)

t
Rφ

l (λ; z) = V R
l + V R

l Gφ(λ; z)tRφ

l (λ; z), (6)

Gφ(λ; z) = G0(z) + G0(z)T φ

l (λ; z)G0(z) (7)

≡ G0(z)ωφ

l (λ; z) ≡ ω
φ

l (λ; z)G0(z), (8)

ω
φ

l (λ; z) ≡ 1 + T
φ

l (λ; z)G0(z) (9)

ω
φ

l (λ; z) ≡ 1 + G0(z)T φ

l (λ; z). (10)
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Then, we can define the LS equation (λ �= 0) for the AP by the
time reversal invariance in the electromagnetic interaction,

T
φ

l (λ; z) = V
φ

l (λ) + V
φ

l (λ)G0(z)T φ

l (λ; z)

= V
φ

l (λ) + T
φ

l (λ; z)G0(z)V φ

l (λ). (11)

Until this point the method is the same as the two potential
theory with short-range potentials.

In Eq. (11), the on-shell amplitude could be easily obtained
for λ �= 0. However, it is impossible to calculate the on-shell
t-matrix for the case λ → 0 in momentum space. It is the
same reason why the Coulomb t-matrix cannot be calculated
in momentum space. Even so, it is obviously recognized that
one can obtain the phase shift φl(z) = 0 in the Schrödinger
equation for the potential V

φ

l (r), if one chooses an appropriate
range R = Rcl for the SCP at the particular energy of
interest. We know that limλ→0 T

φ

l (p, p′; λ) �= T
φ

l (p, p′) by the
same reason as limλ→0 T C

l (p, p′; λ) �= T C
l (p, p′). However, if

and only if, one demands limλ→0{limR→Rcl T
φ

l (k, k; λ)} = 0
at such a range “Rcl” where φl(z) = nπ (n = 1, 2, . . .) is
satisfied, then the Lemma-1 exists, as was proven in article
A, i.e.,

lim
λ→0

T
φ

l (k, k; λ) = lim
λ→0

T
φ

l (p, k; λ) = lim
λ→0

T
φ

l (k, p′; λ) = 0,

(12)

at R = Rcl , or simply we presented them by

T
φ

l (k, k) = T
φ

l (p, k) = T
φ

l (k, p′) = 0. (13)

Therefore, one could say that Eq. (12) or Eq. (13) indi-
cates the border where the screened Coulomb amplitude
and the pure Coulomb amplitude are synchronized by tak-
ing lim λ → 0, otherwise limλ→0 T

φ

l (p, p′; λ) �= T
φ

l (p, p′) or
limλ→0 T C

l (p, p′; λ) �= T C
l (p, p′) in general.

In order to remind the fact, we repeat the proof in the
other method. In Eq. (11), let us separate the Green’s function
into the principal part and the δ-function part: G0 ≡ (GP

0 +
iGδ

0), and also the amplitude: T
φ

l = T
φ

Rl + iT
φ

I l are defined.
The equality of both integrands in Eq. (11) gives, by the
abbreviation of “λ” in T

φ

l , and V
φ

l ,

〈
V

φ

l

(
GP

0 + iGδ
0

)(
T

φ

Rl + iT
φ

I l

)〉
pp′

= 〈(
T

φ

Rl + iT
φ

I l

)(
GP

0 + iGδ
0

)
V

φ

l

〉
pp′ , (14)

where p and p′ are the initial and final momenta, respectively.
Thus, the real and the imaginary parts satisfy

〈
V

φ

l

(
GP

0 T
φ

Rl − Gδ
0T

φ

Il

)〉
pp′ = 〈(

T
φ

RlG
P
0 − T

φ

IlG
δ
0

)
V

φ

l

〉
pp′ , (15)

〈
V

φ

l

(
GP

0 T
φ

Il + Gδ
0T

φ

Rl

)〉
pp′ = 〈(

T
φ

RlG
δ
0 + T

φ

IlG
P
0

)
V

φ

l

〉
pp′ . (16)

By putting p �= k = p′, we have for the real part equation

〈
V

φ

l GP
0 T

φ

Rl − T
φ

RlG
P
0 V

φ

l

〉
pk

= 〈
V

φ

l Gδ
0T

φ

Il − T
φ

IlG
δ
0V

φ

l

〉
pk

or, in the specific form, it gives for lim λ → 0,

lim
λ→0

∫ ∞

0

[
V

φ

l (p, p′′; λ)GP
0 (p′′; z)T φ

Rl(p
′′, k, λ; z)

− T
φ

Rl(p, p′′, λ; z)GP
0 (p′′; z)V φ

l (p′′, k; λ)
]
dp′′

= lim
λ→0

ρ(k)
[
V

φ

l (p, k; λ)T φ

Il (k, k; λ)

− T
φ

Il (p, k; λ)V φ

l (k, k; λ)
]
, (17)

where ρ(k) = −νk/2π and k = √
2νz, respectively.

Now, if we demand limλ→0{limR→Rcl T
φ

l (k, k; λ)} = 0, then
the first term of the right hand side (r.h.s.) of Eq. (17) vanishes.
While, limλ→0{limR→Rcl V

φ

l (k, k; λ)} → ∞. Since, the princi-
pal value integral of the left hand side (l.h.s.) of Eq. (17) should
take a finite value, then limλ→0{limR→Rcl T

φ

I l (p, k; λ)} → 0
would be verified. In the imaginary part (16), we obtain

lim
λ→0

∫ ∞

0

[
V

φ

l (p, p′′; λ)GP
0 (p′′; z)T φ

Il (p
′′, k, λ; z)

− T
φ

Il (p, p′′, λ; z)GP
0 (p′′; z)V φ

l (p′′, k; λ)
]
dp′′

= lim
λ→0

ρ(k)
[ − V

φ

l (p, k; λ)T φ

Rl(k, k, λ; z)

+ T
φ

Rl(p, k, λ; z)V φ

l (k, k; λ)
]
, (18)

then, we can conclude limλ→0{limR→Rcl T
φ

Rl(p, k, λ; z)} → 0
by the same reason which is mentioned above. However, it
should be stressed that the principal value integrals with respect
to T

φ

Rl(p
′′, k, λ; z) and T

φ

Il (p
′′, k, λ; z) never vanish because

of λ �= 0 in the integrand. After the integral is carried out,
lim λ → 0 is taken. Therefore, such integrals have finite values
in general.

By putting p = k �= p′, we could also conclude that limλ→0

{limR→Rcl T
φ

Rl(k, p′, λ; z)} ≡ T
φ

Rl(k, p′) → 0 and limλ→0

{limR→Rcl T
φ

I l (k, p′, λ; z)} ≡ T
φ

Il (k, p′) → 0, then Eq. (12) is
proved.

On the other hand, substituting T
φ

l into the principal part
of the Green’s function term: GP

0 of Eq. (11), we obtain the
higher order series by iteration,

T
φ

l (p, p′, λ; z) = K
φ

l (p, p′, λ; z)

+ iK
φ

l (p, k, λ; z)ρ(k)T φ

l (k, p′, λ; z), (19)

T
φ

l (p, p′, λ; z) = K
φ

l (p, p′, λ; z)

+ iT
φ

l (p, k, λ; z)ρ(k)Kφ

l (k, p′, λ; z), (20)

where K
φ

l (p, p′, λ; z) is the K-matrix which is defined by

K
φ

l (p, p′, λ; z)

= (
V

φ

l + V
φ

l GP
0 V

φ

l + V
φ

l GP
0 V

φ

l GP
0 V

φ

l + · · · )
pp′

= V
φ

l (p, p′; λ)

+
∫ ∞

0
V

φ

l (p, p′′; λ)GP
0 (p′′)Kφ

l (p′′, p′; λ)dp′′. (21)

These amplitudes will converge very quickly for the Coulomb
potential with the em coupling constant: α = 1/137.0. In a
practical calculation, the kernels of these K-matrix equations
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have no overlapping singularities by the reason that both of
the singularities are killed between GP

0 and the logarithmic
type potential singularity due to the abnormal integral type
ε ln ε → 0, and ε(ln ε)2 → 0 for ε → 0.

In Eqs. (19) and (20), for the limit λ → 0 and with the aid
of the Lemma-1, we obtain the Lemma-2,

lim
λ→0

lim
R→Rcl

T
φ

l (p, p′, λ; z)

=
{

0 (p = k,and/orp′ = k)
limλ→0 limR→Rcl K

φ

l (p,p′, λ; z) (p �= k, p′ �= k).

(22)

Here, we should recall that T
φ

l (p, p′, λ = 0; z) cannot be
obtained by solving a LS-equation but by the K-matrix
equation for the AP.

In order to calculate Eq. (21) at the limit of λ → 0, we
have to calculate the abnormal integral where the logarithmic
singularity exists. The singularity comes from V

φ

l (p, p′) at
p = p′. However, we know that the integral value has a limit
with the types of terms like ε ln ε → 0 or ε(ln ε)2 → 0 for ε →
0. Therefore the integral including V

φ

l (p, p′) as an integrand
is harmless at p = p′. This fact suggests that we can neglect
p = p′ from the AP without any change for the integral value.
Therefore, we introduce a null-diagonal AP with the following
definition:

V
φ

l (p, p′, λ) ≡
{

0 (p = p′)
V C

l (p, p′, λ) − V R
l (p, p′) (p �= p′), (23)

where we take

V C
l (p, p′, λ) ≡

{
V R

l (p, p′) (p = p′)

V C
l (p, p′) (p �= p′).

(24)

It should be noted that the new potential has meaning only
inside of the integral. Now, the reader should be reminded
that we can calculate Eq. (21) by using Eq. (23) except for
the first term: V

φ

l which contains a logarithmic singularity.
Furthermore, since the two-potential theory includes the K-
matrix as the integrand, then the V

φ

l can also be replaced by
Eq. (23) without any change. These K-matrices satisfy

K
φ

l (λ; z) = V
φ

l (λ) + V
φ

l (λ)GP
0 (z)K

φ

l (λ; z), (25)

K
φ

l (λ; z) = V
φ

l (λ) + V
φ

l (λ)GP
0 (z)K

φ

l (λ; z). (26)

Now, the fully off-shell amplitude could be defined by

lim
λ→0

T C
l (p, p′, λ; z)

= lim
λ→0

lim
R→Rcl

{
T

Rφ

l (p, p′, λ; z) + T
φ

l (p, p′, λ; z)
}

= lim
λ→0

lim
R→Rcl

{ ∫ ∞

0

∫ ∞

0
dp′′dp′′′

×ω
φ

l (p, p′′, λ; z)tRφ

l (p′′, p′′′, λ; z)ωφ

l (p′′, p′, λ; z)

+ T
φ

l (p, p′, λ; z)

}
, (27)

where it should be reminded that the half-shell Møller
operators ω

φ

l (p, k, λ; z) and ω
φ

l (k, p′, λ; z) in the integrand are

never reduced as Eq. (38) of article A, because they commit to
the integral by λ �= 0. Moreover, since the Møller operators in
Eq. (27) exist in the integrand, then λ → 0 could be performed

by putting V
φ

l → V
φ

l and being integrated.
As a consequence, the logarithmic singularity and the

Green’s function pole could be safely treated in the K-matrix
formulation only in the integrand. Here, it should be noted that
the new AP potential has meaning only inside of the integral.

The on-shell part of Eq. (27) is reduced by using
Eqs. (12), (22), and G0(p′′; z) = GP

0 (p′′; z) + iρ(k)δ(k − p′′),
by omitting z,

lim
λ→0

T C
l (k, k, λ) = lim

λ→0
lim

R→Rcl

∫ ∞

0

∫ ∞

0
dp′′dp′′′

× [
δ(k − p′′) + T

φ

l (k, p′′, λ)GP
0 (p′′)

]
t
Rφ

l (p′′, p′′′, λ)

× [
δ(p′′′ − k) + GP

0 (p′′′)T φ

l (p′′′, k, λ)
]
, (28)

where T
φ

l (k, p′′, λ), and T
φ

l (p′′′, k, λ) do not vanish in the
integrand. Substituting Eq. (20) for T

φ

l (k, p′′, λ), and Eq. (19)
for T

φ

l (p′′′, k, λ), Eq. (28) is rewritten by using Eq. (12),

lim
λ→0

T C
l (k, k, λ) = lim

λ→0
lim

R→Rcl

∫ ∞

0

∫ ∞

0
dp′′dp′′′

× [
δ(k − p′′) + K

φ

l (k, p′′, λ)GP
0 (p′′)

]
t
Rφ

l (p′′, p′′′, λ)

× [
δ(p′′′ − k) + GP

0 (p′′′; z)K
φ

l (p′′′, k, λ)
]
. (29)

And again, substituting Eq. (19) into T
φ

l (k, p′′, λ), and Eq. (20)
into T

φ

l (p′′′, k, λ), we obtain

lim
λ→0

T C
l (k, k, λ) = lim

λ→0
lim

R→Rcl

∫ ∞

0

∫ ∞

0
dp′′dp′′′

× [
δ(k − p′′) + {Kφ

l (k, p′′, λ)

+ iρ(k)K
φ

l (k, k, λ)T φ

l (k, p′′, λ)}GP
0 (p′′)

]
× t

Rφ

l (p′′, p′′′, λ)
[
δ(p′′′ − k) + GP

0 (p′′′)
{
K

φ

l (p′′′, k)

+ iρ(k)T φ

l (p′′′, k, λ)K
φ

l (k, k, λ)
}]

. (30)

By comparison with Eq. (29), we conclude from Eq. (30)

K
φ

l (k, k, λ; z) = 0. (31)

This “request” gives the critical range Rcl(k) in the
momentum space. By adopting R = exp[γ + πn/η(k)]/2k or

η(k)[ln 2kR − γ ] = πn (with n = 0, 1, 2, . . . .),K
φ

0 (k, k, λ; z)
(l = 0, n = 0) takes the values from 10−3 to 10−30

in the energy region which is concerned. Therefore,
1/λ = exp[γ ]/2k, which we call the “MBT range,”

is sufficient to satisfy our request: K
φ

0 (k, k, λ; z) = 0,
although the MBT range takes a nonzero λ. Then our
first trial or the first approximation is done for the case
Rc0 = exp[γ ]/2k (for l = 0) in the Yukawa-type SCP which
was already predicted in article A.

Consequently, with new modified Møller operators in
Eq. (29), the on-shell Coulomb amplitude is obtained by
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FIG. 1. The S-wave proton-proton Coulomb phase shift: δ
Rφ

0 of
“our theory (dotted-line)” is plotted along with the analytic result:
σ0 (gray solid-line) in the energy range from keV region to several
hundred MeV region. Here, a simple approximation for the boundary
range parameter: Rc0 = exp[γ ]/2k is adopted [1], which corresponds
to Rc0 = 181.4 fm for the energy z = 1 keV. Here, γ stands for
the Euler constant for the Yukawa-type screened Coulomb potential:
V R(r) = V C(r) exp[−(r/R)].

solving

T
Rφ

l (λ; z) ≡ ω
φ

l (λ; z)tRφ

l (λ; z)ωφ

l (λ; z)

= ω
φ

l (λ; z)V R
l ω

φ

l (λ; z)

+ω
φ

l (λ; z)V R
l G0(z)T Rφ

l (λ; z). (32)

The Coulomb phase shift is obtained by T
Rφ

l (λ; z) of Eq. (32).
Here, it should be mentioned that the procedure of limλ→0

is performed by the “abnormal integral,” because the result
for λ �= 0 is equivalent with the result for λ = 0. The
calculated phase shift is illustrated for the case: V R(r) =
V C(r) exp[−(r/R)] in Fig. 1. The result is a very good fit
to the analytic phase shift in the energy range from the keV
region to several hundred MeV.

In Fig. 2, the calculated phase shifts by the usual
renormalization method are disclosed for the SCP: V R(r) =
V C(r) exp[−(r/R)m] in which the renormalization phase is
given by φ(k, R) = η(k)[ln2kR − γ /m]. However, δR

0 (k) +
φ(k, R) could not represent the Coulomb phase shift in the
energy region less than 100 keV for m � 5 and R = 200 fm.
We adopted R = 200 fm for comparison with ours, be-
cause our longest range in this energy region is Rc0 =
exp[γ ]/2k = 181.4 fm which corresponds to the energy z =
1 keV. These renormalization calculations were done by us
in the configuration space to preserve sufficient accuracy (see
also [6–12,27]).

Finally, let us summarize our theory and the numerical
method together with those of the article A.
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s-wave p−p Coulomb phase shift

FIG. 2. The S-wave proton-proton Coulomb phase shifts by
the “renormalization method” are plotted along with the analytic
result (gray solid-line) in the energy range from keV region to
several hundred MeV region. The calculated phase shifts for the
screened Coulomb potential V R(r) = V C(r) exp[−(r/R)m] plus the
renormalization phase φ(k, R) = η(k)[ln2kR − γ /m] are illustrated.
Here, R = 200 fm, and m = 1 (dashed line), 2 (dashed-dotted line),
3 (long-dashed line), 4 (dotted line), and 5 (dashed-dotted-dotted line)
are adopted, respectively.

(i) The LS equation for the Coulomb potential could not be
solved.

(ii) The two potential theory for the short-range potential
plus an auxiliary potential is one of the most useful
methods.

(iii) The K-matrix equation for AP is introduced by the
Lemma in article A, which has no overlapping singu-
larities where the Green’s function pole coincides with
the logarithmic singularity of the Coulomb potential.

(iv) We introduce a “null-diagonal AP potential” which is
only available in the integrand of the two-potential
formalism. The K-matrix equation is safely solved by
the potential.

(v) We found a formula, in this paper, which could induce
the critical range Rcl .

The result is a very good fit to the exact one for a
wide energy range. Details of the numerical method will be
presented in another occasion. We also would like to postpone
the discussions about the Coulomb plus nuclear potentials
[20–22]. We believe that this work could be a new beginning
in super low energy nuclear reaction problems.

One of the authors (S.O.) would like to express his thanks
to B. F. Gibson for his helpful suggestions. He would like to
thank Khosrow Chadan, Yoshiro Togawa, and S. A. Sofianos
for valuable discussions.
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