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Asymmetry dependence of the caloric curve for mononuclei
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The asymmetry dependence of the caloric curve, for mononuclear configurations, is studied as a function
of neutron-to-proton asymmetry with a model that allows for independent variation of the neutron and proton
surface diffusenesses. The evolution of the effective mass with density and excitation is included in a schematic
fashion and the entropies are extracted in a local density approximation. The plateau in the caloric curve displays
only a slight sensitivity to the asymmetry.
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This report presents the results of extending the model
reported in Refs. [1,2], which calculates the caloric curve
(temperature T versus excitation energy per particle ε)
to explicitly treat the neutron/proton asymmetry degree of
freedom. In making this extension, we have taken the surface
diffusenesses for neutrons and protons (bn and bp) as the shape
degrees of freedom. The self-similar expansion (c) degree
of freedom is equilibrated at low excitation energy but not
allowed to vary with excitation energy.

The objective of our model is to calculate the entropy
of a mononucleus as a function of excitation energy in a
manner that takes into account, in a plausible fashion, the
effects of both expansion and the inevitable loss of collectivity.
The present work then answers the question of whether the
expected plateau in T (ε), for finite isolated Fermi systems,
has a significant asymmetry dependence. We present results
for A = 208 with overall asymmetries I ≡ (N − Z)/(N + Z)
of 0.1, 0.21154, 0.3, and 0.4. (Asymmetry is sign sensitive with
increasingly positive values, the only sign studied in this work,
corresponding to increasing neutron excess.) We refer to the
radially dependent asymmetry as δ(r) ≡ (ρn −ρp)/(ρn +ρp).
As a complete description of the model is presented in Ref. [2],
we only discuss the model in outline form and mention the
modifications to treat the asymmetry degree of freedom.

Of particular interest is the comparison of the asymmetry
dependence of the plateau temperatures we find for our
metastable (isolated) nuclei to the limiting temperature in true
equilibrium calculations [3]. (The limiting temperature is a
term coined when there is no solution to the paired Gibbs’s
equations requiring each component to have the same chemical
potential in the coexisting liquid and vapor phases.)

The temperature, an auxiliary thermodynamic parameter
for an isolated system, is taken to be the inverse of the rate of
change of the maximum entropy sM ≡ max[s(bn, bp)], with
excitation energy ε

T = 1

/[
∂sM

∂ε

]
. (1)

It is the change of these statistical temperatures with excitation
energy that defines our mononuclear caloric curve T (ε).

In this work, the density profiles ρτ (r) of the two isospin
partners (τ = n, p) are of the same functional form but are
individually scaled from a spherically symmetric native radial

profile of the “standard” type

ρn
τ (r, bτ ) = ρo

τ

2

{
1 − erf

[
r − Cτ (bτ )√

2bτ

] }
. (2)

The central radii Cτ , and thus the central densities ρo
τ , are

defined in terms of effective sharp radii Rτ = rτA
1/3 and

the surface widths bτ by extending the expansion derived by
Süssmann [4] to ensure volume conservation (of 1 part in 104)
out to b = 3 fm. The shapes are limited to the spherically
symmetric family ρ(r, bτ , cτ ) = c3

τ ρ
n(cτ r, bτ ). The effective

sharp charge radius (or equivalently the central density or
the self-similar expansion parameter cτ ) was adjusted to best
reproduce the charge density of 208Pb. The effective sharp
radius for neutrons was determined for each asymmetry by
maximizing the binding energy with nominal surface widths
of bn,p = 1 fm. Having determined the proton and neutron
sharp radii (for ε = 0) only the two surface widths were
allowed to vary with excitation energy. (Our previous isoscalar
treatment, using (b and c) as independent variables, justifies
this logic as we found that the surface expansion is the primary
expansion degree of freedom.) The neutron skin thicknesses
for I = 0.1, 0.21154, 0.3, and 0.4 were found to be t(fm) =
0.10, 0.23, 0.36, and 0.50, respectively.

For any given excitation energy, the expansion parameters
are found by maximizing the entropy in the (bn, bp) space.
The entropy depends on the thermal energy u, which is less
than the total energy by the energy needed for expansion εE,

i.e., u = ε − εE. (The energies and entropies are expressed
on a per nucleon basis.) The collective energy involved in
expansion is taken from a simple energy-density formalism
used in Ref. [2], which makes use of the equation of state (EOS)
offered by the Thomas-Fermi model of Myers and Swiatecki
[5]. In this model the binding energy (εED) of a drop is the
sum of three terms, corresponding to (a) the binding energy
of the drop neglecting gradient corrections, (b) the gradient
correction term, and (c) the Coulomb integral

εED = εmd + εgr + εcoul, (3)

where

εmd =
∫ ∞

0
eb(ρ, δ)ρ(r)dr, (4)
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εgr = h̄2bgt

8m

∫ ∞

0
|∇ρ(b, c, r)|2dr, (5)

εcoul = −
∫ ∞

0

(
4

3
πr3ρp

)
1

r
(4πr2ρpdr). (6)

The strength of the gradient term (bgt) was adjusted to
reproduce macroscopic mass trends [2]. The analytic Coulomb
integral plus the small exchange correction were taken from
Ref. [4]. In this model the asymmetry energy is not taken as
a function of the extracted temperature variable and thus the
change in the contribution of the asymmetry energy (to the
total binding energy) with excitation energy is only a result in
the change in the density profile.

The top panels of Fig. 1 display εE(bn, bp) for I = 0.1 and
0.4. The absolute minima are near (bn, bp) = (1.0, 1.0), with
the equilibrium neutron width (at ε = 0 MeV) increasing
with asymmetry. The (binding) energy cost of increasing
the neutron (proton) surface width decreases (increases) with
increasing asymmetry.

The dominant term in the expression for the entropy of a
quantum drop of degenerate Fermi liquid can be written

S = 2
√

aA(ε − εE), (7)

where a is the level-density parameter and the total and
expansion energies per nucleon are ε and εE, respectively.

In the local density approximation, the level-density param-
eter depends on the nuclear profile, the local Fermi momentum
kFτ , and the effective mass mτ (for each isospin partner τ ) [6,7]

a = π2

4

∑
τ

∫
ρτ (r)[

h̄2k2
Fτ (r)/2m∗

τ

]dr. (8)

We adopt the factorization of the effective mass into
a momentum mk and frequency-dependent mω terms as
suggested by Mahaux [8]. The isospin splitting in mk is taken
from the theoretical work of Rizzo et al. [9] (and Ref. [10],

FIG. 1. (Color online) (Top) Expansion energy, ε(bn, bp) for δ =
0.21154 and 0.4. (Bottom) s(bn, bp) maps for ε = 1, 2, 3, 4,
and 5 MeV.

case 1), whereas the phenomenological mω dependence is that
employed by De et al. [11]

(
m∗

m

)
τ

= [mk]τ [mω] = [mk(ρ̄, δ)]τ [1 − β(T )ρ̄ ′(r)], (9)

with the reduced nucleon density ρ̄ = ρ/ρo (ρo = 0.16 fm−3)
and β(T ) = 0.4A1/3exp[− (TA1/3/21)2]. The isospin splitting
in the “k mass,” drives this factor for neutrons (protons)
up (down) from the nominal value of 0.7 with increasing
asymmetry (neutron richness). This trend is expected from
the larger strength of the n-p relative to the n-n and p-p
interactions [12]. For both neutrons and protons, the k-mass
factor increases to one with decreasing density.

In the present work we have left the “ω-mass” factor asym-
metry independent. Although a low-lying nuclear structure
will provide a surface peaked effective mass component [13],
which could be interpreted as mω(δ), the influence on this
term on the level-density parameter a is largely washed out by
ε = 1 MeV/u.

Entropy maps S/A = s(bn, bp) for I = 0.1 and 0.4 are
shown the bottom panels of Fig. 1 for ε = 1, 2, 3, 4, and
5 MeV. The maximum entropies are s = 0.65, 0.90, 1.12,
1.34, and 1.55 (0.69, 0.97, 1.21, 1.46, 1.7) for ε = 1, 2, 3, 4,

and 5 MeV for I = 0.1 (0.4), respectively. The maximum in
the entropy rapidly shifts to wider surface widths with higher
energy and the equilibrium profile also has a substantially more
diffuse neutron distribution with increasing neutron excess.

Caloric curves for all asymmetries show the same general
character, typified by a well-defined approximate plateau; see
Fig. 2. Although this approximate plateau is not as flat as that
found in our previous work employing the isospin-independent
(b, c) degrees of freedom, the plateau found in this work is
reasonably well established by ε = 2 MeV/u. There is a only a
very slight decrease in the plateau temperature with increasing
asymmetry.

As found in our previous work, the general shape of the
caloric curve is controlled by two factors. At low excitation
energy the surface peak of the effective mass disappears,
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FIG. 2. (Color online) (Top) Caloric curves for δ = 0.1
(triangles), 0.21154 (squares), 0.3 (circles), and 0.4 (diamonds). The
equilibrium neutron (dashed) and proton (dotted) surface widths are
also shown for δ = 0.21154.
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causing a general slowing down of the rate of increase of
the density of states. With increasing excitation, expansion, in
the present case modeled by an increase surface width, is the
principal effect causing a leveling of the Caloric curve. This
point was first made by Toke et al. [14]. The evolution of the
k mass, in this case with a splitting, induces some positive
feedback into the expansion process, thus causing additional
leveling of the caloric curve. The contribution of this work
is showing that the asymmetry has only a minor effect on
the caloric curve. In retrospect this is not a surprising result
as the level-density parameter is proportional to the effective
masses and the asymmetry dependence of the k masses
for neutrons and protons are roughly linear with opposite
slopes.

The weak sensitivity of the plateau temperature found in
this work is in stark contrast to that found for the “limiting
temperature” for two-phase systems [3]. The two-phase
limiting temperature TL increases with increasing asymmetry,
from about 6 to 8.5 MeV as δ increases from 0.211 to 0.4
(for A = 208, see Fig. 1 of Ref. [3]). The physical difference
between the present work and that of Ref. [3] is the nuclear
boundary condition. In the true equilibrium case, a solution to
the Gibbs criteria is found (or not) when the nuclear “bulk”
and Coulomb pressures of the drop are balanced by the surface
tension and the (external) vapor pressure. Our calculation
has no external vapor, psurface = 0. The high values TL for
extremely neutron-rich nuclei (even those well beyond the
drip line) is a consequence of the vapor.

The strong dependence of the plateau tempertaure on
pressure was studied by Kolomietz et al. [15] (also see
Ref. [16]). There is very little difference between the caloric
curves for a mononucleus (with equilibrated surface and no
external pressure) and those found for the two-phase solution
(with each phase uniform) at low pressure [16]. The unique
boundary condition we employ (which does not allow for
true equilibrium but is experimentally plausible) removes the
asymmetry dependence. This result is also consistent with
the weak asymmetry dependence found with the equilibrium
two-phase calculation at low pressure [15].

One can thus conclude that without a vapor phase the
equilibrium-limiting temperatures (which one should expect
to be relevant for boxed matter) cannot be reached and that
the relevant (lower) limit is that of the metastable objects
modeled here. That is, with increasing excitation energy, the
temperature is limited by the surface expanding without limit
(ultimately leading to fragment production on the surface),
a process that occurs at lower temperatures and pressures
than one would find with coexisting phases. This suggests
the interesting perspective that support for the argument that
mixed phases are generated in reactions could be found from
an experimental finding of a marked asymmetry dependence
of the limiting temperature.
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