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Equation of state of supernova matter
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The equation of state (EOS) of dense supernova matter composed of protons, neutrons, and relativistic electrons
is calculated within finite temperature Brueckner Goldstone approach with effective two-body Sussex interaction
and compared with asymmetric nuclear matter. Thermal effect on the EOS is studied at temperature 5, 7, and
10 MeV. The EOS of supernova matter is found to be stiffer than the corresponding asymmetric nuclear matter
equation of state as expected. Single particle properties like distribution functions and chemical potentials of
proton, neutron, and electron are discussed for various values of electron fractions, densities, and temperatures.
Distribution function is found to depend on Fermi kinetic energy of respective particles as well as on thermal
energy. Chemical potential depends on number density of particles and temperature. It is also seen that the
EOS for symmetric nuclear matter at low temperature has same order of magnitude with the recently extracted
experimental values within the density range 0.35–0.56 fm−3.
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I. INTRODUCTION

The fusion reaction in a massive star (M > 8M�, where
M� is the mass of the sun) continues till the light particles are
exhausted and the core of the star consists of heavy elements
like iron since iron has the highest binding energy per nucleon
in periodic table. At this stage, the energy released by the
nuclear reaction is not sufficient for further fusion reaction.
As a result, the core begins to collapse. Once the densities
of the central part of the core surpasses the normal nuclear
matter density, the repulsive part of the nuclear force offers
a powerful resistance for further compression. The shock
waves so produced lead to a spectacular explosion resulting
in the formation of a protoneutron star. It is short lived and
very hot with a radius of about 100 km. It then contracts
rapidly and within 0.1–1 second, quasihydrostatic equilibrium
is reached where the radius drops from 100 km to about
10 km and the temperature falls. This stage is identified as
the birth of a neutron star. At this stage, it is hot and composed
of the so-called supernova matter characterized by a high
and almost constant lepton fractions [1–3] with respect to
nuclear matter densities and also by almost constant entropy
per baryon [1]. Its maximum density would amount to several
times normal nuclear matter density, ρ0 � 2.7 × 1014 g/cc3

and the temperature is comparable to the Fermi energy of the
constituents. Then it contracts gradually with the emission of
neutrinos and evolves into a usual cold neutron star within
10–20 sec where the temperature falls to around 10−2 MeV.
At this stage, the system consists of neutron star matter. It
is speculated that matter at densities up to ρ = 9ρ0 may be
present in the interior of neutron star [4] and the matter at
densities up to about ρ = 4ρ0 may be present in the core
collapse of type-II supernova [5]. The study of neutron star
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at its birth is of particular interest as it forms a new form of
matter under extreme conditions.

There exist a few relativistic [6] and nonrelativistic [7–9]
calculations for supernova matter. Several calculations for
neutron star matter [10–13] are also available. Takatsuka
et al. [8,9] have performed a detailed calculation for supernova
matter within the frame work of finite temperature Hartree-
Fock approach with effective nucleon-nucleon interaction
(Reid-soft-core potential). They have considered electrons
along with nucleons in one of their calculations [7] and
then extended it to various compositions [8]. Sahu [12]
has calculated the equation of state (EOS) of neutron star
matter consisting of neutrons, protons, electrons, muons, and
hyperons in relativistic mean field approximation at zero
temperature. His EOS is moderately soft up to densities �
7ρ0. Vidaña et al. [13] have studied the EOS of β-stable
neutron star matter in the frame work of Brueckner-Hartree-
Fock approximation taking into account hyperons along with
nucleonic degrees of freedom. Most of the above calculations
are restricted to neutron star matter. Only a few microscopic
calculations have been performed for supernova matter [7,8].
Gad [14] has studied the properties of neutron matter within
the framework of Brueckner-Hartree-Fock approach using
CD-Bonn and Bonn-C potentials. Danielewicz et al. [15] have
recently analyzed the flow of matter in nuclear collisions and
obtained constraints on the EOS of symmetric nuclear matter
at zero temperature.

In the supernova implosion-explosion stage, neutrons out-
number the protons at the core. Hence to understand such
matter, properties of asymmetric nuclear matter are important.
Few years back we studied the properties of symmetric nuclear
matter, pure neutron matter [16,17], and asymmetric nuclear
matter [18,19] using density dependent Sussex interaction
[20] at finite temperature in a fully self-consistent model.
This model is a generalization of Brueckner theory to finite
temperature in which scattering into intermediate states are
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taken into account. The degeneracy and the single particle
potentials are calculated self-consistently. We successfully
described the experimental observations [21] regarding the
entropy production [16] in heavy-ion collisions. We have also
explained the pion production [19] in asymmetric nuclear
matter and liquid-gas phase transition in symmetric nuclear
matter [17]. The success of our model has encouraged us to
extend our calculation for the study of supernova matter. Here
we have concentrated on the equation of state of supernova
matter and the single particle properties like distribution
function, chemical potential of its constituents at various
values of densities, temperatures and electron fractions and
compared them with the asymmetric nuclear matter EOS.
Supernova matter is primarily composed of neutrons, protons,
relativistic electrons, and degenerate electron neutrinos. Since
the fraction of neutrinos is expected to be very small (<0.06
at low densities [1,3] and �0.2 at high densities [7]) we have
neglected its contribution in our calculation. In Sec. II, we have
briefly discussed our formalism. Section III contains the results
and discussion. A brief summary of our work is presented in
Sec. IV.

II. FORMALISM

We assume that the system under consideration is charge
neutral. In our formalism, electrons are treated to be relativistic
free particles and Coulomb interaction is neglected. Primarily
supernova matter is concerned with asymmetric nuclear matter.
We introduce the asymmetry parameter γ defined by γ =
n+/n−, where n+ is the number density of protons and n− is
the number density of neutrons. Since the density of protons
and electrons are equal, we define the electron fraction ye

as ye = n+/n, where n = n+ + n− is the number density of
nucleons. Our asymmetry parameter and electron fraction is
related as γ = ye

1−ye
. The details of the formalism for nuclear

matter were discussed in our earlier publications [17–19].
For completeness, here we give some important steps. In our
formalism, we have extended the zero temperature Brueckner
theory to finite temperature and started our formalism by
writing the grand thermodynamic potential per unit volume,

� = −P = −T log tr e−(H−µn̂)/T , (1)

where H and n̂ are the Hamiltonian and number density
operator. P, T , and µ are pressure, temperature, and chemical
potential, respectively. The main reason for taking the grand
thermodynamic potential lies in the fact that it can be expressed
as a linked cluster expansion analogous to zero temperature
Brueckner-Goldstone expansion, i.e.,

� = �0 + �1 + �2 + · · · , (2)

where �0,�1, and �2 are the contributions to the thermo-
dynamic potential due to the unperturbed part, one-body part
(single particle potential), two-body part of the Hamiltonian.
Our formalism is limited up to �2. In this formalism, we have
used the Brueckner reaction matrix instead of the bare NN
interaction. The number density of nucleon nτ with isospin

τ (+ for protons and − for neutrons) is given by

nτ = 2

(2π )3

∫
d3k nτ (k) (3)

nτ (k) is the Fermi distribution function given by

nτ (k) = 1

1 + exp{[ετ (k) − µτ ]/T } . (4)

ετ (k) is the single particle energy and µτ is the chemical
potential of the nucleon. ετ (k) is defined by

ετ (k) = h̄2k2

2mτ

+ Uτ (k), (5)

where Uτ (k) is the single particle potential and is defined by

U+(k1) = 1

2π2

∫ ∞

0
dk2[n+(k2)g++(Es, k1, k2)

+ n−(k2)g−+(Es, k1, k2)]. (6)

The g’s are the interaction matrices,

gττ ′(Es, k1, k2) = arctan[πρEQττ ′Kττ ′(Es)]

πρEQττ ′
. (7)

Here ρE is the single particle level density and the K matrix
satisfies the integral equation

Kττ ′(Es) = Vττ ′ + Vττ ′
Qττ ′

Es − H0
Kττ ′, (8)

Vττ ′ is the realistic nuclear interaction, Qττ ′ is the Pauli oper-
ator, and Es is the starting energy of the two particles. In our
calculation, we have used two-body density dependent Sussex
interaction [20]. The parameters of the density dependent term
of this interaction are determined empirically [20] by fitting the
binding energies and densities of nuclear matter and 16O. For a
given value of nuclear matter density and electron fraction, we
fix the number density of proton and neutron. Then chemical
potential is calculated from the number density constraint.
The single particle potential is needed for the calculation
of the single particle potential itself. Ultimately the single
particle potential is calculated by the iteration method. Thus,
in our formalism, self-consistency is satisfied with respect to
the single particle potential and chemical potential.

Internal energy per nucleon and pressure for nuclear matter
are calculated using the following expressions:

εn = 1

n

∑
τ

2

(2π )3

∫ ∞

0
d3knτ (k)

(
h̄2k2

2mτ

+ 1

2
Uτ (k)

)
, (9)

Pn = 1

π2

∑
τ

∫ ∞

o

dkk2nτ (k)

(
1

3
k
dετ

dk
+ 1

2
Uτ (k)

)
. (10)

It was been mentioned earlier that the electron fraction is
equal to the proton fraction and electrons are considered as
relativistic free particles. The single particle energy of the
electron is given by

εe(k) =
√(

k2 + m2
e

)
, (11)

where me is the mass of the electron. The distribution function
for the electron is calculated using an expression similar to that
of a nucleon. Its chemical potential is also calculated using the
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number density constraint. The internal energy per nucleon
and pressure for electrons are calculated using the following
expressions:

εel = 2

n(2π )3

∫ ∞

0
d3k ne(k)εe(k), (12)

Pel = 1

3π2

∫ ∞

0

k2

(
k2 + m2

e

) 1
2

ne(k)k2dk, (13)

where ne(k) is the distribution function for the electron. Total
energy per nucleon and pressure of the supernova matter are
given by

ε = εn + εel, (14)

P = Pn + Pel. (15)

III. RESULTS AND DISCUSSION

We have plotted the internal energy per nucleon in Fig. 1
for supernova matter and asymmetric nuclear matter at various
values of densities for proton/electron fractions yp = 0.1 and
0.3 at temperatures 5, 7, and 10 MeV. We find that at a given
temperature, as the proton concentration yp increases, energy
per nucleon for nuclear matter decreases at low density region.
But it increases when density becomes higher. On the other
hand, in the case of supernova matter, as proton concentration
increases, energy per nucleon increases for all the values of
densities and the curve becomes stiffer. It seems that in nuclear
matter, the strong nuclear interaction overcomes the kinetic
energy at low density region and causes its bound state. But
in the high density region, gain in momentum dominates over
this interaction resulting in the increase of energy per nucleon.
In the case of supernova matter, kinetic energy of relativistic
electrons predominates over the strong nuclear interactions in
this low density region and surpasses the kinetic energy of
nuclear matter in the high density region which enhances the
energy per nucleon at all the densities. We also observe that
the EOS of supernova matter is stiffer than that of asymmetric

nuclear matter. We also find that as the thermal energy is
enhanced, the energy per nucleon for both matter is enhanced.
This may be due to the conversion of thermal energy into
kinetic energy leading to an increase of energy per nucleon.
The contribution of electron energy in enhancing the energy
per nucleon is larger than that of thermal energy. As has
been discussed before, a similar type of calculation has been
performed by Takatsuka [7]. He has calculated the energy per
nucleon of supernova matter within the framework of finite
temperature Hartree-Fock approximation using the Reid soft
core potential taking into account the electrons along with
nucleons. From his studies he came to the conclusion that
the EOS of supernova matter is remarkably stiffer and the
contribution of electron energy in this stiffening effect of EOS
is larger than that of thermal energy, similar to the result of our
calculation.

Recently Danielewicz et al. [15] have tried to determine
experimentally the EOS of dense nuclear matter from the
collision between 197Au and 197Au nuclei at incident kinetic
energy ranging from 0.15 to 10 GeV per nucleon. They
analyzed the transverse flow of matter in nuclear collision and
extracted the pressure at high densities and at zero temperature.
We have plotted our results for pressure for symmetric nuclear
matter at temperature T = 10, 20, and 30 MeV in Fig. 2
and compared our results with their experimentally extracted
value. The closed region in this figure gives the experimental
values of the pressure as a function of densities for symmetric
nuclear matter. Our EOS of symmetric nuclear matter within
the density range 0.35–0.56 fm−3 and in these low temperature
limits has the same order of magnitude as the experimental
values.

Our results for pressure at various values of densities are
plotted in Fig. 3 for supernova matter and asymmetric nuclear
matter at temperature 5, 7, and 10 MeV for yp = 0.1 and
0.3. We have also plotted the pressure at temperature 20 and
30 MeV in the same figure just to compare the thermal effect.
The dotted curves represent the supernova matter and solid
curves represent the asymmetric nuclear matter. We observe
that for a given proton fraction, say for yp = 0.1, the pressure
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FIG. 1. Internal energy per nucleon for nuclear matter (solid line) and supernova matter (dotted line) at temperatures 5, 7, and 10 MeV (for
supernova matter yp = ye).
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FIG. 2. Pressure versus density for symmetric nuclear matter at
temperatures 10, 20, and 30 MeV. Experimental results are shown in
closed region.

curves of asymmetric nuclear matter at temperature T = 5,
7, and 10 MeV coincide in the high density region. It seems
that pressure curves are degenerate in this region. In the low
density region, the thermal effect is negligible. We also obtain
a similar type of pressure curves for supernova matter. For
this matter, pressure is slightly higher than that of nuclear
matter. This may be due to the presence of the electron in
this matter. When the temperature is increased to 20 and
30 MeV, the thermal effect in the low density region is
prominent for both the matter and its effect is reduced as
density goes up. It may be due to the fact that in low density
region, the temperatures T = 5, 7, and 10 MeV are comparable
to Fermi kinetic energy of the constituents of the system and
due to the small contribution of the nuclear interaction energy.
In the high density region, as momentum gain is there, the
above temperatures are not comparable to the kinetic energy.
So in this region, there is no contribution of thermal energy.
As the temperature increases to 20 and 30 MeV, thermal
energy becomes larger than the Fermi kinetic energy in the
low density region and hence the effect of thermal energy is
dominant. In the high density region, thermal energy is not
sufficient enough over the Fermi kinetic energy. When the
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FIG. 3. Pressure versus density for nuclear matter (solid line)
and supernova matter (dotted line) at temperatures 5, 7, 10, 20, and
30 MeV.

proton fraction is increased from 0.1 to 0.3, the thermal effect
is prominent in the low density region for both the nuclear
matter and supernova matter at temperature T = 5, 7, and
10 MeV. In the high density region and within these tempera-
tures the pressure curves are also degenerate for both matter.
We also find that there is a reduction of pressure by a small
amount in the case of nuclear matter and increase of pressure
for supernova matter at a constant density. It may be due to the
enhanced contribution of the nuclear interaction energy which
reduces the pressure in nuclear matter. On the other hand, the
enhanced electron fraction leads to slight increase in pressure
for supernova matter. When the temperature is increased to 20
and 30 MeV, thermal effects are enhanced in the low density
region and it slows down as density increases. However the
pressure is larger for supernova matter. This larger value of
pressure for supernova matter is mainly due to the presence
of the additional fraction of electrons. It is well known that
at a given temperature, the pressure is proportional to the
number of particles per unit volume regardless of the size of
the individual particles. So the electrons present in supernova
matter contribute additional pressure to this matter which also
enhances the stiffness of its EOS.

Distribution functions for proton, neutron, and electron at
various values of momenta for densities ρ = ρ0 and 2ρ0 and
for electron fractions ye = 0.1 and 0.3 at temperature 10, 20,
and 30 MeV are plotted in Fig. 4. Here we observe that for
a given temperature, density, and electron fraction, say for
ye = 0.1, the probability of the distribution for proton is less
than that of the neutron and electron. It shows that the proton
is more diffused. We also observe that though the fraction
of protons and electrons are the same, the probability of the
distribution for both the particles is not equal. This discrepancy
may be due to the thermal effect of the respective particles.
The thermal effect is defined [8] as the ratio of thermal energy
to the Fermi kinetic energy of the concerned particles. For
example, for ρ = ρ0 and ye = 0.1, ρp = ρe = 0.0165 fm−3,
and ρn = 0.1485 fm−3 and correspondingly Fermi kinetic
energies of the proton, neutron, and electron are 12.8, 55.0,
and 155.37 MeV, respectively. Thus, even though the densities
of the protons and electrons are equal, the thermal effect of the
protons is larger than that of electrons for a given temperature
and density. As we go to a higher fraction of electrons say
from ye = 0.1 to ye = 0.3, at a given density and temperature,
we find that the probability of distribution for the proton is
affected substantially. The distribution function for protons and
electrons increases but for neutrons, it decreases. Here on an
increasing proton fraction, its density in matter increases which
results in increasing its Fermi kinetic energy. As a result, at
constant temperature and density, its thermal effect is reduced
leading to increase in its probability of distribution. We also
observe that the proton and electron distribution curves cross
each other at a point for a given value of electron fraction. For
example in Fig. 4(a), we find that at temperature 10 MeV,
for ρ = ρ0 and electron fractions ye = 0.1 and 0.3, the
crossing points are at 0.79 and 1.14 fm−1. These values nearly
correspond to the Fermi momentum of proton/electron in their
respective electron fractions. On increasing the temperature
and density, these crossing points attain higher values. The
nature of the distribution function of the proton, neutron, and
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FIG. 4. Distribution function of the proton (solid line/solid line with circles), neutron (dotted line/dotted line with circles), and electron
(long-dashed line/long-dashed line with circles) for electron fraction (ye = 0.1/ye = 0.3) are plotted at various values of momenta at temperatures
10, 20, and 30 MeV and at ρ = ρ0 and ρ = 2ρ0.

electron agrees well with the calculation made by Takatsuka
et al. [8], where they have considered the β-equilibrium. The
distribution functions for density ρ = 2ρ0 at various values

of temperatures are given in Figs. 4(d)–4(f). Comparing the
Figs. 4(a)–4(c) with that of Figs. 4(d)–4(f), we observe that at
a given temperature, the probability of the distribution for all
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FIG. 5. The chemical potential of the proton (solid line), neutron (dotted line), and electron (long-dashed line) are plotted for various values
of electron fractions at temperatures 10, 20, and 30 MeV.
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the particles increases as the density of the system increases.
As explained before, this increase in the distribution function
is due to the decrease in thermal effect which is the ratio of
thermal energy to Fermi kinetic energy.

In Fig. 5, we have plotted the chemical potential for the
proton, neutron, and electron for various values of electron
fractions as well as densities at temperatures 10, 20, and
30 MeV. We observe that for a given temperature, there is
a sharp fall of the chemical potential of the proton up to the
electron fraction 0.05 and then it increases. But in the case of
the electron, there is a sharp increase in chemical potential up
to this electron fraction and then the increase tapers off. On
the other hand in the case of neutrons, the chemical potential
decreases slowly for all values of electron fractions. As is
evident from the graph, the chemical potential of protons
and neutrons is equal for symmetric nuclear matter which
corresponds to the electron fraction ye = 0.5. We also observe
that the chemical potential of the electron is much larger than
that of the proton at a given density and temperature. It may
be due to the relativistic nature of the electron. It is seen
that as the density of the system increases from ρ0 to 3ρ0,
the chemical potential of all particles increases for all values
of electron fractions. It shows that the enhancement of the
chemical potential depends upon the enhancement of Fermi
momentum. We also find that the thermal energy has very
little effect on chemical potential. Our results are similar to
those of Takatsuka et al. [8].

IV. CONCLUSION

We have performed a nonrelativistic microscopic calcula-
tion for the equation of state of supernova matter consisting
of protons, neutrons, and electrons in the framework of
Brueckner-Goldstone expansion using the density dependent
two-body Sussex interaction and compared the results with
those of asymmetric nuclear matter and studied the thermal
effect on it. It is observed that in the low density region, the
temperatures 5, 7, and 10 MeV are comparable to Fermi ener-
gies and hence there are contributions at these temperatures.
But in the high density regions, these temperatures have no
contribution on pressure for both matter. Even though our

calculated EOS is at finite temperature, we have compared
our results of symmetric nuclear matter with the recently
extracted values of EOS at zero temperature [15] since we
restrict our results to low temperatures. The agreement is
satisfactory within the density range 0.35–0.56 fm−3. We
observe that the EOS of supernova matter is stiffer than the
EOS of nuclear matter. In this stiffening effect, the relativistic
nature of the electrons plays the dominant role. We also
observe that the contribution of electron energy is remarkably
larger than that of thermal energy. We studied the single
particle properties of the constituents of supernova matter.
For a given temperature, density, and electron fraction, the
probability of the distribution for the proton is less than that
of neutron and electron. Though the density of the proton
and electron are equal, their probability of distribution are
not equal. It mainly depends upon thermal energy and Fermi
kinetic energy. We find that there is a sudden fall and rise
of the chemical potential for the proton and electron up
to electron fraction 0.05. Beyond this value of the electron
fraction, the chemical potential of the proton and electron
increases. But in the case of neutron chemical potential, the
above type of behavior is absent and this potential decreases
slowly as the fraction of electron increases. The chemical
potential for all these particles increase as density of the system
increases.

We find that our calculation does not satisfy the Hugenholtz-
Van Hove theorem. However Baldo et al. [22] and Grange et al.
[23] have shown that, with the inclusion of the rearrangement
term, this theorem is satisfied for symmetric nuclear matter at
different temperatures. We plan to carry out this study in the
future.

In the future we also plan to carry out the above calculations
with other interactions like the Bonn and Paris potentials
and try to see the effect of interactions on the properties of
supernova matter.
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