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Chiral properties of the QCD vacuum in ultrastrong magnetic fields: A Nambu-Jona-Lasinio
model with a semiclassical approximation
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The breaking of chiral symmetry of light quarks at zero temperature in the presence of strong quantizing
magnetic field is studied using a Nambu-Jona-Lasinio (NJL) model with a Thomas-Fermi-type semiclassical

formalism. It is found that the dynamically generated light quark mass can never become zero if the Landau
levels are populated and increases with the increase of magnetic field strength.
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I. INTRODUCTION

The theoretical investigation of properties of compact
stellar objects in the presence of strong quantizing magnetic
field have gotten a new life after the recent discovery of a
few magnetars [1-4]. These exotic stellar objects are believed
to be strongly magnetized young neutron stars. Their surface
magnetic fields are observed to be >10" G. Then it is quite
possible that the fields at the core region may go up to 10'® G.
The exact source of strong magnetic field is of course yet to
be known. These objects are also supposed to be the possible
sources of anomalous X-ray and soft gamma emissions (AXP
and SGR). Now, if the magnetic field is really so strong, in
particular at the core region, it must affect most of the important
physical properties of these stellar objects and also some of
the physical processes, e.g., the rates/cross sections of elemen-
tary processes, in particular the weak and the electromagnetic
decays/reactions taking place at the core region.

The strong magnetic field affects the equation of state
of dense neutron star matter. As a consequence the gross
properties of neutron stars [5—8], e.g., mass-radius relation,
moment of inertia, rotational frequency, etc., should change
significantly. In the case of compact neutron stars, the
phase transition from neutron matter to quark matter which
may occur at the core region is also affected by a strong
quantizing magnetic field. It has been shown that a first order
phase transition initiated by the nucleation of quark matter
droplets is absolutely forbidden if the magnetic field strength
~10" G at the core region [9,10]. However, a second
order phase transition is allowed, provided the magnetic field
strength <10?° G. This is of course too high to achieve
at the core region. The study of time evolution of nascent
quark matter, produced at the core region through some
higher order phase transition, shows that in the presence of
strong magnetic field it is absolutely impossible to achieve
chemical equilibrium (B-equilibrium) configuration among
the constituents of the quark phase if the magnetic field
strength is as low as B,, ~ 10'* G.
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The elementary processes, in particular, the weak and the
electromagnetic decays/reactions taking place at the core re-
gion of a neutron star are strongly affected by such ultrastrong
magnetic fields [11,12]. Since the cooling of neutron stars
is mainly controlled by neutrino/antineutrino emissions, the
presence of a strong quantizing magnetic field should affect
the thermal history of strongly magnetized neutron stars.
Further, the electrical conductivity of neutron star matter which
mainly comes from free electron gas, directly controls the
evolution of the neutron star magnetic field, should also change
significantly [12].

Similar to the study of quark-hadron deconfinement tran-
sition inside a neutron star core in the presence of a strong
quantizing magnetic field, a lot of investigations have also
been done on the effect of ultrastrong magnetic field on chiral
symmetry breaking. In those studies, quantum field theoretic
formalisms were mainly used [13—19]. In Ref. [20], Inagaki
et al. studied the chiral symmetry violation with the Nambu-
Jona-Lasinio (NJL) model using quantum field theoretic
approach in the presence of a strong quantizing magnetic field.
In many of these papers, the effect of curvature with or without
external magnetic field on chiral symmetry violation have been
investigated. In Refs. [13,21], Gusynin et al. have thoroughly
investigated the chiral symmetry breaking in the presence of
a strong external quantizing magnetic field. They have used
the NJL model in 2 4 1 and also in 3 4- 1 dimensions. It has
been shown that the external magnetic field acts as a catalyst
to generate fermion mass dynamically. In the first paper [13]
they have studied it in a 2 4+ 1 dimension and showed how
the external magnetic field generated a dynamical mass of
fermion and broke the dynamical flavor symmetry. They have
further shown by using the NJL model that chiral symmetry
breaks dynamically even if the attractive interaction between
the fermions is extremely weak. In the second paper [21]
they have extended the calculation to a 3 + 1 dimension. In
another work, Lee et al. [17] have studied the breaking of chiral
symmetry for fermions in the presence of an external magnetic
field. It has also been shown in this work that the symmetry is
broken dynamically and further the effect of finite density and
the temperature of the system on the chiral properties of the
fermions have been investigated thoroughly in this paper in the
presence of a strong magnetic field. It has been reported in this
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paper that there exists a critical density (or chemical potential)
above which the chiral symmetry is again restored (which
actually indicates the restoration of chiral symmetry at high
enough density) and if it is treated as a chiral phase transition,
the order will be of first order in nature. On the other hand the
chiral symmetry is again restored at high temperature above
some critical value. In this case the transition is of second
order in nature. In an extensive review work [22], Klevansky
has reported the dynamical chiral symmetry breaking in the
presence of a strong external quantizing magnetic field using
the NJL model in SU(2) and SU(3) flavor space. In this
paper the effect of density (i.e., finite chemical potential)
and temperature of the system on chiral symmetry restoration
have also been reviewed. In some very recent work Wang
et al. have critically examined the consistency and gauge
independence of bare vertex approximation that has been
extensively used in truncating the Schwinger-Dyson equation
to obtain the dynamical mass of fermions generated through
chiral symmetry breaking in a strong magnetic field. They
inferred that the gauge independence approach poses a serious
question on the validity of the results and conclusions obtained
in earlier studies [23].

In the present article we shall study the effect of a
strong quantizing magnetic field on the chiral properties of
QCD vacuum with the help of the NJL model following a
semiclassical Thomas-Fermi-type mean field approach in the
presence of a strong quantizing external QED magnetic field.
Now in the NJL model, there is no built-in mechanism of color
confinement, however, it can produce two chirally distinct
phases—appropriate for confined quark matter within the bag
and the matter outside the bag. These phases are also known
as the Wigner phase and spontaneously broken chiral phase,
respectively. Therefore, in this formalism, if one reformulates
the NJL model in the presence of a strong quantizing magnetic
field, it is quite possible to obtain the effect of quantizing
magnetic field on these two chirally distinct phases and
hence obtain the effect of magnetic field on chiral symmetry
breaking. Further, it is also possible to obtain bag pressure
from the difference of vacuum energy densities of these two
phases and hence its variation with a strong magnetic field.
Assuming that the confinement and spontaneously broken
chiral symmetry are synonymous, Bhaduri et al. obtained
some estimate of the bag constant from the difference of
energy densities [24] for the conventional case. In the present
article we shall modify these original calculations of Bhaduri
et al. [24] and Providéncia et al. [25] to study the breaking
of chiral symmetry of light quarks in the presence of strong
magnetic fields and show that the chiral symmetry always
remains broken in the presence of a strong quantizing magnetic
field if the Landau levels for quarks are populated. Our
motivation in this work was to study the effect of a strong
quantizing magnetic field on two chirally distinct phases and
then obtain the vacuum pressure as a function of strong
external magnetic field. Unfortunately, we have noticed that
the Wigner phase does not exist if the Landau levels of quarks
are populated and in this formalism, there is no way, either by
controlling the chemical potential, i.e., the density of matter
(which is meaningless in our investigation since we have
considered QCD vacuum state) or temperature of the system
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to restore chiral symmetry (we have considered 7" = 0). Our
present investigation is therefore basically an application of the
formalism developed recently to study the equation of state of
dense fermionic matter of astrophysical interest in the presence
of a strong quantizing magnetic field [26]. Recently we have
also used that formalism incorporating p-meson exchange in
dense neutron star matter and shown that the self-energies
of both neutron and proton become complex in nature in the
presence of a strong quantizing magnetic field, even if it is a
mean field approximation [27].

II. BASIC FORMALISM
We start with the density matrix p(x, x), defined by
pr. )= Y Y @O — |p:D), (1)
spin, p

where ¥ and v are, respectively, the negative energy Dirac
spinor and the corresponding adjoint, satisfying the equation

hy = E_y @)
(and similarly for v ') with the single particle Hamiltonian
h=ysE.(5 —qpA) + pm 3
with
2 G 0
5 (O 3), @

ys and B are the usual Dirac matrices, A is the infrared cutoff
in the momentum integral over p, (since we are considering
vacuum, unlike a many body fermionic statistical system we
have to put the cutoff by hand. Further, the z-component
of momentum ranges from —oo to 0. We have therefore
used —A as the infrared cutoff for p,-integrals.) and A is
the electromagnetic field three vector corresponding to the
external constant magnetic field of strength B, along the
z-axis. Here the light quark mass m is assumed to be generated
dynamically. Now in the presence of a strong quantizing
magnetic field along the z-direction obtained from the choice
of gauge A* = (0, 0, xB,,, 0), the up and down spin negative
energy spinor solutions are therefore given by

1 .
V@) = i OPliE = pyy = po, ()
y~z
where
p:1
o 1 —i(2QugsBy)'*1,_; ©
T [RE_(E- —m)]' (E- —m)l,
0
and
i(zvqum)l/zlv
1 -P Iv—l
) z
= , 7
= T RE(E —m2 0 @
(E_ —m)l,_4
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where E_ = —(p? + m? + 2vq;B,)"/* = —E,, is the single
particle energy eigenvalue, v =0, 1,2..., are the Landau
quantum numbers, ¢ is the magnitude of the charge carried
by fth flavor and

B, 4 1 2
L=(22m) 2 Pexp|—=q By (x— 2
T (vhHi/2 2 qrBn

12, Py
x H, |:(61‘me) (x _(Ime>] (3)

with H, is the well-known Hermite polynomial of order v,
and L,, L, are, respectively, length scales along the Y and
Z directions. Now it can very easily be shown that v =0
state is singly degenerate, whereas all other states are doubly
degenerate. We now express the density matrix, as the modified
version of the Wigner transform in the presence of a strong
quantizing magnetic field, in the following form:

p(x.x) =" p(x.x", py. pe. v)expli{(t — t')E_
— (= Y)py — (2= 2Hp:)l. ©)

where the sum is over the momentum components p,, p. and
the Landau quantum number v. Since the momentum variables
are continuous, the sum over momentum components will be
replaced by the corresponding integrals. Now we have from
Eq. (9)

+1/2

p(x, x’, Pys Pz> V) = Z v(X, Py, Pz, I))UT(x/, Py Pz V)
spin=—1/2
(10)
and on substituting the negative energy up and down spinors
states, we get

1
px, x', Py, Pz V) = E[EfA — PV Y0A +myA
—P1¥yYoBIO(A — |p:]) (11)

(see Appendix for detail derivation) where the matrices A and
B are given by

LI 0 0 0
0 IL_I_, 0 0
A= / NGH)
0 0 LI 0
0 0 0 Il
Ivfllli 0 0 0
0 LI, 0 0
B— , .3
0 0 LI 0
0 0 0 LI,

where the primes indicate the functions of x’. Now in the
evaluation of vacuum energy, we have noticed that it would be
more convenient to define a quantity u  (to be more specific,
it should be — 4 ¢), similar to the chemical potential for the fth
flavor in a multiquark statistical system in the presence of a
strong quantizing magnetic field (strictly speaking we are not
considering a multiquark statistical system and j r is therefore
not the quark chemical potential. However, its minimum value
should be m and not zero, i.e., in this simplified model, just
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like the dynamical mass m, this quantity is also treated as a
parameter and we evaluate numerically p and m and then

obtain the upper limit of Landau quantum number [v,(hf;x] and
the cutoff A. Then it is very easy to write

1/2

Az(ufz—mz—qume) 2. (14)
Since A > 0, it is also possible to express the upper limit of v,
which is the maximum value of Landau quantum number of
the levels occupied by fth flavor, and is given by

2 2
X ne —m
Vil = [—;qu ] (15)

where [ ] indicates the nearest integer but less than the actual
number. Now to obtain the energy density of the vacuum, we
consider the NJL (chiral) Hamiltonian, given by

N
N ..
H:Zt(l)—FE;V(z,]) (16)

N
= > B0 — asA)
i=1

1 I . . . . . .
-5 ;a(x,- — FPIBHBG) — BOys@BG)ys()]
i#]
(17)

where X, y5, and B are usual 4 x 4 matrices and 2g is the
effective coupling. Here we have used the formulation of da
Providéncia et al. [25] for the mean field density matrix to
describe the Dirac vacuum, thereby employing the Thomas-
Fermi semiclassical method instead of formal field theory.
As we have noticed, the physics of condensation energy is
more transparent in this method than the formal field theoretic
technique. The energy of the vacuum is then given by

o=y /

Piz>V1

dxitril{ysS.(51 — g r A pp ] + €D, (18)

where p,, is given by Eq. (11), the first term is the kinetic
energy part and €'!) indicates the interaction term, including
the exchange interaction. To evaluate the vacuum energy,
we first calculate the kinetic energy term in Eq. (18). This
quantity is proportional to the trace defined by Tr(ph),
which can easily be evaluated by using p from Eq. (11)
and the single particle Hamiltonian 7 from Eq. (17). Now
using the orthonormality relations for the Hermite polynomials
at the time of the evaluation of the integral over dx and also
using the anticommutation relations for y-matrices, we have
the first term at zero temperature (see Appendix)

[vix]

) l qrB A 132
€, = 2N, ; e ;0(2 - avo>/0 dpp— (19
where ﬁz = pg +2vqyB,,, N. = 3, the number of colors, and
E_=-—E,.

In the evaluation of all the traces in this paper we have used
the following important relation:

TI'()/M)/VAlAz..Ble..) = Tr(AlAz..Ble..)g’“’, (20)
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Tr(y"y"y vy A1A2..BiBy.) = Tr (A1 Ay 3132 "' g
_gu)\ vo [,LO' U)\) (21)

Tr (product of odd ys with A and/or B) = 0, etc. The other
interesting aspects of A and B matrices are

(i) ki, k* Tr(A1Ay) = (E1Ey = kizkoo)Tr (A1 Ag),

(ii) ki k> Tr (B B) = ky.. kziTr (B1B2),
(iii) k1, k**Tr (A By) = k1, k**Tr (B1Ay) = 0,
(1V) pluklMPZUkzuTr (A1 By) 7é 0= (Ev1 Evé -

P21kai Tr (A1 By).

plzklz)

This set of relations was derived in a very recent publication
by us [26]. Since y matrices are traceless and both A and B
matrices are diagonal with identical blocks, it is very easy
to evaluate the above traces of the product of y-matrices
multiplied with any number of A and/or B, from any side
with any order.

To evaluate the interaction term, we first consider the direct
part which is proportional to Tr (Bp,,)Tr (Bp,,) and it is very
easy to show that Tr (Bysp) = 0 (see Appendix). Then using
the orthonormality relations for Hermite polynomials and the
anticommutation relations for the y-matrices, we have the
direct term

Vair = —4gm’[V(A, m)]? (22)

(the four fermion coupling is included in V, it is ~

V(1,2)p1p2) where

[

V(A,m) = ZZZefB 2(2 vO)/ —
pz+m

(23)

where m, s = (m* 4+ 2vq;B,,)"/* (see Appendix for deriva-
tion).
To evaluate the exchange term, we first calculate

Tr ((Bop,)(Bpp,)). Now

1
Bp = E[E BA + p.Ay. + mA — p| By,]. (24

Then to obtain the trace of the product of Sp; and Bp; it is very
easy to show that only the direct product terms are nonzero
whereas the cross product terms do not contribute. Therefore

Bp1Bp2 =

E(BA A A — By,
4E1E2[ 1BA+ pi; Ay, +m P Byy]

X [Ez,BA, + pQZA/}/Z + mA’ — szB/]/y]. (25)
Then using the orthonormality relations for Hermite poly-

nomials at the time of integration over dx; and dx;, the above
trace reduces to

+o00
dx = AE\E, + 4 4m?
/_oo (Bp1Bp2)dx 4E1E2[ 1E> +4pi:pa +4m7]
2
P1z P2z m
— |1 , 26
i " EE +E1Ezi 20

where both E; and E, are negative. Then in the energy
contribution, after integrating over p;, and p,,, the first term
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gives

[V

2n2 quB Z Q2-80A | . 27
Similarly the contribution from second term is given by
[t ] ?
1/2
n'2 Zq,«Bm > @ —80)(A*+ml ) (28)
f=u v=0

and finally, the third term is given by

N (V] A+H(A>+m
21 247 B Z@—&o)ln[
f=u v=0

mv,f

3]{)1/2}

(29)

(see Appendix for derivation of these expressions)

To obtain the next term in the exchange part, we evaluate the
trace Tr ((Bys 0y, )(BY50p,)), which unlike the direct case, gives
nonzero contribution. Using the anticommutation relations
of y-matrices and as usual with the help of orthonormality
relations for Hermite polynomials, we finally arrive to the
following result:

2
P1zP2z m 1 1
1 — — + — 30
|: Y EE, E\E, + EE> tm (E] + >] (30)

(see Appendix for derivation). The contribution to the interac-
tion energy will again be obtained if we integrate over p;, and

P2, (done in a similar manner as has been done for the direct
case). Then the first term is given by

2
[V

' 2quB Z(Z—Svo)A : (31)

The second term is given by

)
[ Vr(n/ax ]

quB Y e-sont+md )] . G2

v=0

27r2

The third term is given by

(Vi
53 quB Z(z 8,,0)ln|:

f=u

2

+(A2+m%,f)l/2
my, ¢

(33)

and finally the fourth and fifth terms, which are identical, are
given by

(] 2 2 12
+ (A + mv,f)
py) ZQfB 2(2 —dyo) In |: e :|
[Vfa]
W quBm Z(z —80)A | . (34)

Then combining all these terms we finally obtain the
vacuum energy density. Since the mass m, which is assumed to
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be the same for both u and d quarks, is generated dynamically,
we obtain this quantity by minimizing the total vacuum
energy density with respect to m, i.e., by putting de, /dm = 0.
Simplifying this nonlinear equation, we finally get

de,

= —P+230R =0, (35)
dm
where
l)<f)
P_Nc d _B[W]z 5
—mth m Z( —8.,0)
f=u v=0
2m* A 1
x| = -wmX|. (36)
My (A2 +m] )
(Vi
Q=77 quBm Z(z—sm
f=u
2 A
x| x -2 = (37)
mv,f (AZ + m%f)
[Vir]
R = 2712 quBm VZO(z —8,0)[A —4mX]  (38)
with

(39)

A+ (A24m2 )"
X:ln|: AT+ m) }
my, r

It is therefore obvious from Eq. (35) that the trivial solution
m = 0 is not possible in this particular situation, or in other
words, the gap equation given by

m =4gVm (40)

cannot exist. On the other hand in a nonmagnetic case, or
for the magnetic field strength less than the quantum critical
value, Eq. (35) reduces to the gap equation as written above
[Eq. (40)]. Here V is the overall contribution of interaction
terms. Hence it is obvious that mm = 0, the trivial solution exists
in this nonmagnetic or the conventional scenario, investigated
by Bhaduri et al. [24]. The phase with m = 0 is the Wigner
phase and m # 0 is the so-called Goldstone phase. Now
Eq. (40) further gives

4gV =1 41)

which is nothing but the well-known gap equation used in
BCS theory. The gap equation therefore does not exist in the
presence of a strong quantizing magnetic field if the Landau
levels for u and d quarks are populated.

III. CONCLUSION

The nonexistence of trivial solution (m = 0) indicates the
spontaneously broken chiral symmetry in the presence of a
strong quantizing magnetic field. Therefore as soon as the
Landau levels are populated for light quarks in the presence
of a strong external magnetic field, the chiral symmetry
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gets broken, the quarks become massive, and the mass m
(assumed to be same for both # and d quarks) is generated
dynamically.

Therefore we may conclude here that the Wigner phase
does not exist in the case of relativistic Landau diamagnetic
system. Further, if the deconfinement transition and restoration
of chiral symmetry occur simultaneously, or in other words, if
the chiral symmetry remains restored within the bag, as it is
generally assumed, then it puts a big question mark whether
the idea of bag model is applicable at all in the presence of
a strong quantizing magnetic field. Questions may also arise,
that if the Wigner phase still exists inside the bag, then whether
the external quantizing magnetic field can penetrate the bag
boundary, if not, what is the underlying physics which prevents
the external magnetic field from entering the periphery of the
bag.

Now to illustrate the variation of dynamical quark mass
with magnetic field, we consider the relation

m;, = fz S, (42)
where m, is the pion mass, m is the quark current mass and
f= 1s the pion decay constant. Using the spinor solutions given
by Egs. (6) and (7) we get

d [l 2 2 12
_ 2mgm N, A+ (A2 +m? )
2 0 v.f
m- = E E (2—46,0)In .
" f;‘% 2 2 f=u v=0 mvwf

(43)

We have now solved Egs. (35) and (43) numerically to obtain
A and m for various values of magnetic field strength. In
Fig. 1, we have shown the variation of m with the strength
of the magnetic field. In the actual numerical work we have
solved self-consistently for the dynamical mass m and the
parameter u  using Eq. (15) for u,(,{a)x and then from Eq. (14)
we get the infrared momentum cutoff A. In our calculation we

have always used p y instead of A which allows us to obtain

v,(r{;)x So we cannot compare our result with those obtained

with zero chemical potential, since in our calculation it is just

104 LLBLILILLLL) B L) B L1 B R A L1 B B R

T T T T T T T T T T T T T T TTIT
1 10 10° 10° 10* 10°
B /B (c)(e)

FIG. 1. The variation of dynamically generated quark mass with
the strength of magnetic field (expressed in terms of B = 4.4 x
101 G).

015805-5



SUTAPA GHOSH, SOMA MANDAL, AND SOMENATH CHAKRABARTY

800

700

600

500

400

300

200

1OO;ﬁ—m1mrrrmm|—rnan—rrmm—rrmm|—rmeW—rmm|
1 10 10* 10° 10* 10° 10° 107

Bm/Bn”

FIG. 2. The variation of constituent quark mass with the strength
of magnetic field (expressed in terms of B®) = 4.4 x 10"* G) from
[21]. The lower curve is for A =200 MeV, middle one for A =
400 MeV, and the top one for A = 550 MeV.

a parameter, it has no resemblance with chemical potential in
a finite density quark (u, d) matter system. We were forced
to to do this to obtain m, A and also v,(,{a)x self-consistently
from the numerical solutions of Egs. (35) and (43). In doing
numerical calculations, we have considered the following sets
of numerical values for the parameters. The current quark mass
mo = 10 MeV, pion mass m,, = 140 MeV, pion decay constant
fr = 93 MeV, coupling constant g = 10 GeV~2 and electron
mass m, = 0.5 MeV. In Fig. 1 we have shown the variation
of dynamically generated quark mass with the strength of
magnetic field. As it is evident that the dynamical quark mass
never goes to zero and diverges beyond B,, ~ 10!7 G.

In Fig. 2, we have plotted for the sake of comparison
the variation of constituent quark mass with magnetic field
strength after solving numerically Eq. (17) of Ref. [21]. Here
also for low and moderate values of magnetic field strength,
the constituent mass does not change and for very high
field strength, it diverges. Three curves correspond to A =
200 MeV (lower one), A = 400 MeV (middle one), and A =
550 MeV (upper one). We have noticed that solution of this
equation does not exist for A > 600 MeV.

For the sake of the clarification of some of our findings,
we would now like to add the following note. To explain,
why we have used 1, instead of a constant momentum cutoff
(infrared) A, we consider the following points:

(i) Actual range of p, is from —oo to 0.

(i) Energy eigenvalue E_ = —FE, = —(pz2 +2vgrB, +
m?)!/2, is negative and corresponds to vth Landau level.

(iii) Now for a positive energy fermionat 7 = 0 in a statistical
system, the maximum energy and the corresponding
momentum are /s and py, respectively. In this case,
however, no such limits exist.

(iv) Further the presence of B,, which is greater than the
quantum critical value, breaks the spherical symmetry
of the momentum space and makes it cylindrical in
nature, with —oo < p, < + 0o (in the present case it
is —oo< p; <0) and p; =2vg B, (which is negative
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—_

FIG. 3. The variation of magnitude of infrared cutoff A in MeV
with the strength of magnetic field (expressed in terms of BO© =
4.4 x 10 G).

in the present case) and changes in a discrete manner
(quantized).

(v) Therefore we are forced to introduce two different cutoff
values to fix these momentum components.

(vi) From the knowledge of relativistic version of Landau
diamagnetism, we know that the maximum value of the
Landau quantum number is a decreasing function of B,,.
Beyond some upper limit of B,,, the maximum value
of the Landau quantum number ([v,([{;;]) becomes zero.
Which means that for such strong B,, the zeroth Landau
level will only be occupied.

(vii) To know [V‘({QX] for a given B,,, it is therefore absolutely
necessary to introduce some energy cutoff, which is
—u ¢ in this particular case, otherwise it is impossible to
evaluate the upper limit of v (which is further associated
with the transverse component of quark momentum). We
are therefore forced to use —u ;s as an infrared energy
cutoff for the fth flavor.

(viii) It has been noticed that with our present model A cannot
be a constant. It is a slowly varying function of B,,. It
increases slowly with B,, as shown in Fig. 3. On the other
hand for very high B,,, [vfr{;)x] — 0 and quarks become
too massive. In fact, in ultrastrong magnetic field, quarks
behave like massive particles moving along z-direction
only, with finite momentum <A.

(ix) Finally, unless the above formalism is followed, we will
not be able to evaluate any physical quantities, e.g.,
energy, etc., associated with the system. In our opinion
the use of a magnetic field dependent infrared cutoff 1
for energy eigenvalue, instead of a fixed A, is a draw
back of this model. Which of course is not necessary in
other kinds of models to study chiral symmetry breaking
with strong magnetic field.

(x) Further, it has been observed that the model calculation
we are doing here has no scope to study the effect of a
strong quantizing magnetic field on the scalar excitation
of QCD vacuum. We are investigating it as a separate
problem.
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For the sake of comparison with the existing results, par-
ticularly those published in Ref. [21], we would like to
add the following note: The formalism developed in Ref.
[21], as cited in this manuscript, to obtain the constituent
mass of quarks generated dynamically is basically a NJL
model with field theoretic (path integral) approach. Whereas
in our paper, we have followed the Thomas-Fermi-type
semiclassical formalism. In our model, we have treated the
dynamically generated quark mass as a parameter and is
evaluated numerically by minimizing the total energy of the
system with respect to this parameter for a given magnetic
field strength. In Ref. [21], on the other hand, obtained two
different fields, o (the scalar part) and 7 (the pseudoscalar
part). These are derived from the fermion fields using the
standard form of definitions. Neglecting the pseudo-scalar
part and assuming that p?> = o> + 7% remains invariant, a
nonlinear form of potential for the scalar field is obtained.
The scalar field, or equivalently p is obtained by minimizing
the potential V(p) with respect to this field variable. The
dynamically generated quark constituent mass is then obtained
just by equating o = p = mgy,. The similarity with our work
is that we have minimized the total energy with respect to
the dynamically generated mass, which we have treated as
a parameter, whereas in the work of Ref. [21], they have
minimized the potential V (p) with respect to p which is just
the dynamically generated quark constituent mass. In Fig. 2
we have plotted this dynamically generated quark constituent

PHYSICAL REVIEW C 75, 015805 (2007)

mass against the strength of magnetic field for various values
of the cut off parameter A. We have solved Eq. (17) of
Ref. [21] numerically to obtain the mass for a given magnetic
field strength. It is found that for low and moderate values
of magnetic field strength, the dynamical mass of quarks
is almost insensitive to magnetic field strength and diverges
at the ultrastrong limit. The result is almost identical with
our findings. However, the constant part of dynamical quark
mass as obtained from the numerical solution from Ref. [21]
increases with the increase of the value of cutoff parameter A.
Whereas, in our case, since we have obtained both A and the
dynamical mass self-consistently for a given magnetic field
strength, we cannot change the value of A by hand to check
the variation of the constant portion of dynamical quark mass.
In Fig. 3 we have plotted the variation of A with the strength
of the magnetic field. Further, we have noticed that for A =
560 Meyv, there cannot exist any solution of Eq. (17) of Ref.
[21], which is also consistent with our result (obviously from
Fig. 3). In our case it is about 300 MeV and this is the reason
why we have obtained a relatively small value of constituent
mass for relatively low magnetic field strength.

APPENDIX A: EVALUATION OF DENSITY MATRIX

To obtain the density matrix [Eq. (11)], we use Egs. (6) and
(7), then

p1,
1 _1(2\)61 Bm)l/zlvfl
o f /. . 1/2 g/ ’
vt = — — 1iugrBy)' I _((E —m)I0 Al
SEE —m) (E —ml, (p1,i(2vq s By) 1 m)1,0) (A1)
0

pzzlvlli ipz(2VCIme)l/21v11§_1 pz(E - m)IvI; 0
1 —ip,(2vq s By)?1,1 1] 2vqBul,—1 I, —iQvgBy)YHE —m)I,—11I, 0 (A2)

~ 2E(E —m) p(E —m),1] i2Qvq By *(E —m)LI]_, (E —m)?LI] 0

0 0 0 0

|
and
i(zvqum)l/zlv—l
+ 1 -p qul . /
vholt = AEE =) Zo (—i@vgyBy)'"*1, — p.I,_0(E —m)I]_)) (A3)
(E - m)lvfl
(2vq B I, —ip,2QvqyB,)'PLI_, 0 iQugsB,)"*(E —m)1]_,
o 1 + ipz(zvqum)l/zlvfllli pzzllv7111§,1 0 _(E - m)pz1v7111271 (A4)
" 2E(E —m) 0 0 0 0
_i(ZUQme)l/z(E_m)Ivfllé —p(E _m)lvfll\j_l 0 (E _m)zlvflllﬁ_l
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Adding

PHYSICAL REVIEW C 75, 015805 (2007)

(E+m), I 0 p 1,1 iQvgB)'V1I_,
ottt 4ty = 0 (E+m)lyiIy_y  —iQvqyBy)'? 111 —pl 1
2E p 1! iQvqB)" 1,1, (E —m)L, I} 0
—iQ2ug s By)VH(E —m)I, 1] —p Al 0 (E —m)l,11]_,

which may easily be simplified after a little algebra and reduces
to

1
p(-x5 .X,, Py> Pz» ])) = E[E—A - pZyZVOA + m'}/(]A

—pLYyYoBIO(A — |p:D),
where the matrices A and B are given by Eqgs. (12) and (13).

(A6)

APPENDIX B: EVALUATION OF KINETIC TERM
Free Hamiltonian
h=9y’%-p+Bm (B1)

substituting ¥ from Eq. (4) and using the properties of y-
matrices we get

h=a-p+pBm (B2)

the usual one. In presence of external magnetic field with the
gauge choice as mentioned before, we have

h=ys% (5 —qrA) + pm (B3)
by the same technique as above, we have
h=a-(p—qsA) + pm. (B4)
Now to evaluate Tr (hp), where
h=G (5 —qrA) +my (BS)

we take A, = qyx B,,, whereas all other components are zero.
Then we can express the above Hamiltonian in the following
form:

h = (xpx +¥y(Py — X Bn) + v:p: + m)yo (B6)

substituting

Py
(qrB)"? (— —x) =—¢ (B7)
4 C]me
we have
h = (yipx — (@7 Bn)' ?yy¢ + vop. + m)ys. (B8)

In evaluating the trace Tr (hp) we integrate over x-coordinate
(i.e., on ¢), use orthonormality relations for H,(¢) and finally
using the anticommutation relations for y-matrices, we have
the first term of the product o O [from the conclusion drawn
just after Eq. (21)], second term 4pZ2, third term ocdm?,
and the fourth term o 4p? . Finally after summation, we have

(A5)

Tr(ph) ox 2E. Since E < 0, this is actually o« —2F, where
E =( p2 + p3 +m?)!/2. Then the kinetic energy density is
given by

[

d A
B
) __ Qf m o
€, =2N, fizum ;:0 (2 =dv0) /0 dp-E

[V

Ne &
=15 ;qum X;(z—auo) |:A(A2 +m? )"

] ; (B9)

where mif =m’ 4 2vq B, and g, = 2/3e, g4 = 1/3e and
N.=3.

A+ (A2 +m2 f)‘/z

2
+m - In
v f m,

APPENDIX C: INTERACTION ENERGY (DIRECT TERM)

Now

1
Bysp = vsvyVesplEA = poy:yoA +myAr + pryyyoBl.
(CDH
Then it is very easy to check that the trace of the above
expression is zero.
So to obtain the direct term of interaction we have to
evaluate the Tr (8p) integrated over x-coordinate, i.e.,

+00 1 +o0
/; Tr (Bp)dx = ﬁ,/_oo Tr[EBA

o]

+ p:Ay. +mA — py By,ldx (C2)

since the first, second, and fourth terms contain odd (single)
number y with A the contribution of those terms are zero.
Only the third term contributes to the integral and is given by

+00 +00

m
Tr(A)dx = —
2E J_o

m

) 2[Lu*(x) + I} (x)]dx.

(C3)
Using the orthonormality relation for Hermite polynomials
the above integral reduces to 2m / E. Since there is an identical
expression with integral over x’, finally we get

Viir = —4 gm*[V(A, m)]*. (C4)
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APPENDIX D: MOMENTUM INTEGRAL

First term:
f)

[Vinax] A
2ﬂzquB 2(2—&0)/0 dpi.

(/)

Vmax

- quB Z(z—svo)/ dp>.

2
[V

71'2 quB Z@—avo)A

Second term:

D1

[ ]

- quBm Z(z—am/

plzdplz

[Unnx]

i quB Z(z—avo)/

[V(/)

'max

= anzqu D@ = 8u) (A +m3, ) m, s
v=0

pZZdPZZ

(D2)

Third term:
f)

[Viax]
dp,
o e Yarm Yo [
0

f=u

(J)

Vmax

- quB Za—avo)f e

[V

= nzquB Z(z—am
f=u
af)l/21|

(D3)

|:A + (A2 +m
X In
my, r
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Interaction energy (exchange terms):
The product
[E1A1 + P12V Y0A)

(Bysp)(BYs02) = ViVyVer—

1
2FE,
+myoAi + priyyYoBi ]VxVyVZZE
X [E2As + pov:voAs + myoAs + prrvyvoBal.  (D4)

Now

1
yxnyzE[ElAl + pizAry; + mAy — p11LBiyy]
|

1
= 2_E1[E1yxVszAl + plexVyAl

+ Ve VyVamAL — pLiveVyY:Biyyl. (D5)

Hence

(Bysp)(Bysp2) = LE1va Yy VAL + Py Yy Ad

4E\E,
+ Ve Vy Ve AL — priYeVyY:Biyyl

X [Exyy VszAZ + P2V VyA2
+ Ve VyVamAz — P21 Va¥yY:Bayyl.
Now to obtain the Tr [(By501)(Bysp02)], we use the results

(Do)

YaVyVeVxVyVe = —VxVyVeVaVeVy = VaVyVxVy = -1,
YxVyVxVy = -1, (D7)
VeVy VYoV VyVe Vo =+ vevyvovavyvo = =1, (D8)
Then we finally get
Tr[(Bysp)(Bysp2)l
1
= 25,5 4B B2 — 4piop — 4m” —4mE; — dmE,]

2
P12z m 1 1
1 —_— —+—. D9
|:+EE2+E1E2+ (E1+Ez>] )
The integration over p;, and p,. are done in the same
manner as for Tr [(Bp1)(Bp2)].
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