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Structure function method applied to polarized and unpolarized electron-proton scattering:
A solution of the G E( p)/GM( p) discrepancy
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The cross section for polarized and unpolarized electron-proton scattering is calculated by taking into account
radiative corrections in leading and next-to-leading logarithmic approximation. The expression of the cross
section is formally similar to the cross section of the Drell-Yan process, where the structure functions of the
electron play the role of Drell-Yan probability distributions. The interference of the Born amplitude with the
two-photon exchange amplitude (box-type diagrams) is expressed as a contribution to the K factor. It is calculated
under the assumption that proton form factors decrease rapidly with the momentum transfer squared and that
the momentum is equally shared between the two photons. The calculation of the box amplitude is done when
the intermediate state is the proton or the � resonance. The results of numerical estimations show that the
present calculation of radiative corrections can bring into agreement the conflicting experimental results on
proton electromagnetic form factors and that the two-photon contribution is very small.
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I. INTRODUCTION

Radiative corrections (RC) to elastic and inelastic electron-
proton (ep) scattering cross sections can be classified in two
types, according to the reaction mechanism assumed: one
where a virtual photon is exchanged between electron and
proton and a second one taking into account the two-virtual-
photon exchange amplitude, arising from box-type Feynman
diagrams in the lowest order of perturbation theory (PT). Both
kinds of contributions to RC were considered in the literature,
in detail, at the lowest order of PT for polarized and unpolarized
cases.

The most elaborated consideration at the lowest order of PT
was done in Ref. [1], where the approaches of previous papers
(cf. the reference list in [1]) were considerably improved.
The role of higher orders of PT was first considered for
the unpolarized case in the limit of hard-photon emission in
Ref. [2] and later for polarized case in Refs. [3] and [4].

The elastic ep cross section decreases very rapidly with
the momentum transfer squared, Q2 = −q2, proportionally
to Q−4. The size of RC essentially depends on how the
experiment was performed. For example, in experiments where
only the angle of the scattered electron is measured, the initial
electron emission can induce an enhancement of RC owing to
the decrease of Q2.

Initial and final lepton emission can be taken into account
by writing the cross section in its Drell-Yan process form,
where the structure functions (SFs) of the electron play the
role of probability distributions [2]. The set of SFs obey
the renormalization group equations (Lipatov’s equations).
Their solutions are well known [5]. The formalism of SFs
allows one to obtain the cross section in the so-called leading
logarithmic approximation (LLA), that is, taking correctly
into account the terms of the order [(α/π ) ln(Q2/m2

e)]n. This

approximation corresponds to collinear kinematics, where the
photon is emitted in a direction close to the direction of the
electron. By knowing the value of RC in the lowest order of PT,
the nonleading contribution (α/π )[(α/π ) ln(Q2/m2

e)]n can be
calculated.

A different source of cross-section enhancement is related
to the so-called Weizsacker-Williams kinematics, where pho-
tons are emitted in noncollinear kinematics and provide almost
zero momentum, Q2 < m2

e . This is not discussed in the present
work.

A possible enhancement of the elastic cross section can
be associated with the box-type Feynman diagram, when
the momentum squared is equally shared between the two
photons. The relative contribution of two-photon exchange,
from simple counting in α, would be of the order of the
fine structure constant, α = e2

4π
� 1

137 : Any contribution of
the two-photon exchange (through its interference with the
one-photon mechanism) would not exceed 1%. But long ago
it was observed [6] that the simple rule of α counting for the
estimation of the relative role of the two-photon contribution
to the amplitude of elastic electron hadron scattering does not
hold at large momentum transfer. Using a Glauber approach
for the calculation of multiple scattering contributions [7],
it appeared that the relative role of two-photon exchange
can increase significantly in the region of high momentum
transfer, owing to the rapid decrease of proton form factors
(FFs) in case of proton intermediate state. The relevant
quantity is the square of the FFs, calculated at Q2/4, and it
can at least partially compensate the factor of α. A similar
effect takes place when the �(33) resonance is present
in the intermediate state of the box diagram, because the
transition in the vertex γ ∗p� also shows a rapid decrease with
Q2 [8].
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By taking a simple model for nucleon FFs, based on the
dipole parametrization

GE(Q2) = GM (Q2)

µ
= GD(Q2) = M4

0(
Q2 + M2

0

)2 ,

(1)
M2

0 = 0.71 GeV2, µ = 2.79

when both exchanged photons have momenta close to q/2,
an enhancement factor appears in the loop calculation: the
ratio of FFs in Born and box-type amplitudes. This specific
kinematics differs from the “one soft photon” approach used
in the past [1], when the box diagram is considered.

Recently, there has been a revival of interest in the
two-photon contribution as a possible explanation of the
discrepancy among experimental data on elastic ed scattering
[9]. Electromagnetic proton FFs show a different behavior as
a function of Q2, when measured with two different methods:
the polarization transfer method [10], which allows a precise
measurement of the ratio of the electric to magnetic proton
FFs [11], and the Rosenbluth separation from the unpolarized
elastic ep cross section [12].

In Ref. [13] it was noted that the reason for the discrepancy
lies in the slope of the reduced cross section as a function
of ε, the virtual photon polarization. At the kinematics of the
present experiments, RC on the cross section can reach up to
40% and affect very strongly this slope, changing even its sign,
when Q2 � 2 GeV2.

In Ref. [14] it was claimed that the presence of the
two-photon contribution can bring into agreement the data on
the proton electromagnetic FFs from polarization transfer and
the Rosenbluth methods. However, the kinematical properties
related to fast decreasing FFs were not investigated in detail,
nor were the possible presence of inelastic contributions in the
intermediate state. A possible test of the model dependence
of the calculation with an exactly solvable QED result is also
absent.

On the other hand, Ref. [3] is very detailed. The SF method
was applied to transferred polarization experiments. The size
of this effect was an order of magnitude too small to bring the
polarization data into agreement with the unpolarized ones.
Therefore the conclusion of that paper was that one could not
solve the discrepancy among the existing data.

The SF method was also applied to polarization observables
in Ref. [4], where it was shown that the corrections can become
very large, if one takes into account the initial-state photon
emission. However, the corresponding kinematical region is
usually rejected in the experimental analysis, by appropriate
selection on the scattered electron energy.

The motivation of the present paper is to stress the need
for present experiments to go beyond the lowest order of PT,
using LLA and beyond. Radiation corrections traditionally
applied are proportional to ln(�E)/E ln(−q2/m2), where E

is the laboratory beam energy, q2 is the momentum transfer
squared, and �E is the maximum energy of the undetected
photon. In recent experiments E is large and the experimental
resolution is very good (allowing �E to be reduced). Therefore
this RC term becomes sizable and one cannot safely neglect
higher order corrections. A complete calculation of RC

should take into account consistently all different terms that
contribute at all orders (including the two-photon exchange
contribution) and their interference. We derive an expression of
the radiative-corrected cross section for ep elastic scattering, in
both polarized and nonpolarized cases, which is easy to handle
for experimentalists and which has a sufficient accuracy.

We will show first that the GE(p)/GM (p) problem can
be solved by taking into account initial-state emission, in
the SF approach, and, second, that the two-photon exchange
mechanism is irrelevant for the solution of this problem.

Our paper is organized as follows. In Sec. II we give
the Drell-Yan formulas for cross sections in polarized and
unpolarized cases. Section III is devoted to the calculation of
the contribution of two-photon exchange, for the unpolarized
cross section, and of the degree of transversal and longitudinal
polarization of the recoil proton. Numerical results are pre-
sented and discussed in Sec. IV. Section V summarizes the
main points of this work. Two appendices contain details of
the calculation.

II. DRELL-YAN EXPRESSION OF THE ep CROSS
SECTIONS IN UNPOLARIZED AND

POLARIZED CASES

It is known [2] that the process of emission of hard photons
by initial and scattered electrons plays a crucial role, which
results in the presence of the radiative tail in the distribution
on the scattered electron energy. The SF approach extends
the traditional one [15], taking precisely into account the
contributions of higher orders of PT and the role of initial-state
photon emission. The cross section is expressed in terms of
SF of the initial electron and of the fragmentation function of
the scattered electron energy fraction. The dependence of the
differential cross section on the angle and the energy fraction
of the scattered electron y = 1/ρ [where the recoil factor
ρ = 1 + (E/M)(1 − cos θ )] can be written as

dσ

d	dy
=

∫ 1

z0

dzρz

z
D(z)D

(
yρz

z

)

0(z)

|1 − �
(
Q2

z

)|2
(

1 + α

π
K

)
.

(2)

The term K = Ke + Kp + Kbox is the sum of three contribu-
tions. Ke is related to nonleading contributions arising from
the pure electron block and can be written as [2,5]

Ke = −π2

6
− 1

2
− 1

2
ln2 ρ + Li2(cos2 θ/2),

(3)

Li2(z) = −
∫ z

0

dx

x
ln(1 − x).

A second term, Kp, concerns proton emission. The emission
of virtual and soft photons by the proton is not associated with
a large logarithm L; therefore the whole proton contribution
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can be included as a Kp factor:

Kp = 1

β

{
−1

2
ln2 x − ln x ln[4(1 + τ )] + ln x

− (ln x − β) ln

[
M2

4E2(1 − c)2

]

+β − Li2

(
1 − 1

x2

)
+ 2Li2

(
− 1

x

)
+ π2

6

}
, (4)

where x = (
√

1 + τ + √
τ )2, β =

√
1 − M2/E′2 is the velo-

city and E′ = E(1 − 1/ρ) + M is the energy of the scattered
proton. The contribution of Kp to the K factor is of the
order of −2/1000 for c = 0.99, E = 21.5 GeV, and Q2 =
31.3 GeV2 [1].

Lastly, Kbox represents the interference of electron and
proton emission. More precisely, both the interference between
the two-virtual-photon exchange amplitude and the Born am-
plitude and the relevant part of the soft-photon emission (i.e.,
the interference between the electron and proton soft-photon
emission) may be included in the term Kbox. This effect is
not enhanced by the large logarithm (characteristic of SF) and
can be considered among the nonleading contributions. It is an
ε-independent quantity of the order of unity, which includes
all the nonleading terms, such as two-photon exchange and
soft-photon emission.

The nonsinglet SF is

D(z,β) = β

2

[(
1 + 3

8
β

)
(1 − z)

β

2−1 − 1

2
(1 + z)

]
(1 +O(β)),

(5)

β = 2α

π
(L − 1), Q2 = 2E2(1 − cos θ )

ρ
,

(6)

L = ln
Q2

m2
e

,

where me is the electron mass. The method for using SF in the
numerical calculation is described in Appendix A. The lower
limit of integration, z0, is related to the “inelasticity” cut c,
necessary to select the elastic data:

z0 = c

ρ − c(ρ − 1)
. (7)

The Born cross section for the scattered electron, 
0, is


0(Q2, ε) = σM

ερ(1 + τ )
σred(Q2, ε),

(8)
σred(Q2, ε) = τG2

M (Q2) + εG2
E(Q2),

where σM = α2 cos2(θ/2)/[4E2 sin4(θ/2)] is the Mott’s cross
section and

τ = Q2

4M2
,

1

ε
= 1 + 2(1 + τ ) tan2(θ/2). (9)

The vacuum polarization for a virtual photon with momentum
q, q2 = −Q2 < 0, is included as a factor 1/[1 − �(Q2)]. The
main contribution to this term arises from the polarization of
the electron-positron vacuum:

�(Q2) = α

3π

[
L − 5

3

]
. (10)

FIG. 1. The y dependence of the elastic differential cross section
at θ = 32.4◦ and Q2 = 3 GeV2.

The z-dependent kinematically corrected quantities (cor-
rected for the shift in momentum owing to the photon emission)
are obtained from the corresponding ones by replacing the
initial electron energy E by zE.

The y dependence, at fixed momentum transfer and electron
scattering angle, shows a steep rise, at small y owing to
initial-state emission, and a rise in the vicinity of the elastic
value, y = 1/ρ. As an example, such a dependence is shown in
Fig. 1, for θ = 32.4◦ and Q2 = 3 GeV2. The dashed lines show
the kinematical cuts corresponding to c = 0.95, 0.97, and 0.99,
from left to right.

In an experiment, the selection of elastic events requires
a cut in the energy spectrum of the scattered electron, and
one integrates over the events where the energy of the
final electron, E′

1, exceeds a threshold value E′
1 > Ey =

Ec/ρ, ρ = 1 + (E/M)(1 − cos θ ), c < 1 (where E is the
initial electron energy). The properties of the SF method
allow the radiative corrections to be written in the form of
initial- and final-state emission, although gauge invariance
is conserved. This form obeys the Lee-Nauenberg-Kinoshita
theorem, about the cancellation of mass singularities, when
integrating on the final energy fraction. This results in omitting
the final (fragmentation) SF, that is, in replacing the term
(ρz/z)D(yρz/z) (associated with the final electron emission)
by unity.

In Ref. [4] the expressions of the transversal and longitudi-
nal components of the recoil proton polarization were derived
in the framework of the Drell-Yan approach.

The relevant observables, 
SF
0,L,T , that is, the unpolarized

and polarized (longitudinally and transversally) cross sections
calculated in frame of the SF method, can be written as


SF
0,L,T =

∫ 1

z0

dzD(z)

0,L,T (z)∣∣1 − �

(
Q2

z

)∣∣2

[
1 + α

π
K0,L,T

]
, (11)

where the factors K0,T ,L contain the contribution of the two-
photon exchange diagrams, and they are estimated in the dipole
approximation for FFs in the next section [5].

It is convenient to write the polarized and unpolarized cross
section, in the framework of the SF method, in the form of a
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deviation from the expected Born expressions (where we omit
RC of higher order):


SF
0,L,T = 
Born

0,L,T

[
1 + �SF

0,L,T + α

π
K0,L,T

]
, (12)

with

�SF
0,L,T = α

π

{
2

3

(
L − 5

3

)
− 1

2
(L − 1)

[
2 ln

(
1

1 − z0

)

− z0 − z2
0

2

]
+ 1

2

ρ(1 + τ )


Born
0,L,T

(L − 1)
∫ 1

z0

(1 + z2)dz

1 − z

×
[


Born
0,L,T (z)∣∣1 − �

(
Q2

z

)∣∣2 − 
Born
0,L,T (1)

|1 − �(Q2)|2
]}

, (13)

where 
Born
0,L,T (1) = 
Born

0,L,T and 
Born
0 = 
0(Q2, ε) from

Eq. (8), and


Born
T (Q2, ε) = −2λ

(
1

ρ

)2
α2

Q2

√
τ

tan2(θ/2)(1 + τ )

×GE(Q2)GM (Q2), (14)


Born
L (Q2, ε) = λ

α2

2M2

(
1

ρ

)2
√

1 + 1

tan2(θ/2)(1 + τ )

×G2
M (Q2), (15)

where λ = ±1 is the chirality of the initial electron.

III. CALCULATION OF THE K -FACTOR
CONTRIBUTIONS FROM THE TWO-PHOTON

EXCHANGE

A. Proton intermediate state

The box-type Feynman diagram is illustrated in Fig. 2,
where the momenta of the particles are shown in brackets.
Each of the photon carries approximatively half of the
transferred momentum q. This assumption is justified on
the bases of arguments developed in Ref. [6] and recalled
in the Introduction. Let us stress that such an approximation
leads to an overestimation of the two-photon contribution.

We parametrize the loop momentum of the box-type
Feynman amplitude in such a way that the denominators of
the Green function are (±κ + q/2)2 for the photon, whereas
for the electron (e) and the for the proton (p) they have
a form (e) = (±κ + P)2 − m2

e, (p) = (κ + Q)2 − M2, with
P = 1

2 (p1 + p′
1),Q = 1

2 (p + p′). The − sign for the electron
corresponds to the Feynman diagram for the two-photon box

(a) (b)

FIG. 2. Feynman diagrams for two-photon exchange in elastic ep
scattering: (a) box diagram and (b) crossed box diagram.

[Fig. 2(a)] and the + sign corresponds to the crossed box
diagram [Fig. 2(b)].

The assumption of a rapid decreasing of FFs implies that
we can neglect the dependence on the loop momentum κ in the
denominators of the photon Green function as well as in the
arguments of the FFs. This results in ultraviolet divergences
of the loop momentum integrals. Therefore they should be
understood as convergent integrals with the cutoff restriction
|κ2| < M2τ :

∫
d4κ

iπ2

N±(P,Q)(
(±κ + P)2 − m2

e

)
((κ + Q)2 − M2)

× θ (M2τ − |κ2|) = I± · N±(P,Q), (16)

where P = 1
2 (p1 + p′

1),Q = 1
2 (p + p′). The explicit form of

I± is given in Appendix B. N±(P,Q) is the Feynman diagram
numerator defined in Eq. (20). The virtual photons Green
function is written as

1∣∣ q

2 ± κ
∣∣2 <

1

Q2
= 1

M2(1 + τ )
. (17)

Then the expressions for K factors can be written as

Ki = −2N (z)
Ui(P,Q)


i

, i = 0, L, T , (18)

N (z) = (z + 1)2/[(z/4) + 1]4, z = Q2
/
M2

0 , (19)

where N (z) is due to the dipole dependence of the FFs, which
is extracted as an enhancement factor (see Fig. 3). One can see
that this factor has a maximum equal to �2 for z � 2, which
corresponds to Q2 � 1.4 GeV2. This behavior is consistent
with the results of a rigorous QED calculation [16]. This
calculation, which applies to eµ scattering, gives an upper
limit of the two-photon contribution to ep scattering, when the
muon mass is replaced by the proton mass.

The Born terms, 
i, i = 0, L, T , have been singled out in
the definition of the K factor [see Eqs. (13)–(15)].

FIG. 3. z behavior of the enhancement factor N (z).
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In the unpolarized case the expression for U0(P,Q) is

U0(P,Q) = α2G2
D(Q2)

16M8ρ2τ (τ + 1)2

1

4
Tr

[
(p̂′ + M)�λ

(q

2

)
× (Q̂ + M)�η

(q

2

)
(p̂ + M) �̄µ(q)

]
×

{
I+ · 1

4
Tr[p̂′

1γλP̂γηp̂1γµ]

+ I− · 1

4
Tr[p̂′

1γηP̂γλp̂1γµ]

}
= N+I+ + N−I−, (20)

where

�α(q) = F1(Q2)

GD(Q2)
γα − 1

4M

F2(Q2)

GD(Q2)
[γα, q̂],

�̄α(q) = F1(Q2)

GD(Q2)
γα + 1

4M

F2(Q2)

GD(Q2)
[γα, q̂],

where F1(Q2) and F2(Q2) are the Pauli and Dirac FFs, related
to the Sachs FFs by

F1(Q2) = GE(Q2) + τGM (Q2)

1 + τ
,

F2(Q2) = GM (Q2) − GE(Q2)

1 + τ
.

The quantities UT,L(P,Q) for the polarized case can be
obtained from Eq. (20) by the following replacements:

γµ → γµγ5 (21)

in the lepton traces and

(p̂′ + M) → (p̂′ + M)âT ,Lγ5 (22)

in the proton traces. Here aT,L is the final proton polarization
vector [i.e., (aT,Lp′) = 0] and corresponds to different orienta-
tions of the proton polarization. If the final proton is polarized
along the x-axis, one finds

(aT p) = 0, (aT p1) = − E2

2Mρ

sin θ√
τ (1 + τ )

, (23)

whereas in case of polarization along the z-axis,

(aLp) = 2M
√

τ (1 + τ ),
(24)

(aLp1) = M

√
τ

1 + τ

(
E

M
− 1 − 2τ

)
.

B. The � resonance contribution

Let us write the structure of the vertex for the transition
�(p) → γ ∗(q) + P (p′), following the formalism of Refs. [17,
18] (and references therein):

M(� → γ ∗P ) = eg�N

√
3/2ū(p′, η)

(
γµ − 1

M�

p′
µ

)

× uν(p, λ)
Fµν(q)

2
√

Q2
GD(Q2), (25)

where Fµν(q) = eµ(q)qν − eν(q)qµ is the Maxwell tensor,
e(q) is the polarization vector of virtual photon, η and λ are
the chiral states of the nucleon and of the � resonance, and√

3/2g�p ≈ 1.56 µ (with µ the anomalous magnetic moment
of the proton). Moreover, the factor GD(Q2) is explicitly
extracted.

The Green function of the � resonance, neglecting its
width, is

− i
Dµν(p)

p2 − M2
� + i0

, (26)

with

Dµν(p) =
∑

λ

uµ(p, λ)ūν(p, λ)

= (p̂ + M�)

[
gµν − 1

3
γµγν

− 1

3p2
(p̂γµpν + pµγνp̂)

]
,

Dµν(p)pµ = Dµν(p)pν = 0. (27)

The transition vertexes associated with FFs are of the same
form as the dipole ones for the nucleons. The part of the virtual
Compton scattering of the proton amplitude that enters in the
box amplitude is

ū(p′)[p′]µDρσ (p2)[p]νu(p)Fµρ(k1)F ∗
σν(k2),

k1,2 = ±κ + q

2
, p2 = κ +Q, [p]µ = γµ − 1

M�

pµ,

where Fµν(k) = kµeν(k) − kνeµ(k) is the Maxwell tensor and
eµ(k) is the photon polarization vector. Thus, in unpolarized
case, the contribution of the � resonance to the K factor is

K�
0 = −2N (z)

U�
0


0
, (28)

with

U�
0 = −α2G2

D(Q2)(1.56 µ)2

64M10ρ2τ 2(1 + τ )2

1

4
Tr[(p̂′ + M)

× [p′]µDρσ (Q)[p]ν(p̂ + M)�̄η(q)]

×
{
I+ · 1

4
Tr[p̂′

1P
µνρσ p̂1γ

η]

+ I− · 1

4
Tr[p̂′

1R
µνρσ p̂1γ

η]

}
, (29)

where

Pµνρσ = 1
4 [γρqν − γνqρ]P̂[γσ qµ − γµqσ ],

Rµνρσ = 1
4 [γσqµ − γµqσ ]P̂[γρqν − γνqρ].

The contributions in the polarized cases can be obtained
from Eq. (29) via the same replacement rules [Eqs. (21) and
(22)] and the corresponding denominators, 
L,T .

IV. RESULTS AND DISCUSSION

The numerical results strongly depend on the experimental
conditions, in particular on the inelasticity cut of the scattered
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FIG. 4. The ε dependence of the elastic differential cross section,
for Q2 = 1, 3, and 5 GeV2, from top to bottom: Born cross section
(solid line), Drell-Yan cross section (dashed line), full calculation
(dash-dotted line) (including Born, SF, and K-factor contributions).

electron energy spectrum. The results shown here correspond
to c = 0.97. This value has been chosen because it corre-
sponds to the energy resolution of modern experiments. The
unpolarized cross section has been calculated by assuming the
dependence of FFs on Q2 given by Eq. (2). In Fig. 4 the results
are shown as a function of ε, for Q2 = 1, 3, and 5 GeV2,
from top to bottom. The calculation based on the structure
function method is shown as dashed lines. The full calculation,
including the two-photon exchange contribution, is shown as
dash-dotted lines. For comparison the results corresponding to
the Born reduced cross section are shown as solid lines.

One can see that the main effect of the present calculation
is to modify and lower the slope of the reduced cross section.
This effect gets larger with Q2. Nonlinear effects are small
and induced by the y integration. Including the two-photon
exchange has little effect on the results in the kinematical
range presented here.

The Q2 dependence of the unpolarized cross section is
shown in Fig. 5, for electron scattering angles equal to
θ = 85◦, 60◦, and 20◦, from top to bottom. The G2

D(Q2) depen-
dence has been removed, to visually enhance the differences
among the calculations. In spite of this, the corrections have
very little effect on the Q2 dependence of the reduced cross
section.

The results for the polarized case are shown in Fig. 6 for
the longitudinal (dashed lines) and the transversal (solid lines)
components of the cross section. The ratio of the polarized
cross section, corrected with the SF method [Eqs. (12) and
(13)] to the Born polarized cross section [Eqs. (15) and (14)],
is reported as a function of ε.

The relative effect of the corrections is of the order of
the corrections to the unpolarized cross section and is very
similar for the two polarized components. This means that the
radiative corrections have very little effect on the ratio of the
polarizations.

Again the effect of the two-photon contribution is negligible
in both cases. In the specific kinematics considered here, the
box-type contribution Kbox does not depend on the soft-photon
emission parameter, �E/E. This quantity is of the order of

(a)

(b)

(c)

FIG. 5. The Q2 dependence of the elastic differential cross section
at θ = 85◦, 60◦, and 20◦. Notation as in Fig. 4.

the �E-independent contribution to the charge asymmetry
�(E/M, cos θ ) [corrected by the factor N (Q2/M2

0 )] calcu-
lated for eµ elastic scattering in the frame of pure QED (see
Fig. 2 of Ref. [16]). In the dipole approximation, the FFs reduce
to F1(Q2) → GD(Q2) and F2(Q2) → 0 when Q2 is large.

It is particularly interesting to look at the ratio of the trans-
verse to the longitudinal components of the proton polarization
experimentally measured, which is directly related to the form
factor ratio (Fig. 7, dashed line). The results are presented after
normalization to the Born ratio, to compensate the kinematical
factors. The correction to be applied to the experimental data,
as predicted by the present calculation, is very small, within
1% at different θ values, for Q2 up to 10 GeV2. However, the

FIG. 6. (Color online) The ε dependence of the ratio of the polar-
ized cross section, corrected by the SF method, to the corresponding
component of the Born cross section, at Q2 = 1, 3, and 5 GeV2, from
top to bottom. The calculation including (not including) the K factor
is shown as the solid (dotted) line for the transversal component and
as the dashed (dash-dotted) line for the longitudinal component.
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FIG. 7. (Color online) Q2 dependence of the ratio of the transver-
sal to longitudinal components of the proton polarization calculated
in the SF method (dashed line), normalized to the same ratio in the
Born approximation at θ = 85◦, 60◦, and 20◦.

two-photon contribution depends on Q2 and becomes larger
as Q2 increases.

One can tentatively extract the FF ratio, after correcting the
measured unpolarized cross section by the ratio of the Born
to the SF results. It is evidently an average correction, which
is not applied event by event, but it takes into account the
main feature of the SF calculation, that is, the lowering of the
slope of the unpolarized cross section as a function of ε. We
neglect the correction from the two-photon exchange, as it is
negligible when compared to the high-order corrections. The
Q2 dependence of the ratio R = µGE/GM is plotted in Fig. 8,

FIG. 8. (Color online) The Q2 dependence of the FF ratio. Data
from the Rosenbluth method before (open symbols) and after (solid
symbols) correction (c = 0.97), from Ref. [19] (triangles), from
Ref. [20] (squares), and from Ref. [21] (circles). Data from the
polarization method [11] are also shown (stars). The line is a fit
to the polarization data.

for the sets of data for which detailed information on RC
has been published [20,21] (squares and circles, respectively).
Open symbols refer to the published data; the corresponding
solid symbols represent the corrected data. For comparison,
a set of data at low Q2 is also shown (triangles) [19]. Here
RC are small, and high-order corrections have little effect on
the results. Data from the polarization method are shown as
stars. Although the corrections would have the effect of getting
a larger ratio, the difference between points before and after
correction is at most 1% and cannot be seen on this plot. The
line corresponds to the following fit to polarization data (for
Q2 � 1 GeV2) [11]:

R(Q2) = 1 − (0.130 ± 0.005){Q2 [GeV2] − (0.04 ± 0.09)}.
(30)

The present results suggest that an appropriate treatment of
radiative corrections constitutes the solution of the discrepancy
between FFs extracted by the Rosenbluth method or by the
recoil polarization method.

V. CONCLUSION

We have considered radiative corrections in the case
of quasielastic kinematics, when the scattered electron has
energy close to the elastic value. We considered two types
of corrections: real photon emission related to the electron
vertex, which we calculated in the framework of the structure
function approach, in leading and next to leading orders, with
the latter expressed in terms of the K factor. We do not include
the contribution to the K factor from proton emission, as it is
known to be small. The enhancement of RC has been explicitly
calculated in QED, owing to emission from the initial lepton.

The loop integral of the box diagram was calculated under
the assumptions that the momentum transfer squared is equally
shared between the two photons and that the proton FFs
decrease rapidly with the momentum transfer squared.

The contribution to the K factor from the interference
of electron and proton emission (two-photon exchange) was
found to be small, not exceeding 1% for the unpolarized
cross section. Its contribution is different for the polarized
cross section and has a very small effect on the ratio of the
longitudinal to transversal components. The K factor induces a
large deviation for small ε values. Such behavior is not physical
but is due to the approximation used for calculating the box
diagram (see Appendix B). The present work is focused on the
effect of higher order corrections to the cross section, which
are responsible for the largest deviation from the ε dependence
of the Born cross section. The nonleading contributions are
calculated under the assumption that the momentum transfer
is almost equally shared between the two exchanged photon.
This assumption holds in the limit of a specific kinematics,
which emphasizes the role of the two-photon contribution, at
large Q2.

The present results are consistent with a rigorous QED
calculation of the two-photon contribution from Ref. [16],
where the process e+e− → µ+ + µ− and the crossed process
were calculated and shown to be of the order of 1%. The QED
case can be considered as an upper limit for two-photon effects
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in electron proton scattering for at least two reasons: 1. The
proton electromagnetic FFs F1 and F2 are smaller than unity,
and 2. the contributions of the elastic and inelastic channels,
in the intermediate state, should compensate each other. This
compensation has already been pointed out in the literature
[17]. We underline that the � resonance contribution should
be considered as a model for all possible intermediate states,
including πN and πNN . Using the analytical properties of
the Compton scattering amplitude [22], one can expect a large
cancellation of the elastic intermediate state (nucleon) and
inelastic ones up to a level of 10%.

The quantitative results depend on the underlying ap-
proximations; however, these approximations lead to an
overestimation of the box contribution, except at small angles.
Our conclusions on the relevance of the two-photon exchange
contradict a number of works presented in the literature [14];
however, they are consistent with a recent work [23] and
with a pure QED calculation [16]. Further work is necessary.
A complete evaluation of the box diagram for ep elastic
scattering, in the framework of an analytical model, is in
preparation [24].

The main effect of the present calculation of RC is visible on
the unpolarized cross section: It changes noticeably the slope
of the ε dependence of the reduced cross section, in comparison
with the Born approximation. This slope is directly related to
the electric FF; therefore applying RC as suggested here to
the unpolarized cross section would resolve the discrepancy
between FFs extracted from the Rosenbluth method and from
the recoil polarization method.

In Ref. [4] it was shown that the corrections on the
polarization observables can be very large, if the cut parameter
is small (see Fig. 1). This is due to the initial-state photon
emission, which is normally excluded in the experimental
analysis. In this paper we considered the region near the elastic
peak where the contribution to the polarized cross section ratio
becomes small (of order 1%; see Fig. 7).

An average SF correction was applied to the data, and
this correction significantly improves the consistency of the
different sets. However, as pointed out in Ref. [25], this
procedure is still applied as a global factor depending on
the relevant variables, ε and Q2, and does not solve the
problem of the strong correlation between the parameters of
the Rosenbluth fit. An event-by-event analysis, based on the
SF method, should be done at the data-processing level. This
is beyond the purpose of this paper.

In conclusion, the SF method can be successfully applied to
calculate RC to elastic ep scattering. In particular, it takes pre-
cisely into account collinear photon emission. The two-photon
contribution is negligible in the considered kinematical range.
The correction to the ratio of longitudinal to transverse proton
polarization is small. But the correction on the unpolarized
cross section has the effect and the size required to resolve the
discrepancy among proton FFs.
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APPENDIX A: METHOD FOR THE INTEGRATION OF THE
D FUNCTION

Let us consider the integral

I =
∫ 1

x0

D(x)φ(x)dx. (A1)

The partition function D(x) has a δ(x − 1)-type behavior for
x = 1 and has the following properties:∫ 1

0
D(x)dx = 1; D(x)|x �=1 = β

4

1 + x2

1 − x
+ O(β2). (A2)

Therefore Eq. (A2) becomes

I =
∫ 1−ε

x0

dxD(x)φ(x) +
∫ 1

1−ε

dxD(x)φ(1)

= β

4

∫ 1−ε

x0

dx
1 + x2

1 − x
φ(x)

+
(

1 −
∫ 1−ε

0
dx

β

4

1 + x2

1 − x

)
φ(1) + O(β2). (A3)

After elementary integration, Eq. (A3) becomes

I = β

4

∫ 1−ε

x0

dx
1 + x2

1 − x
[φ(x) − φ(1) + φ(1)]

+φ(1)

[
1 − β

4

∫ 1−ε

0
dx

1 + x2

1 − x

]
(A4)

= φ(1)

[
1 − β

4

(
2 ln

1

1 − x0
− x0 − x2

0

2

)]

+ β

4

∫ 1

x0

dx
1 + x2

1 − x
[φ(x) − φ(1)] + O(β2), (A5)

which removes the singularity.

APPENDIX B: CALCULATION OF I±

In this appendix we perform the following integration:

I± = Re
∫

d4κ

iπ2

θ (M2τ − |κ2|)
(P±)(Q)

,

(P±) = (±κ + P)2 − m2
e, (B1)

(Q) = (κ + Q)2 − M2,

whereP = 1
2 (p1 + p′

1),Q = 1
2 (p + p′). Firstly we performed

a Wick rotation (κ0 → iκ0) and apply the cut-off provided by
θ -function through the parametrization:

Re
∫

d4κ

iπ2

θ (M2τ − |κ2|)
(P±)(Q)

= 2

π

∫ M
√

τ

−M
√

τ

dκ0

∫ M
√

τ−k2
0/M

2

0
dk k2

×
∫ 1

−1
d(cos θκ ) Re

1

(P±) (Q)
, (B2)
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where k = |	κ|. We also performed the integration
over the azimuthal angle φκ . Now let us consider
the integral in the Breit system where q0 = 0 and
	p1 = − 	p′

1. Thus 	P = 0, p0 = p′
0 = E′, | 	p1| = M

√
τ , 	Q2 =

M2 cot2(θe/2), and E′ = M
√

τ + 1/ sin2(θe/2), where θe

is the electron scattering angle in the laboratory
frame.

Before integrating over angle θκ let us write the explicit
expression for real part of the integrand:

Re
1

(P±)(Q)
= a(a + b cos θκ ) ∓ δ1δ2(

a2 + δ2
1

)(
(a + b cos θκ )2 + δ2

2

) ,

where a = −κ2
0 − k2 + M2τ, b = −2k| 	Q|, δ1 = 2κ0M

√
τ ,

and δ2 = 2κ0E
′. The integration over θκ is straightforward

and results in

I± = − 1

π | 	Q|

∫ M
√

τ

−M
√

τ

dκ0

∫ M
√

τ−k2
0/M2

0
dk k

1

a2 + δ2
1

×
{

a

2
ln

(
(a + b)2 + δ2

2

(a − b)2 + δ2
2

)
∓ δ1 arctan

(
2bδ2

a2 − b2 + δ2
2

)}
.

(B3)

The limit of theses integrals for small values of | 	Q| is

I±|| 	Q|→0 = 4

π

∫ M
√

τ

−M
√

τ

dκ0

∫ M
√

τ−k2
0/M2

0

dk k2(a2 ∓ δ1δ2)(
a2 + δ2

2

)(
a2 + δ2

1

) .

One can see that, in the limiting case ε → 0 and θ →
π, I± is finite, whereas for ε → 1 and θ → 0, I± → 0. This
is responsible for the behavior of the two-photon exchange
contribution as a function of ε.
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