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Pion double charge exchange in a composite-meson model
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The pion double charge exchange amplitude is evaluated in a composite-meson model based on the four-quark
interaction. The model assumes that the mesons are two-quark systems and can interact with each other only
through quark loops. To evaluate the meson exchange current contribution, the form factors of the two-pion decay
modes of the ρ, σ , and f0 mesons have been used in the calculations. The contribution of the four-quark box
diagram has been taken into account as well as a contact diagram. The contributions of the ρ, σ , and f0 mesons
increase the forward scattering cross section, which depends weakly on the energy.
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I. INTRODUCTION

Double charge exchange (DCX) of pions on nuclei occupies
a particular position among all known nuclear reactions. It is
unique because through the reaction one can obtain nuclei
for which the Z component of the isospin differs by two
units from that of the original nuclei. This is possible by
double isospin flip of the pion, whose isospin is equal to unity.
The existence of DCX for pions was predicted by de Shalit,
Drell, and Lipkin in 1961 [1]. Experimentally this process was
discovered in the Laboratory of Nuclear Problems at the JINR
in 1963 [2]. During the 45 years after its discovery the pion
double charge exchange reaction has generated a significant
amount of theoretical and experimental work. Progress in the
theoretical and experimental studies of the DCX reactions has
been reflected in review papers of Backer and Batusov [3] in
1971, Jibuti and Kezerashvili [4] in 1985, Gibbs and Gibson [5]
in 1987, Clement [6] in 1992, and Johnson and Morris [7] in
1993.

In DCX at least two nucleons must participate to conserve
the electric charge. For this reason, this reaction is more
sensitive to the two-nucleon effects, manifested here in the first
order, than reactions in which there is no need to consider
two nucleons in the first order and in which the effects of
two-nucleon dynamics are manifested indirectly. Therefore,
the pion DCX can give direct information on the two-nucleon
aspect of nuclear dynamics such as the short-range two-
nucleon correlation and the meson exchange current.

The most important problem of DCX is the mechanism of
the reaction. At present there exist various conceptions of the
DCX mechanism of π mesons on nuclei. Because the incident
pion energy is below the pion-production threshold, normally,
the reaction is dominated by the sequential mechanism, in
which the incoming pion undergoes two sequential single
charge exchange scatterings on nucleons within a nucleus.
In the region of energies around the resonance, analysis of
the reaction is very complicated. This is due to the strong
distortion of the pion waves at resonance on the one hand
and a variety of mechanisms that play a significant role on
the other. Explaining the energy dependence of DCX has
led to a diversity of proposed mechanisms, including the
successive delta interaction mechanism [8,9], the meson
exchange current (MEC) mechanism [10,11], the six-quark

bag mechanism [12], absorption mechanisms [13], dibaryon
mechanisms [14], assuming the production of the hypothetical
d

′
dibaryon, a resonance with baryon number B = 2 in

the pNN subsystem, and others involving more than two
nucleons.

The energies at which the contribution of the dominant
sequential mechanism is very small and pion distortion is
probably negligible offer the best grounds for the investigation
of some exotic mechanisms, such as those involving meson
exchange currents, for which the contribution, although small,
is not expected to decrease significantly with energy. These low
values of the cross section, produced by the mechanism that
dominates the reaction below the pion-production threshold
and at resonance, open the possibility for alternative mecha-
nisms such as the MEC to be revealed. The MEC mechanism,
in which the incoming pion scatters with a virtual pion of
opposite charge in the “cloud” surrounding the target nucleon
of the nucleus and is itself absorbed on another nucleon,
was first proposed by Germond and Wilkin [10] and consists
of the assumption that the incident pion is scattered on the
off-shell pion exchanged by the nucleons within the nucleus
and the DCX takes place at the ππ vertex. The pole diagram
in Fig. 1(a) corresponds to that mechanism. Later, Robilotta
and Wilkin [11] introduced an additional diagram shown in
Fig. 1(b) and concluded that the MEC effects would be small
for an analog DCX because this diagram partially cancels
the contribution of the pole term and, as a result, reduces
the effects of MEC in the reaction. The MEC issue has been
revived in Refs. [15–17] using the Lovelace-Veneziano model
[18] and in Refs. [19–28] based on an effective Lagrangian
method. There were some disagreements and interesting
controversy [29,30] about whether the contact term contributes
to the DCX reaction. Jiang and Koltun [25] resolved this
problem.

It is important to mention that all calculations of the
contribution of the MEC based on the effective Lagrangian
formalism are performed in the lowest significant order that
includes the contribution of the “trees” diagram and no
pionic or baryonic closed-loop diagrams are included. The
tree diagrams correspond to the Born approximation for ππ

scattering, and their contribution is defined by the first term of
the expansion of the ππ amplitude in terms of 1/F 2

π .
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FIG. 1. Diagrams corresponding to the MEC mechanism in the
Born approximation: (a) pole diagram and (b) contact diagram.

The subject of this article is the magnitude of the contribu-
tion of the MEC mechanism to the DCX reaction based on the
composite-meson model. The model assumes that the mesons
are two-quark systems and can interact with each other only
through quark loops. We are considering the contributions
of the diagram shown on the left side in Fig. 2, where the
shaded vertex box corresponding to ππ scattering can be
described at the quark level and includes the quark diagrams
that successfully describe ππ scattering, as well as the contact
diagram in Fig. 1(b). This approach allows us to include terms
representing σ, f0, and ρ mesons and find the contribution of
these resonances to the MEC mechanism. The contribution of
some diagrams, namely the diagram representing the ρ meson,
is proportional to (1/F 2

π )2. We calculate the energy dependence
of the forward scattering amplitude for the DCX and examine
its interplay with more conventional mechanisms of the DCX.

II. PION DCX AMPLITUDE

Let us consider the diagram shown on the left side in
Fig. 2, one of the diagrams which describes the pion DCX on
two nucleons through the MEC mechanism. The shaded vertex
block corresponds to the ππ interaction. Therefore, we can
construct the amplitude for the process π+nn → π−pp using
the amplitude for ππ scattering. The amplitude corresponding
to this graph is

T = (i
√

2g)2
un(p1µ)γ5τ−un(p′

1µ)up(p2µ)γ5τ−up(p′
2µ)(

q2
1µ − m2

π

)(
q2

2µ − m2
π

)
×Mπ+π− (kiµ, q1µ; q2µ, kf µ), (1)

where g is the πN coupling constant, mπ is the pion mass, p1µ

and p2µ, p′
1µ and p′

2µ are the four-momenta of the nucleons,
kiµ and kf µ are the four-momenta of the pions in the initial and
final states, respectively, and q1µ and q2µ are the four-momenta
of virtual mesons. In Eq. (1) Mπ+π− is the transition matrix
element for the π+π− → π+π− process.

FIG. 2. The quark structure of the MEC diagram.

We assume that the nucleons within the nuclei are nonrela-
tivistic particles. Taking this fact into account, we can rewrite
Eq. (1) in the nonrelativistic limit as

T = (i
√

2g)2 (σ 1 · q1)(σ 2 · q2)

4m2

Mπ+π− (kiµ, q1µ; q2µ, kf µ)(
q2

1 + m2
π

)(
q2

2 + m2
π

) ,

(2)

where m is the mass of the nucleon, q1 = p′
1 − p1, and q2 =

p′
2 − p2. Thus, we can find the cross section for the pion DCX

reaction on a nucleus assuming the MEC mechanism through
the ππ scattering by calculating the transition matrix from the
amplitude (2) using the nuclear wave functions for initial and
final states.

III. PION DCX AMPLITUDE IN THE
COMPOSITE-MESON MODEL

Equation (2) involves the π+π− scattering amplitude.
The transition amplitude for the π+π− → π+π− process is
the linear combination of the ππ amplitudes with the definite
isospin

Mπ+π− = 1
3T 0 + 1

2T 1 + 1
6T 2. (3)

The isotopic amplitudes T 0, T 1, and T 2 correspond to the
states with total isospin 0, 1, and 2 and are the linear
combinations of the invariant amplitudes A(s, t, u), where s, t,

and u are the standard Mandelstam variables. We can get the
corresponding coefficients by expressing amplitudes in the t

channel through amplitudes in the s channel, using the crossing
symmetry. The transition amplitude for the π+π− → π+π−
process can be expressed through the invariant amplitudes
A(s, t, u) as

Mπ+π− = A(s, t, u) + A(t, s, u). (4)

In the composite-meson model the MEC diagram on the left
side in Fig. 2 can be represented by the sum of diagrams. To
do that, the shaded vertex box corresponding to ππ scattering
can be considered at the quark level and includes the quark
diagrams that successfully describe ππ scattering. Indeed, in
the model of the composite mesons π+ = ud and π− = du

are two-quark systems, and we can assume that the interaction
of the mesons with each other takes place only through quark
loops. Following these assumptions and considering only the
single-loop approximation, we can expand the diagram on
the left side in Fig. 2 as shown. The inner blocks between
the nucleon lines in Fig. 2 show all diagrams that contribute
to the ππ scattering amplitude and successfully describe the
ππ scattering lengths. The first quark-box diagram actually
corresponds to the pole diagram in Fig. 1(a) for ππ scattering
and, as we will show, part of its contribution proportional
to 1/F 2

π represents the Born approximation in the effective
Lagrangian method. The choice of the other diagram is based
on the probability of the two-pion decay of mesons: ρ(770) →
ππ, σ (600) → ππ , and f0(980) → ππ . Therefore, the quark-
box diagram of ππ scattering and the diagrams with ρ, σ , and
f0 mesons in the intermediate states should play the main role
for the process π+nn → π−pp in the model of the MEC. The
inner quark blocks of the diagrams in Fig. 2 can be easily
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obtained from the Lagrangian [31]

L = Q

[
i∂̂ − mq + mq

Fπ

(σ sin α + f0 cos α + iγ5τπ )

+ gρ

2
τρ

]
Q, (5)

where Q is the quark field, mq is the mass of the quark, gρ is the
decay constant of the ρ meson, and α is the mixing angle. Thus,
for calculations of the contributions of the diagrams in Fig. 2
we need to know all effective coupling constants and express
them in terms of two decay constants gρ and Fπ of the ρ → 2π

and π → µν decays. We shall impose a natural requirement
that on the mass shell the form factors of the processes should
coincide exactly with the corresponding physical coupling
constants. The form factor for the ρ → 2π, σ → 2π , and
f0 → 2π decays can be obtained from the Lagrangian (5)
following Ref. [31], and finally we can find the contribution
of the inner part of the diagrams in Fig. 2:

A(s, t, u) = − m2
π

2F 2
π

+ 4
m2

q

F 2
π

[
1 − (mq/4πFπ )2

(2πFπ )2
+ 4m2

q sin2 α

m2
σ

(
m2

σ − s
)

+ 4m2
q cos2 α

m2
f0

(
m2

f0
− s

)
]

s + g2
ρ


 s − u

m2
ρ − t

(
1 + t − m2

ρ

8π2F 2
π

)2

+ s − t

m2
ρ − u

(
1 + u − m2

ρ

8π2F 2
π

)2

 . (6)

Substituting Eq. (6) into Eq. (4), for the π+π− → π+π−
amplitude we get

Mπ+π− = −m2
π

F 2
π

+ m2
q

(πFπ )2

[
s + t

F 2
π

− m2
q

(4πFπ )2

s + t

F 2
π

]

+ 4m2
q

F 2
π

{
4m2

q

m2
σ

(
s(

m2
σ − s

) + t(
m2

σ − t
)
)

sin2 α

+ 4m2
q

m2
f0

(
s(

m2
f0

− s
) + t(

m2
f0

− t
)
)

cos2 α

}

+ gρ


 t − u

m2
ρ − s

(
1 + s − m2

ρ

8π2F 2
π

)2

+ s − u

m2
ρ − t

(
1 + t − m2

ρ

8π2F 2
π

)2

 . (7)

In Eq. (7) the mixing angle α can be determined from
	f0→2π = 26 MeV and it is α = 17◦ if mq = 280 MeV [32],
and the decay constant gρ of the ρ meson is given by
g2

ρ/4π ≈ 3. It is important to mention that the contribution of
the quark-box diagram to the scattering amplitude depends on
the undetermined parameter, whose value was fixed in [31] so
that the experimental value of the pion-pion scattering length
a2

0 is obtained. Equation (7) shows the transition amplitude for
the π+π− → π+π− process and is used for the calculation of
the amplitude (2) for the pion DCX reaction on a nucleus.

IV. RESULTS AND DISCUSSION

Let us compare the MEC amplitude evaluated in the
composite-meson model given by Eq. (7) with one obtained in
the Born approximation using the Weinberg Lagrangian [33]:

MW
π+π− = −m2

π

F 2
π

+ s + t

F 2
π

. (8)

Equation (8) corresponds to the ππ vertex in Fig. 1(a). It is
easy to see that the constant term in Eq. (7) is the same as in
Eq. (8). The term in the square brackets is caused by the quark-
box diagram and inclusion of the so-called q2 terms in the
quark-box diagrams, and it is partially proportional to (1/F 2

π )2.
As shown in Refs. [34,35], the inclusion of the q2 terms leads to
convergent integrals and appreciably improved the description
of electromagnetic meson radii and ππ scattering lengths.
The factor in front of the square brackets m2

q/ (πFπ )2 = 1
for Fπ = 89.2 MeV and mq = 280 MeV and a variation of
this factor is insignificant when the pion decay constant varies
from 87 to 93 MeV. Therefore, the constant term and the
first term in the square brackets in Eq. (7) give the Weinberg
transition amplitude for the π+π− → π+π− process in the
Born approximation. The last four lines of Eq. (7) introduce
the contribution of the ρ, σ , and f0 mesons into the MEC
mechanism. The two terms in Eq. (7) related to the mixing
angle α represent the contribution of the σ and f0 mesons.
The last term that follows the factor gρ is the contribution of
the 
 meson. The contribution of the 
 meson has the terms
that are also proportional to (1/F 2

π )2. After substitution of
Eq. (7) into Eq. (3) one can separate the part that corresponds
to the amplitude of the pole diagram in Fig. 1(a) for the process
π+nn → π−pp in the Born approximation for the Weinberg
Lagrangian:

T1 = g2

4m2

2

F 2
π

(σ 1 · q1)(σ 2 · q2)
(
2q1 · q2 − q2

1 − q2
2 − 2m2

π

)
(
q2

1 + m2
π

)(
q2

2 + m2
π

) .

(9)

Let us now consider the other diagram that describes
the MEC in the DCX process. Chiral symmetry requires
consideration of both diagrams in Fig. 1. We can find the
contribution of the contact diagram in Fig. 1(b) by using the
Lagrangians

LNNπ = g

2m
ψγ µγ5τψ · (∂µπ ),

(10)

LNNπππ = − g

2m

1

4F 2
π

ψγ µγ5τψ · (∂µπ )π2

for the NNπ and NNπππ vertices. The amplitude for the
contact diagram of Fig. 1(b) for the process π+nn → π−pp

can be calculated by the same way as Eq. (2) using standard
methods and in the nonrelativistic limit is given by

T2 = − g2

4m2

2

F 2
π

(σ 1 · q1) [σ 2 · q1 − σ 2 · q2](
q2

1 + m2
π

) . (11)

The sum of Eqs. (9) and (11) gives the the contribution of
the quark-box diagram, including only terms proportional to
1/F 2

π and the contact diagram and is the same as the sum of

015203-3



R. YA. KEZERASHVILI AND V. S. BOYKO PHYSICAL REVIEW C 75, 015203 (2007)

contributions of the pole [Fig. 1(a)] and contact [Fig. 1(b)]
diagrams in the Born approximation

T B = g2

4m2

2

F 2
π

(σ 1 · q1)(σ 2 · q2)
(
2q1 · q2 − q2

1 − m2
π

) − (σ 1 · q1)(σ 2 · q1)
(
q2

2 + m2
π

)
(
q2

1 + m2
π

)(
q2

2 + m2
π

) . (12)

Equation (12) shows that there is a cancellation between
the contributions of the quark-box diagram and the contact
diagram. Such cancellation has been observed earlier in Refs.
[11] and [25] for the pole and contact diagrams in the effective
Lagrangian method. Thus, Eq. (12) represents the contribution
of the contact diagram in Fig. 1(b) and part of the contribution
of the quark-box diagram in Fig. 2, which is proportional to
1/F 2

π . The rest of the contribution of the quark-box diagram is
proportional to (1/F 2

π )2 and represents the deviation from the
Born approximation.

In Refs. [21,22] it was shown that the contributions from
both diagrams in Fig. 1 for the forward scattering DCX reaction
is not significant for incident pion energy up to 350 MeV.
Later in Ref. [28], the authors showed that the contributions
of the pole diagram and contact diagram quite smoothly
depend on the incident pion energy up to 1400 MeV and
are important at high energy. To establish the order of the
magnitude of the MEC contribution in the composite-meson
model, let us calculate the forward scattering cross section
for the 18O(π+, π−)18Ne reaction for incident pion energy
from 600 to 1400 MeV and compare the contribution of
the MEC evaluated in the composite-meson model based
on the four-quark interaction with the calculations in the
Born approximation, as well as with the dominant sequential
mechanism. For forward scattering q1 = q2 ≡ q and Eq. (12)
becomes

T B = − g2

4m2

2

F 2
π

2(σ 1 · q)(σ 2 · q)m2
π(

q2 + m2
π

)2 . (13)

For simplicity, we use the shell-model wave functions to
describe the initial and final nuclear state of 18O and 18Ne. We
neglect the contribution of the 16O core to the DCX, assuming
that the DCX process takes place on the valence neutrons and
the reaction leads to the double isobaric analog state. The
wave function of the two odd neutrons in 18O has been used
as in Refs. [15,23] with the harmonic oscillator parameter
α2 = 0.32 fm−2. Since our main points are to understand
the contribution of three ππ resonances ρ, σ , and f0 to the
MEC mechanism, establish the order of magnitude of this
contribution. and compare it to the conventional mechanisms,
we neglect the distortion of the pion waves, using the plane
waves instead. The pion-wave distortion reduces the cross
section by about a factor of 2 and most dramatically below
600 MeV; at the above 600 MeV the distortion also reduces
the cross section but the energy dependence remains almost the
same as without the distortion [36]. Keeping this in mind we
calculated the cross section in the plane-wave approximation.
In this approximation, integration of Eq. (13) over momentum

q in the target can be performed analytically and the result is

T B = 2

F 2
π

1

mπ

∂

∂mπ

V (r), (14)

where

V (r) = 1

4π

(gmπ

2m

)2
{

1

3
(σ 1 · σ 2) + 1

3
S12

×
[

1 + 3

mπr
+ 3

(mπr)2

]}
e−mπ r

r
, (15)

S12 = 3(σ 1 · r)(σ 2 · r)

r2
− (σ 1 · σ2)

is a one-pion exchange potential. Thus, the sum of contri-
butions of the pole and the contact diagrams in the Born
approximation is proportional to the derivative of the one-pion
exchange potential with respect to the pion mass. This is
equivalent to the sum of the contributions of the quark-box
diagram, including only terms proportional to 1/F 2

π and the
contact diagram in Fig. 1(b).

The results of the calculations of the dependence of the
differential cross section at zero degrees on the incoming pion
kinetic energy for the reaction 18O(π+, π−)18Ne are presented
in Fig. 3. First, from this figure, we can get a general overview
of the energy dependence of the cross section for different
mechanisms. Second, Fig. 3 also allows us to understand

FIG. 3. Forward scattering differential cross section for the
reaction 18O(π+, π−)18Ne as a function of the incident pion energy.
The solid line represents the contribution of the MEC in the
composite-meson model with the contact diagram [the sum of
diagrams in Figs. 1(b) and 2]. The dashed curve is the contribution
of the pole and contact diagrams in the Born approximation and the
dotted curve is the result from Ref. [36] for the sequential mechanism.
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the relative contributions of the MEC in the composite-
meson model based on the four-quark interaction and the
contact diagram and those when the ρ, σ , and f0 mesons
are not included. The results of our calculations based on
the composite-meson model and contribution of the contact
diagram in Fig. 3 are presented by a solid line. They show
that the cross section depends weakly on the energy, simply
reflecting the weak dependence of the ππ amplitude on
the energy. We checked the sensitivity of the calculations
to changes of the masses of the σ and f0 mesons. For the
given value of the mixing angle α = 17◦, the cross section
is sensitive to small changes of the σ meson mass and
almost did not change with small changes of the f0 meson
mass. For example, changing the σ meson mass from 780 to
700 MeV will change the cross section for about 14%. Let
us also mention that the third term of Eq. (7) related to the

-meson contribution, appreciably changes the cross section,
showing the importance of the 
 meson at energies above
600 MeV. The cross section corresponding to the MEC
mechanism when the ρ, σ , and f0 mesons are not included
is presented by the dashed line. This cross section, calculated
based on the amplitude (14), includes both the pole term as well
as the contact term and corresponds to the Born approximation
in the effective Lagrangian method. The comparison of these
results shows that inclusion of the ρ, σ , and f0 mesons
increases the cross section and their contribution decreases
with energy. The cross section for the MEC in the composite-
meson model with the contact diagram in Fig. 1(b) is
systematically larger by an average of 25% than that in the Born
approximation. The dotted curve in Fig. 3 represents the cross
section calculated by Alvarez-Ruso [36] in the framework of
the formalism of Ref. [28] without the distortion of the pion
waves when the DCX occurs through two successive pN charge
exchanges on two neutrons obtained with a cutoff parameter
of 1.3 GeV. The cross section shows a rapid decrease and a
first dip at 700 MeV and a second more pronounced dip at
1100 MeV. At the energy region of the second dip the cross
section obtained including the MEC diagrams of Figs. 1(b)
and 2 is larger than that for the sequential mechanism and the
MEC mechanism becomes significant. At these energies the
MEC mechanism with inclusion of the ρ, σ and f0 mesons
dominates in the reaction.

One may be misled by comparing our results with the cross
section for the sequential mechanism. At a glance, Fig. 3
gives you a general overview of the energy dependence of
the cross section for different mechanisms. Just presenting
both calculations in the same figure does not make a proper

comparison. The consistent comparison of our results with the
sequential mechanism requires having the same form factors
with the same cutoff parameter. It is very well known from the
literature that the cutoff parameter should be different for s, p,
etc. scattering and depends on the energy. Our calculation is
done in the approximation of the hard nucleon, which allows
us to evaluate the amplitude analytically and get the analytical
result (14) that the sum of contributions of the pole and the
contact diagrams in the Born approximation is proportional to
the derivative of the one-pion exchange potential with respect
to the pion mass. The calculation of the cross section for the
sequential mechanism includes form factors with monopole
cutoff parameter 1.3 GeV. This parameter does not depend
on the energy and is the same in the range from 400 to
1400 MeV. It is a rough approximation and this is why we
did not use the same form factor in our calculations. However,
in a calculation of both theories with the same assumption
about form factors it might be expected that the MEC cross
section will decrease and the two cross sections at the minimum
would be more nearly equal. However, with the inclusion of
the form factors the contributions of the ρ, σ , and f0 mesons in
the MEC mechanism still increase the forward scattering cross
section. Also let us mention that, as follows from Ref. [28], the
interference of the sequential amplitude and MEC amplitude
in the Born approximation shifts the second minimum position
to low energy, makes it deeper, and increases the cross section
at the maximum. We can expect that the same effects might
happen when amplitudes for the sequential mechanism and
MEC with inclusion of the resonances would be added.

Thus, we can conclude that at the considered energy region
the MEC mechanism in the composite-meson model with
the contact diagram can reveal much about the pion DCX
because it has a substantial contribution and the inclusion of
the ρ, σ , and f0 mesons increases the contribution of the
meson exchange currents in the MEC mechanism for the
DCX reaction. It is important to mention that the distortion
of the pion waves will generally reduce the cross section in the
composite-meson model as well as for the MEC in the Born
approximation and the sequential mechanism but it will not
change the conclusion of the importance of the inclusion of
the pion resonances into the MEC mechanism.
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