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On a bounded, measurable domain of non-negative current-quark mass, realistic models of the QCD gap
equation can simultaneously admit two nonequivalent dynamical chiral symmetry breaking (DCSB) solutions
and a solution that is unambiguously connected with the realization of chiral symmetry in the Wigner mode. The
Wigner solution and one of the DCSB solutions are destabilized by a current-quark mass, and both disappear
when that mass exceeds a critical value. This critical value also bounds the domain on which the surviving
DCSB solution possesses a chiral expansion. This value can therefore be viewed as an upper bound on the
domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly
valid for physical quantities. For a pseudoscalar meson constituted of equal-mass current quarks, it corresponds
to a mass m0− ∼ 0.45 GeV. In our discussion, we employ properties of the two DCSB solutions of the gap
equation that enable a valid definition of 〈q̄q〉 in the presence of a nonzero current mass. The behavior of
this condensate indicates that the essentially dynamical component of chiral symmetry breaking decreases with
increasing current-quark mass.
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I. INTRODUCTION

Dynamical chiral symmetry breaking (DCSB) is the cre-
ation, via interactions with the gauge field alone, of a fermion
mass gap whose magnitude exceeds, perhaps by a great
amount, the mass scale in the action set by the fermion’s
bare mass and which persists when that bare mass scale
vanishes, namely, in the chiral limit. It is fundamentally
important in strong interaction physics. For example, DCSB is
responsible for the generation of large constituentlike masses
for dressed quarks in QCD, an outcome that could have been
anticipated from Refs. [1,2]; it is a longstanding prediction of
Dyson-Schwinger equation (DSE) studies [3] and has recently
been observed in numerical simulations of lattice-regularized
QCD [4,5]. DCSB is also the keystone in the realization of
Goldstone’s theorem through pseudoscalar mesons in QCD [6]
and, thereby, the cause of the remarkably small value of the
ratio of π - and ρ-meson masses and the weak ππ interaction
at low energies [7].

A large body of efficacious QCD phenomenology is built
on an appreciation of the importance of DCSB. That is evident
in studies based on four-fermion interaction models [8–12]
and in DSE applications [13–15]. Nevertheless, not all facets
of DCSB have been elucidated. Herein we describe novel
aspects of the interplay between explicit and dynamical chiral
symmetry breaking.

II. DYNAMICAL CHIRAL SYMMETRY BREAKING

DCSB can be explored via the gap equation, viz., the DSE
for the dressed-fermion self-energy, which for a given quark

flavor in QCD is expressed as1

S(p)−1 = Z2(iγ · p + mbm) + �(p), (1)

�(p) = Z1

∫ �

q

g2Dµν(p − q)
λa

2
γµS(q)�a

ν (q, p), (2)

where
∫ �

q
represents a Poincaré invariant regularization of the

integral, with � the regularization mass scale [6,16], Dµν(k)
is the dressed-gluon propagator, �ν(q, p) is the dressed-
quark-gluon vertex, and mbm is the quark’s �-dependent
bare current mass. The quark-gluon-vertex and quark wave
function renormalization constants Z1,2(ζ 2,�2) depend on the
renormalization point ζ , the regularization mass scale, and the
gauge parameter.

The solution of the gap equation can be written in the
following equivalent forms:

S(p) = 1

iγ · pA(p2, ζ 2) + B(p2, ζ 2)
= Z(p2, ζ 2)

iγ · p + M(p2)

= −iγ · pσV (p2, ζ 2) + σS(p2, ζ 2). (3)

[N.B. The mass function M(p2) = B(p2, ζ 2)/A(p2, ζ 2) is
independent of the renormalization point.] It is obtained from

1We use a Euclidean metric, with {γµ, γν} = 2δµν ; γ †
µ = γµ; a · b =∑4

i=1 aibi ; and tr[γ5γµγνγργσ ] = −4εµνρσ , ε1234 = 1. For a spacelike
vector kµ, k2 > 0.
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Eq. (1) augmented by the renormalization condition

S(p)−1
∣∣
p2=ζ 2 = iγ · p + m(ζ ), (4)

where m(ζ ) is the renormalized (running) mass

Z2(ζ 2,�2)mbm(�) = Z4(ζ 2,�2)m(ζ ), (5)

with Z4 the Lagrangian mass renormalization constant. In
QCD, the chiral limit is strictly and unambiguously defined
by [6,16]

Z2(ζ 2,�2)mbm(�) ≡ 0, ∀� � ζ, (6)

which states that the renormalization-point-invariant current-
quark mass m̂ = 0.

The QCD action is chirally invariant in the chiral limit.
Consider a global chiral transformation applied to one partic-
ular flavor of quark, characterized by an angle θ . Under this
operation, the quark propagator is modified:

S(p) → exp(iθγ5)S(p) exp(iθγ5)

= −iγ · pσV (p2) + exp(i2θγ5)σS(p2). (7)

Suppose DCSB takes place so that B(p2, ζ 2) �≡ 0. Then,
with the choice θ = π/2, Eq. (7) corresponds to mapping
B(p2, ζ 2) → −B(p2, ζ 2). It follows that if B(p2, ζ 2) is a
solution of the gap equation in the chiral limit, then so is
[−B(p2, ζ 2)]. While these two solutions are distinct, the
chiral symmetry entails that each yields the same pres-
sure.2 Hence they correspond to equivalent vacua. This
is an analog of the chiral-limit equivalence between the
(σ = 1, π = 0) and (σ = −1, π = 0) vacua in the linear-
sigma model, as elucidated in Refs. [17,18]. It is notable
that, more generally, given a solution of the m(ζ ) > 0 gap
equation characterized by {Am(ζ )(p2, ζ 2), Bm(ζ )(p2, ζ 2)}, then
{A−m(ζ )(p2, ζ 2),−B−m(ζ )(p2, ζ 2)} is a solution of the gap
equation obtained with [−m(ζ )].

Studies of DCSB have hitherto focused on a positive definite
solution of the gap equation because the introduction of a
positive current-quark bare-mass favors this solution; viz., if
another solution exists, then it has a lower pressure. Returning
again to the σ -model analogy, such a bare mass tilts the so-
called wine-bottle potential, producing a global minimum at
(σ = 1, π = 0). However, whether the massive gap equation
admits solutions other than that which is positive definite, the
effect of the current-quark mass on such solutions, and their
interpretation, are questions that have been little considered.

III. EXAMPLE

To begin addressing these questions, we first consider the
simple example defined by Eqs. (1) and (2) with the following

2The pressure is defined as the negative of the effective action.
Hence, the effective-action difference is zero between two vacuum
configurations of equal pressure. A system’s ground state is that
configuration for which the pressure is a global maximum or,
equivalently, the effective action is a global minimum. An elucidation
may be found in Ref. [48].

forms for the dressed-gluon propagator and quark-gluon
vertex:

g2Dµν(p − q) = δµν

1

m2
G

θ (�̃2 − q2), (8)

�a
ν (q, p) = γν

λa

2
, (9)

wherein mG is some “gluon” mass scale, and �̃ serves as a
cutoff.3 The model thus obtained is not renormalizable, so the
regularization scale �̃, upon which all calculated quantities
depend, plays a dynamical role and the renormalization
constants can be set to one. In the model thus defined, the
gap equation is

iγ · pA(p2) + B(p2) = iγ · p + mbm

+ 4

3

1

m2
G

∫
d4q

(2π )4
θ (�̃2 − q2)

×γµ

−iγ · qA(q2) + B(q2)

q2A2(q2) + B2(q2)
γµ. (10)

This gap equation’s solution is A(p2) ≡ 1 and B(p2) = M ,
a constant which satisfies

M = mbm + M
1

3π2

1

m2
G

C(M2, �̃2), (11)

C(M2, �̃2) = �̃2 − M2 ln[1 + �̃2/M2]. (12)

Since �̃ defines the mass scale in a nonrenormalizable model,
we can set �̃ ≡ 1 and hereafter interpret all other mass scales
as being expressed in units of �̃, whereupon the gap equation
becomes

G(M) := M − mbm − M
1

3π2

1

m2
G

C(M2, 1) = 0. (13)

Equation (13) admits a M �= 0 solution when mbm = 0 if
and only if

m2
G <

(
mcr

G

)2 = 1

3π2
; (14)

namely, it supports DCSB in this case. Hence, to proceed we
choose

m2
G = 3

4

1

3π2
. (15)

N.B. For mG > mcr
G the only solution of the gap equation

is one that may be obtained via a perturbative expansion in
the coupling, and hence DCSB is impossible. That domain is
therefore not of interest herein.

G(M) is plotted in Fig. 1. One reads from the figure that in
the chiral limit there are three solutions to the gap equation:

M =
{

MW = 0,

M± = ±M0 = ±0.33.
(16)

3This form for the gluon two-point function implements a four-
dimensional-cutoff version of the Nambu–Jona-Lasinio model. Typ-
ically [9], �̃ ∼ 1 GeV provides a reasonable phenomenology.
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FIG. 1. Zeros of G(M) give the solution of the gap equation
defined by Eqs. (13) and (15). Solid curve, obtained with mbm = 0,
in which case G(M) is odd under M → −M; long-dashed curve,
mbm = 0.01; short-dashed curve, mbm = mbm

cr = 0.033; dotted curve,
mbm = 0.05. All dimensioned quantities in units of �̃.

MW describes a realization of chiral symmetry in the Wigner
mode. It corresponds to the vacuum configuration in which
the possibility of DCSB is not realized; i.e., σ = 0 = π in the
σ -model analogy. In the chiral limit, this is the only solution
accessible via a perturbative expansion in the coupling. The
solutions M± are essentially nonperturbative. They represent
the realization of chiral symmetry in the Nambu-Goldstone
mode; namely, DCSB.

It is apparent in Fig. 1 that with the gap equation obtained
via Eqs. (8) and (9), each of the solutions identified in Eq. (16)
evolves smoothly with current-quark mass on a neighborhood
of mbm = 0. We subsequently consider the manner in which
these solutions evolve as mbm is increased from zero. In that
discussion, we will retain the labels introduced in Eq. (16) and
attach them to that solution which is (pointwise, if relevant)
closest in magnitude to the chiral limit solution of the same
name.

M = M+ > 0 is the solution usually tracked in connection
with QCD phenomenology. In models of this type, it is
identified as a constituent-quark mass. As mbm is increased,
M+ also increases.

As evident in Fig. 1, the other two solutions of the gap
equation do not immediately disappear when mbm increases
from zero. Nor do they always persist. Instead, these solutions
exist on a domain

D(mbm) = {
mbm|0 � mbm < mbm

cr

}
. (17)

MW,M− also evolve smoothly with mbm. Moreover, at the
critical current-quark mass mbm

cr , these two solutions coalesce.
To understand the origin of a critical mass, we observe

from Eq. (13) and Fig. 1 that introducing a current-quark mass
merely produces a constant pointwise negative shift in the
curve G(M). Hence, the critical current-quark mass is that
value of this mass for which G(M) = 0 at its local maximum.
The local maximum occurs at

Mlm = {M|M < 0,G′(M)} = 0, (18)

and therefore in the present illustration the critical current-
quark mass

mbm
cr = {mbm|G(Mlm) = 0} = 0.033. (19)

We now return to the behavior of M+ and ask whether this
quantity has a power series expansion in mbm about mbm = 0;
viz., a chiral expansion:

M+(mbm) = M0 +
∞∑

n=1

an(mbm)n. (20)

Such an expansion exists; i.e., it is absolutely convergent on a
measurable domain, so long as ∀n

(
1

|an|
)1/n

>

(
1

|an+1|
)1/(n+1)

(21)

and

mrc := lim
n→∞

(
1

|an|
)1/n

> 0, (22)

where the quantity mrc is the radius of convergence for the
series; i.e., the series converges on 0 � mbm < mrc.

To determine whether M+ has such an expansion, we
inserted Eq. (20) into Eq. (13) and solved the sequence of
algebraic equations that this produces to obtain the coeffi-
cients {a1, . . . , a14}. The procedure is straightforward, but we
stopped at n = 14 because the magnitude of the coefficients
grows rapidly with n; e.g., a14 = −4.27331 × 1017, and this
order was sufficient for our purpose. The information depicted
in Fig. 2 indicates that M+ does have a chiral expansion with
a nonzero but finite radius of convergence. The curve in the
figure is the function (m = 1 diagonal Padé)

u0 + u1t

1 + u2t
, u0 = 0.326, u1 = 0.295, u2 = −0.596,

(23)

where the coefficients were fixed in a least-squares fit to
{(1/an)1/n, n = 2, . . . , 14}. The limit t → 0 corresponds to
n → ∞, and hence the value of u0 gives the radius of conver-
gence. We repeated the fit with diagonal Padé approximants of
order m = 2, 3, 4. Combining the results, we obtain the radius
of convergence for the chiral expansion of M+ as

mrc = 0.034 ± 0.001 = mbm
cr , (24)

0 0.1 0.2 0.3 0.4 0.5
t = 1/n

0

0.05

0.1

0.15

0.2

0.25

(1
/a

n
)t

FIG. 2. Circles: Reciprocal of the nth roots of the coefficients in
a chiral expansion of M+ around mbm = 0, Eq. (20), as a function
of t = 1/n. Dashed curve: the function in Eq. (23). Dotted curve:
mbm

cr = 0.033. All dimensioned quantities in units of �̃.
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FIG. 3. Evolution with current-quark mass of M̄ (solid curve) and
M̌ (dashed curve). All dimensioned quantities in units of �̃.

within numerical error. Hence D(mbm) is also the domain
on which M+ has a chiral expansion. (N.B. Analogous
chiral expansions exist within this domain for MW,M−. The
expansion for MW vanishes for mbm = 0, whereas the leading
term in that for M− is −M0. We emphasize that M± have chiral
expansions around the solution that is nonperturbative in the
coupling. A nonzero value of M0 is never attainable via an
expansion in the coupling.)

The two combinations

M̄ := 1
2 (M+ − M−), M̌ := 1

2 (M+ + M−) (25)

are of interest. In the chiral limit, M̄ = M0 and M̌ = MW . The
evolution of each with current-quark mass is depicted in Fig. 3.
It is apparent that M̄ is continuous on D(mbm) and evolves
from the DCSB solution with increasing mbm; M̄(mbm) is a
monotonically decreasing function. These features illustrate
that the essentially dynamical component of chiral symmetry
breaking decreases with increasing current-quark mass. This
has also been argued via the constituent-quark σ term, e.g., in
Sec. 5.2.2 of Ref. [19].

The alternative combination M̌ is also continuous on
D(mbm). With the value of the coupling given in Eq. (15),
M̌(mbm) evolves from the Wigner solution according to

M̌
mbm∼0= mbm

[
1 + 2

3

3(M0)2 − 1

(M0)2 + 1

]
+ · · · . (26)

The development of M̌(mbm) might be viewed as a gauge of
the destabilizing effect that DCSB has on this model’s Wigner
mode.

We now return to the critical current-quark mass, Eqs. (19)
and (24). In the neighborhood of mbm = 0,

MW (mbm) = −3mbm + · · · ; (27)

viz., MW (mbm) can be expressed as a power series in mbm

around its chiral limit value, where that value is perturbative
in the coupling. However, with increasing current-quark mass,
MW decreases steadily toward M−, which is nonzero in the
chiral limit and essentially nonperturbative in the coupling,
until at mbm

cr ,MW = M−. At this point, a solution whose small
current-quark mass behavior is essentially perturbative has
melded with a solution that is inaccessible in perturbation

theory and actually characteristic of DCSB. A related view sees
M− as a DCSB solution whose modification by a current-quark
mass can no longer be evaluated as a power series in mbm when
that mass exceeds mbm

cr . Finally, a chiral expansion of M+ can
only converge for current-quark masses less than mbm

cr .
These observations suggest that mbm

cr specifies the upper
bound on the domain within which, for physically relevant
quantities, a perturbative expansion in the current-quark mass
around their chiral limit values can be valid; i.e., it is a (possibly
weak) upper bound on the radius of convergence. This view
and the numerical result in Eq. (19) coincide with Ref. [20].
We will return to this point.

IV. CLOSER TO QCD

It is natural to ask whether analogous behavior ex-
ists in QCD. To explore this question, we work with a
renormalization-group-improved (RGI) rainbow truncation of
the gap equation’s kernel. This is the leading order in a
systematic and symmetry-preserving truncation of the DSEs
that is nonperturbative in the coupling [21–24]. The truncation
has been used widely, e.g., Refs. [16,25,26] and references
thereto, and an efficacious implementation preserves the one-
loop ultraviolet behavior of perturbative QCD. However, a
model assumption is required for the behavior of the kernel
in the infrared, viz., on the interval Q2 <∼ 1 GeV2, which
corresponds to length scales >∼0.2 fm.

The rainbow truncation is realized in the gap equation via
the replacement of Eq. (2) by [16]

�(p) =
∫ �

q

G((p − q)2)Dfree
µν (p − q)

λa

2
γµS(q)

λa

2
γν. (28)

Herein we employ the model interaction introduced in
Ref. [27]:

G(t)

t
= 4π2

ω6
Dt exp (−t/ω2) + 8π2γm

ln
[
τ + (

1 + t/�2
QCD

)2]F(t),

(29)

with t = k2,F(t) = [1 − exp(−t/[4m2
F ])]/t,m2

F = 0.5 GeV,
τ = e2 − 1, γm = 12/25, and �QCD = �

(4)
MS

= 0.234. This
form expresses the interaction as a sum of two terms. The
second ensures that perturbative behavior is correctly realized
at short range; namely, as written for (k − q)2 ∼ k2 ∼ q2 >∼
1–2 GeV2, Eq. (29) guarantees that the quark-antiquark
scattering kernel K is precisely as prescribed by QCD. On
the other hand, the first term in G(t) is a model for the
long-range behavior of the interaction. It is a finite width
representation of the form introduced in Ref. [28], which has
been rendered as an integrable regularization of 1/t2 = 1/k4

[29]. This interpretation, when combined with the result that in
a heavy-quark–heavy-antiquark Bethe-Salpeter equation the
RGI ladder truncation is exact [24], is consistent with G(t)
leading to a Richardson-like potential [30] between static
sources.

The true parameters in Eq. (29) are D and ω, which together
determine the integrated infrared strength of the rainbow
kernel. However, they are not independent [27]: in fitting
to a selection of ground-state observables, a change in one
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is compensated by altering the other; e.g., on the interval
ω ∈ [0.3, 0.5] GeV, the fitted observables are approximately
constant along the trajectory [31]

ωD = (0.72 GeV)3. (30)

Equation (29) is thus a one-parameter model.
It is important to bear in mind that because the truncation

preserves the one-loop renormalization group properties of
QCD the ultraviolet behavior of the solutions of Eqs. (1) and
(28) is precisely that of QCD. Hence we have

M(p2)
p2��2

QCD= m̂(
1
2 ln p2/�2

QCD

)γm
, (31)

where m̂ is the renormalization-group-invariant mass.
The model dependence is mainly restricted to infrared

momenta, but on this domain, too, there is good agreement
with QCD; e.g., the gap equation solutions are in semiquan-
titative agreement [31] with numerical simulations of lattice-
regularized quenched QCD. (N.B. Precise agreement would
be incorrect because Eq. (29) corresponds to an unquenched
theory.) The conditions have been explored under which
pointwise agreement between DSE results and quenched- and
full-lattice simulations may be obtained [32–34].

Equations (1) and (28) obviously admit the M(p2) ≡ 0
solution in the chiral limit, Eq. (6). This solution, which can
always be obtained through a weak coupling expansion, is
analogous to MW in Eq. (16).

In the chiral limit, the rainbow gap equation also yields
a DCSB solution. This capacity is the basis for much of the
phenomenological success of the RGI rainbow-ladder trunca-
tion. The truncation preserves the feature that if M+(p2) =
M(p2) > 0,∀p2 > 0, is a solution of the chiral-limit gap
equation, then so is M−(p2) := [−M(p2)]. These solutions
are the analogs of M± in Eq. (16).

We solve the gap equation using the Pauli-Villars regular-
ization procedure described in Ref. [35] and work in Landau
gauge because it is a fixed point of the renormalization group.
The renormalization condition, Eq. (4), is implemented at
ζ = ζ19 := 19 GeV with a choice for the current-quark mass.
This scale is deep in the perturbative (weak-coupling) domain,
and hence a renormalization-group-invariant current-quark
mass is unambiguously specified via Eq. (31). For reference,
we also list below current-quark masses defined therewith via
one-loop evolution to a “typical hadron scale”; viz.,

m(ζ1) := m̂

(ln ζ1/�QCD)γm
, ζ1 = 1 GeV. (32)

It is apparent in Fig. 4 that this interaction model also
exhibits a bounded domain of current-quark mass on which
M−(p2) and M+(p2) exist simultaneously, that is,

D(m̂) = {m̂|0 � m̂ < m̂cr}. (33)

Away from the chiral limit, the solution characterized by
M−(p2) describes the propagation characteristics of a quark
embedded in an unstable vacuum. The properties of that
vacuum may be detailed, e.g., by solving the Bethe-Salpeter
equation for meson bound-states with this dressed-quark
propagator. The critical current-quark mass depends on ω,

FIG. 4. Evolution with current-quark mass m(ζ19) of A(p2 =
0, ζ 2) (dimensionless), B(p2 = 0, ζ 2) (GeV) as calculated with
ω = 0.4 GeV in Eq. (29): solid curve, B+(0); dash-dot curve, A+(0);
long dashed curve, B−(0); sparse dotted curve, A−(0); short dashed
curve, BW (0); dense dotted curve, AW (0).

such that

ω (GeV) 0.3 0.4 0.5

m̂cr (MeV) 71 63 31

mcr(ζ19) (MeV) 35 31 15

mcr(ζ1) (MeV) 60 53 26

, (34)

where the third and fourth rows report the critical mass at the
renormalization scales described above. (N.B. In most phe-
nomenological applications, 0.3 < ω < 0.4.) In analyses of
hadron observables founded on the models that form the basis
of our arguments, the s-quark RGI current mass exceeds m̂cr.

It is noteworthy that we also find a Wigner solution when
applying Eq. (4); i.e., in this case, for nonzero current-quark
mass we find an analog of MW in Eq. (16). This suggests that
the presence of the Wigner solution is not contingent upon the
pointwise behavior of the gap equation’s kernel and supports an
interpretation of our findings in the context of QCD. (Indeed,
all of the features identified herein are also expressed, e.g.,
in the model of Ref. [36].) We observe that in the model
of this section, the Wigner solution is naturally represented
by two momentum-dependent functions, namely, AW (p2, ζ 2)
and BW (p2, ζ 2). As indicated by Figs. 4–6, at m̂ = m̂cr, these
functions meld pointwise with their counterparts in the DCSB
M−(p2) solution.

We emphasize that all solutions of the gap equation evolve
smoothly with current-quark mass on the domain specified
in Eq. (34). Moreover, the Nambu solution characterized by
M+(p2) evolves smoothly for all values of the current-quark
mass. Naturally, this does not necessarily entail that its
pointwise behavior at a given value of current-quark mass is
obtainable via a perturbative expansion in m̂ about the nonzero
DCSB result at m̂ = 0, which is essentially nonperturbative in
the coupling. Indeed, the commonality of behavior between the
two models we discuss explicitly herein, and with the others
we have considered, suggests strongly that m̂cr is the radius
of convergence for a pointwise chiral expansion of M+(p2)
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around the DCSB chiral-limit result. However, verification
must wait because the method employed in arriving at
Eq. (24) is not workable for the integral gap equation and
we do not yet have a tractable alternative.

In considering other rainbow interaction models, we find
that mcr assumes similar values in most models that provide
a reasonable description of the same low-energy observables.
An exception is the model of Ref. [28], in which a solution with
B(s = 0) < 0 and A(s) and B(s) are continuous on s ∈ [0,∞)
exists only in the chiral limit, with the interpretation that in
this model mcr = 0.

One might also ask about the effect of dressing the quark-
gluon vertex. As noted above, symmetry ensures that in the
chiral limit the gap equation simultaneously admits M−(p2)
and M+(p2) solutions in this instance, too. The extent of the
domain of current-quark mass on which the M−(p2) solution
persists will probably depend on the structure of the vertex.
We are currently exploring this.

Some may seek an interpretation of the gap equation’s
distinct solutions. Here, again, the σ -model analogy is useful.
Consideration reveals that the gap equation’s solutions are
representations at an elementary level of the misaligned chiral
order parameter that is the focus of discussions of disordered
chiral condensates, many consequences of which are reviewed
in Ref. [37]. We are currently examining others that may be
equally useful, e.g., as stated above, by calculating hadron
properties in the different vacua.

Equation (31) is valid for M±(p2) and MW (p2). In fact, one
can make the stronger statement that while M±(p2),MW (p2)
exist, then

M+(p2)
p2��2

QCD= M−(p2)
p2��2

QCD= MW (p2). (35)

This follows from asymptotic freedom, which is a feature of
the RGI model and QCD. One may argue for this result as
follows. On the weak-coupling domain,

A±,W (p2, ζ 2) ≈ 1,
M±,W (p2)

p2 + M2
±,W (p2)

≈ M±,W (p2)

p2
. (36)

Hence, the gap equation becomes a single linear integral
equation for M±,W (p2). Within the domain on which the
preceding steps are valid, that equation can be approximated
by a linear second-order ordinary differential equation (d.e.)
(e.g., Refs. [38–41]). The d.e. is the same for every one of the
functions M±,W (p2), as is the ultraviolet boundary condition,
which is determined by the current-quark mass. Thus follows
Eq. (35), a result evident in Figs. 5 and 6.

In general, the gap equation is solved as a nonlinear integral
equation. It is straightforward to obtain the M±(p2) solutions
via iteration. However, for nonzero current-quark mass, the
Wigner solution is harder to fix. A careful seed function for
iteration must be chosen, and an adaptive iterative approach
employed to reach the solution. To be concrete, a Chebyshev
expansion was employed for the solution functions, and a
Newton iteration procedure used to determine the coefficients,
after the manner of Ref. [42]. The seed for iteration was
A = 1 and B = −10m(ζ ), and convergence to solution was
first obtained with ωD = (0.6 GeV)3. With ω = 0.4 GeV,
small steps in D were subsequently made to reach the value in

FIG. 5. Momentum dependence of the dressed-quark mass func-
tion M(p2): upper panel, chiral limit; middle panel, m(ζ19) =
5 MeV; lower panel, m(ζ19) = 50 MeV, for which there is naturally
no M−(p2) solution. In each panel, the solid curve is M+(p2); dashed
curve, M−(p2); dotted curve, MW (p2). All results obtained with
ω = 0.4 GeV.

Eq. (30). All solutions are illustrated in Fig. 5, and for clarity
and emphasis, we compare M−(p2) and MW (p2) in Fig. 6.

In the context of the d.e. argument presented above, we add
that the model gap equation has often been approximated by
a single second-order d.e., which is nonlinear in M(p2) for
infrared momenta but linear in the ultraviolet [38–41]. As we
remarked, the ultraviolet boundary condition for all solutions is
still fixed by the current-quark mass, and the solutions agree.
However, as apparent in Fig. 4, AW �≈ 1 on the domain of
infrared momenta. Hence, while a single d.e. remains a valid
approximation for M±(p2), that is not the case for the Wigner
solution. This fact emphasizes that the differences between
M+(p2),M−(p2), and MW (p2) are a primarily infrared effect,
i.e., nonperturbative in the coupling.

FIG. 6. Momentum dependence of the dressed-quark mass-
function: dashed curve, M−(p2); dotted curve, MW (p2); both obtained
with m(ζ19) = 5 MeV and ω = 0.4 GeV.
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Using Eq. (35) and the subsequent discussion, it becomes
clear that the gauge-invariant quantity

σ̄ (m(ζ )) := lim
�→∞

Z4(ζ 2,�2)NctrD

∫ �

q

S̄m(ζ )(q, ζ ), (37)

where

S̄m(ζ )(q, ζ ) = 1
2 [Sm(ζ )

+ (q, ζ ) − S
m(ζ )
− (q, ζ )], (38)

is a current-quark-mass-dependent quark condensate that is
well defined, finite, and unambiguous, and it has a perturbative
expansion in m̂ on a bounded interval. In addition, σ̄ (m(ζ ))
evolves under the renormalization group in precisely the same
manner as the chiral-limit vacuum quark condensate and is
identical to the vacuum quark condensate in the chiral limit.
Equation (37) is unique in possessing all these properties.

For additional clarity, we remark that for m̂ �= 0, there
is no term in a perturbative expansion around the chiral
limit of the integrand in Eq. (37) that is odd in m̂. Now,
since a weak-coupling evaluation of the scalar piece of the
quark propagator yields an expression that is odd in m̂, then
Eq. (37) contains no term calculable in weak-coupling per-
turbation theory. (This may be verified using the d.e. analysis
discussed above.)

The behavior of σ̄ (m(ζ )) obtained with the RGI model
employed herein is depicted in Fig. 7. As we saw in connection
with Fig. 3, here, too, the essentially dynamical component of
chiral symmetry breaking decreases with increasing current-
quark mass, following the trend predicted by the constituent-
quark σ term (Ref. [19], Sec. 5.2.2).

At this point, we can further amplify our interpretation
of m̂cr. A basic ingredient of chiral perturbation theory is
the quark condensate, because it introduces the mass scale
of DCSB. If the evolution with current-quark mass of this
quantity about its DCSB chiral-limit value cannot be evaluated
perturbatively, then the expansion in m̂ around m̂ = 0 has
broken down. The pseudoscalar-meson-loop contribution to
this evolution is a long-range piece of the vacuum response.
Now, with Eq. (37), we can evaluate a short-range piece. While
an expansion of both M− and M+ in m̂ exists, then so does

FIG. 7. Evolution with current-quark mass m(ζ19) of the massive-
quark condensate defined in Eq. (37), calculated with ω = 0.4 GeV
and at the renormalization point ζ = 19 GeV.

a perturbative expansion of the order parameter σ̄ . However,
σ̄ has no such expansion for m̂ > m̂cr. (N.B. A chiral expansion
is invalid if either the long-range or short-range contribution
fails, but it is likely that they are linked.)

We stress that a straightforward definition of a massive-
quark condensate via the trace of a m̂ �= 0 dressed-quark
propagator is not useful, because it gives a quantity that is
quadratically divergent and therefore very difficult to define
unambiguously. The same weakness afflicts the quantity

σ̌ (m(ζ ),�) = Z4(ζ 2,�2)NctrD

∫ �

q

Šm(ζ )(q, ζ ), (39)

where

Šm(ζ )(q, ζ ) = 1
2 [Sm(ζ )

+ (q, ζ ) + S
m(ζ )
− (q, ζ )]. (40)

The discussion in Refs. [6,43,44] provides a context for
Eqs. (37)–(40) and a connection between our reasoning
and that used in other frameworks to calculate the quark
condensate.

V. SUMMARY

On a bounded interval of current-quark mass, D(m̂) =
{m̂|0 � m̂ < m̂cr}, realistic models of the QCD gap equation
can simultaneously admit two nonequivalent dynamical chiral
symmetry breaking (DCSB) solutions for the dressed-quark
mass function, M±(p2), and a solution that is unambiguously
connected with the realization of chiral symmetry in the
Wigner mode, MW (p2). The DCSB solutions are distinguished
by their value at the origin: M+(p2 = 0) > 0 and M−(p2 =
0) < 0. In the ultraviolet all three solutions coincide with the
running current-quark mass.

The pointwise values of all solutions evolve continuously
with current-quark mass withinD(m̂). However, things change
at the upper boundary. The MW solution, whose chiral limit
value is perturbative in the coupling, becomes identical to
the essentially nonperturbative solution M− that is actually
characteristic of DCSB. Moreover, both disappear for m̂ >

m̂cr, a domain whereupon the current-quark mass is large
enough to completely destabilize these solutions. Only the
positive M+ solution exists in this domain. Furthermore, we
provided evidence that the upper boundary of D(m̂) also
defines the radius of convergence for an expansion of M+
in current-quark mass around its DCSB chiral-limit form.

Thus one has the coalescing of two qualitatively distinct
solutions at m̂cr, the persistence of only one essentially nonper-
turbative solution for m̂ > m̂cr plus the breakdown of a chiral
expansion for this solution, and the simultaneous loss of a
well-defined mass-dependent quark condensate. This behavior
supports an interpretation of m̂cr as the upper bound on the
domain within which a perturbative expansion of physical
quantities in the current-quark mass around their chiral-limit
values can uniformly be valid. In a phenomenologically
efficacious renormalization-group-improved rainbow-ladder
truncation of the QCD Dyson-Schwinger equations, the critical
current-quark mass corresponds to a mass m0− ∼ 0.45 GeV
(m2

0− ∼ 0.20 GeV2) for a pseudoscalar meson constituted of
equal-mass current quarks [45]. Note that irrespective of the
current mass of the other constituent, a meson containing one
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current quark whose mass exceeds m̂cr is never within the
domain of uniform convergence.

A value of similar magnitude was deduced in Refs. [46,47]
as the scale below which accuracy may be expected from
the approximation of observables through a perturbative ex-
pansion in pionlike pseudoscalar-meson mass. This scale also
marks the boundary below which observables should exhibit
that curvature as a function of pionlike pseudoscalar-meson
mass which is characteristic of chiral effective theories.
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