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Three possible scenarios of the statistical hadronization model are reexamined with the use of the pT spectra
of the PHENIX and very low pT PHOBOS measurements at

√
sNN = 200 GeV. These scenarios are as follows:

(a) full chemical nonequilibrium, (b) strangeness chemical nonequilibrium, and (c) chemical equilibrium. Fits
to the spectra are done within the Cracow single-freeze-out model, which takes into account both the expansion
and resonance decays. Predictions for spectra of φ,K(892)∗0, and π 0 are also given. Global variables such as
the transverse energy at midrapidity, the charged particle multiplicity at midrapidity, and the total multiplicity
of charged particles are evaluated and their predicted values agree qualitatively well with the experimental data.
The thorough analysis within this model suggests that the chemical full nonequilibrium case is the least likely
and both other cases are of similar likelihood. It is also shown that if the full chemical nonequilibrium freeze-out
took place it could manifest itself in the enhancement of the π0 production at very low transverse momenta.
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I. INTRODUCTION

Since the first run of the Relativistic Heavy Ion Collider
(RHIC) a vast amount of data on hadron production from the
hot and dense fireball created in a collision has been available.
In this paper the application of the statistical hadronization
model (SHM) to the description of the fireball bulk properties
[1] is re-examined with the use of the pT spectra measured by
the PHENIX Collaboration at the top RHIC energy

√
sNN =

200 GeV [2].
In the SHM the formation process of each particle is

described on the basis of the assumption that the accessible
phase space is fully saturated (maximized). Then the particle
yields are determined by their phase-space weight, which
is given by a statistical distribution. (For a comprehensive
review of the model see Ref. [3].) The main feature of this
model is that it allows deviation from the usually presumed
chemical equilibrium of the fireball at freeze-out. This has
been achieved via the introduction of some new parameters,
so-called phase-space occupancy factors: γq for light quarks
and γs for strange quarks in hadrons. In Ref. [1] three possible
cases were considered:

(i) full chemical nonequilibrium, γq �= 1, γs �= 1;
(ii) strangeness chemical nonequilibrium (semi-equilibrium),

γq = 1, γs �= 1; and
(iii) chemical equilibrium, γq = 1, γs = 1.

The phase-space occupancy factors γq and γs together
with the temperature T and baryon number chemical po-
tential µB comprise the full set of independent statistical
parameters of the model. For all three cases of chemical
nonequilibrium/equilibrium, values of these parameters have
been determined in Ref. [1]. This was done for each centrality
bin of the PHENIX measurement at

√
sNN = 200 GeV from

fits to the PHENIX identified hadron yields [2] complemented
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with K∗(892)/K− and φ/K− ratios measured by the STAR
Collaboration [4–6].

However, the possible expansion of the fireball is invisible
in particle yield ratios (since a collective flow is able to modify
only the momentum spectra of a measured particle, but not its
multiplicity). Therefore, in addition to the studies of particle
ratios the analysis of the pT spectra is necessary to gain some
quantitative information about the flow. Such an analysis was
done for the chemical equilibrium case of the SHM (the third
point of the preceding list) in Ref. [7]. In the present paper a
similar analysis of the pT spectra will be performed for both
chemical nonequilibrium cases of the SHM (the first and the
second points of the preceding list).

To describe the flow at the freeze-out stage, the single-
freeze-out model of Refs. [8–10] is applied. The model
succeeded in the accurate description of ratios and pT spectra
of particles measured at RHIC. The main postulate of the
model is the simultaneous occurrence of chemical and thermal
freeze-outs, which means that possible elastic interactions after
the chemical freeze-out are neglected. The conditions for the
freeze-out are expressed by values of two independent thermal
parameters: T and µB . The second basic feature of the model
is the complete treatment of resonance decays. This means
that the final distribution of a given particle consists not only
of the thermal part but also of contributions from all possible
decays and cascades. Feeding from weak decays is included
as well. Since in the original formulation [8–10] this model
corresponds to the chemical equilibrium case of the SHM,
the single-freeze-out model will be generalized to chemical
nonequilibrium cases of the SHM in the present paper.

Global variables such as the transverse energy at midrapid-
ity (dET /dη|mid), the charged particle multiplicity at midra-
pidity (dNch/dη|mid), and the total multiplicity of charged
particles (Nch) are also evaluated for both chemical nonequi-
librium cases of the SHM for different centrality bins of the
PHENIX measurements at

√
sNN = 200 GeV [11]. These

three variables are independent observables, which means
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that they are measured independently of identified hadron
spectroscopy. Because model fits were done to identified
hadron data (particle yield ratios and pT spectra) and the global
variables are calculable in the generalized single-freeze-out
model, it was natural to check whether their estimated values
agree with the data. This has proven to be true within 10%
accuracy. It should be stressed also here that the centrality
independence of the total multiplicity of charged particles per
participant pair has been reproduced. The evidence for such
scaling of the total multiplicity was reported by the PHOBOS
Collaboration [12].

In some sense this work could be understood as an
additional test of the correctness of the determination of the
statistical parameters of the SHM since these parameters enter
primordial distributions of hadrons in the fireball at freeze-out.
Thus fits of geometric parameters of the generalized single-
freeze-out model are done with the use of the values of the
statistical parameters obtained earlier in Ref. [1] and treated
as input here. The general conclusion is that the best-quality
fits to the pT spectra of identified hadrons are obtained for the
strangeness chemical nonequilibrium case of the SHM. What
is surprising is that in the chemical equilibrium case the spectra
seem to be fitted better then in the scenario with full chemical
nonequilibrium. Whenever the term “strangeness chemical
nonequilibrium case” or “full chemical nonequilibrium case”
is used in this paper it means the case with its values of
statistical parameters taken from Ref. [1] and listed in Table I
(Sec. IV A). Additionally, the spectra of φ and K(892)∗0

resonances are predicted. In this way the spectra of each
particle species whose yield was used to determine the
statistical parameters of the model [1] are calculated. Also
the measurement of the low-momentum π0 is proposed as a
test, which could help to ascertain whether the full chemical
nonequilibrium could happen in the fireball at freeze-out.
Namely, values of γq determined in Ref. [1] cause the
predictions for low-pT π0 to be about 40% greater in this
case then in semi-equilibrium or equilibrium cases.

II. THE SINGLE-FREEZE-OUT MODEL AND ITS
GENERALIZATION

The main assumptions of the model are as follows:
(a) Chemical and thermal freeze-outs take place simultane-
ously, (b) all confirmed resonances up to a mass of 2 GeV
from the Particle Data Tables [13] are taken into account,
(c) a freeze-out hypersurface is defined by the equation

τ =
√

t2 − r2
x − r2

y − r2
z = const, (1)

(d) the four-velocity of an element of the freeze-out hypersur-
face is proportional to its coordinate

uµ = xµ

τ
= t

τ

(
1,

rx

t
,
ry

t
,
rz

t

)
, (2)

and (e) the following parametrization of the hypersurface is
chosen:

t = τcoshα‖coshα⊥, rx = τ sinhα⊥cosφ,

ry = τ sinhα⊥sinφ, rz = τ sinhα‖coshα⊥,

(3)

where α‖ is the rapidity of the element, α‖ = tanh−1(rz/t),
and α⊥ controls the transverse radius, given by

ρ =
√

r2
x + r2

y = τ sinhα⊥ < ρmax, (4)

where the restriction on the transverse size has been intro-
duced, so that ρmax gives the maximal transverse extension of
the gas in the central slice during the freeze-out. This means
that two new parameters of the model have been introduced
(i.e., τ and ρmax), which are connected with the geometry of
the freeze-out hypersurface.

From Eq. (1) one can see that the beginning of the freeze-out
process starts at t

(1)
f.o. = τ and �r = 0 in the c.m. system, which

is also the laboratory frame in the RHIC case. At this moment
the volume of the gas can be estimated as

V
(1)

f.o. = 2πτρ2
max, (5)

which is simply the volume of a tube with a length 2τ and a
radius ρmax (where 2τ is the maximal possible extension of
the gas in the longitudinal direction at t

(1)
f.o.). In the central slice

the freeze-out ceases at t
(2)
f.o. = √

τ 2 + ρ2
max and it takes place

at ρ = ρmax.
The transverse velocity in the central slice can be expressed

as a function of the transverse radius

β⊥(ρ) = tanhα⊥ = ρ√
τ 2 + ρ2

. (6)

The maximum value of β⊥, called the maximum transverse-
flow parameter (or the surface velocity), is given by

βmax
⊥ = ρmax√

τ 2 + ρ2
max

= ρmax/τ√
1 + (ρmax/τ )2

. (7)

The invariant distribution of the measured particles of species
i has the form [8,9]

dNi

d2pT dy
=

∫
pµdσµfi(p · u), (8)

where dσµ is the normal vector on a freeze-out hypersurface,
p · u = pµuµ, uµ is the four-velocity of a fluid element,
and fi is the final momentum distribution of the particle in
question. The final distribution means here that fi is the sum
of primordial and simple and sequential decay contributions
to the particle distribution (for details see Refs. [10,14]).

For the most general case of the chemical nonequilibrium
the primordial momentum distribution of particle species i is
given by

f
primordial
i = (2si + 1)

(2πh̄c)3

1

γ −1
i exp

{
Ei−µi

T

}
+ gi

, (9)

where Ei = (m2
i + p2)1/2 and mi, µi, si , and gi are the mass,

chemical potential, spin, and a statistical factor of species i,
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respectively. The chemical potential µi = BiµB + SiµS +
I i

3µI3 , where Bi, Si , and I i
3 are the baryon number, strangeness,

and the third component of the isospin of the particle species in
question, whereas µ’s are the corresponding overall chemical
potentials. The strangeness chemical potential µS is deter-
mined from the requirement that the overall strangeness equals
zero. The chemical potential related to the third component of
the isospin, µI3 , is derived from the constraint that the charge
to the net baryon ratio in the final state is the same as in
the colliding nuclei. It has turned out that µI3 is negligible at
RHIC (|µI3 | � 1 MeV [1,10]), so it will be omitted in further
considerations. The nonequilibrium factor γi reads

γi = γ
(Ni

q+Ni
q̄ )

q γ
(Ni

s +Ni
s̄ )

s , (10)

where γq(s) is the light (strange) quark phase-space occupancy
factor, Ni

q and Ni
s are the numbers of light and strange quarks

in the ith hadron, and Ni
q̄ and Ni

s̄ are the numbers of the
corresponding antiquarks in the same hadron.

With the use of Eqs. (2) and (3), the invariant distribution
(8) takes the following form:

dNi

d2pT dy
=

∫
dσ (p · u)fi(p · u)

= τ 3
∫ +∞

−∞
dα‖

∫ ρmax/τ

0
sinhα⊥d(sinhα⊥)

×
∫ 2π

0
dξ (p · u)fi(p · u), (11)

where

p · u = mT cosh(α‖ − y)coshα⊥ − pT cosξsinhα⊥. (12)

III. TRANSVERSE ENERGY AND CHARGED PARTICLE
MULTIPLICITY

The experimentally measured transverse energy is defined
as

ET =
L∑

i=1

Êi · sinθi, (13)

where θi is the polar angle, Êi denotes Ei − mN (with mN

the nucleon mass) for baryons, Ei + mN for antibaryons and
the total energy Ei for all other particles, and the sum is taken
over all L emitted particles [11].

The pseudorapidity density of particle species i is given by

dNi

dη
=

∫
d2pT

dy

dη

dNi

d2pT dy

=
∫

d2pT

p

Ei

dNi

d2pT dy
. (14)

Analogously, the transverse energy pseudorapidity density for
the same species can be written as

dET,i

dη
=

∫
d2pT Êi · pT

p

dy

dη

dNi

d2pT dy

=
∫

d2pT pT

Êi

Ei

dNi

d2pT dy
. (15)

For the quantities at midrapidity one has (in the c.m. system,
which is the RHIC case)

dNi

dη

∣∣∣∣
mid

=
∫

d2pT

pT

mT

dNi

d2pT dy
, (16)

dET,i

dη

∣∣∣∣
mid

=




∫
d2pT pT

mT − mN

mT

dNi

d2pT dy
,

i = baryon∫
d2pT pT

mT + mN

mT

dNi

d2pT dy
,

i = antibaryon∫
d2pT pT

dNi

d2pT dy
,

i = others.

(17)

The overall charged particle and transverse energy densities
can be expressed as

dNch

dη

∣∣∣∣
mid

=
∑
i∈B

dNi

dη

∣∣∣∣
mid

, (18)

dET

dη

∣∣∣∣
mid

=
∑
i∈A

dET,i

dη

∣∣∣∣
mid

, (19)

where A and B (B ⊂ A) denote sets of species of finally
detected particles, namely the set of charged particles B =
{π+, π−,K+,K−, p, p̄}, whereas A also includes photons,
K0

L, n, and n̄ [15].
The total multiplicity of particle species i can be also

derived (for the more formal proof see [10]):

Ni =
∫

d2pT dy
dNi

d2pT dy

=
∫

d2pT dy

∫
pµdσµfi(p · u)

=
∫

dσ

∫
d2pT dy(p · u)fi(p · u)

=
∫

dσ

∫
d3 �p
E

(p · u)fi(p · u)

=
∫

dσni(T ,µB, γs, γq)

= ni(T ,µB, γs, γq)
∫

dσ, (20)

for any expansion satisfying the condition dσµ ∼ uµ on a
freeze-out hypersurface and if the local statistical parameters
are constant on this hypersurface (in the present model
both conditions are fulfilled). Note that the density of par-
ticle species i, ni , includes thermal and decay contributions.
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In practice the rapidity of the fluid element α‖ should
not be unlimited but should have its maximal value αmax

‖ .
Otherwise, the hypersurface volume and the total charged
particle multiplicity would be infinite. Then one can express
the hypersurface volume as

∫
dσ = τ 3

∫ +αmax
‖

−αmax
‖

dα‖
∫ ρmax/τ

0
sinhα⊥d(sinhα⊥)

∫ 2π

0
dξ

= 2παmax
‖ τρ2

max. (21)

Finally, the total multiplicity of charged particles can be
obtained:

Nch = 2παmax
‖ τρ2

max

∑
i∈B

ni(T ,µB, γs, γq)

= 2παmax
‖ τρ2

maxnch(T ,µB, γs, γq). (22)

For αmax
‖ the following reasonable assumption has been

made: It is equal to the rapidity of leading baryons after the
collision. This means that the fluid that has been created in
the central rapidity region (CRR) could not move faster in
the longitudinal direction then fragments of a target or a
projectile after the collision. Therefore αmax

‖ should depend
on the centrality of the collision, since the more central the
collision is, the higher degree of the stopping of the initial
baryons ought to happen in principle. There are two limiting
cases: (i) the most central collision, where maximum stopping
occurs, and (ii) when the centrality approaches 100%, when
the stopping disappears. Assuming additionally that αmax

‖ is a
linear function of the centrality, we can derive the following
parametrization (for details see Ref. [7]):

αmax
‖ (c) = yp − 〈δy〉

0.975
· (1 − c), (23)

where yp is the projectile rapidity, 〈δy〉 is the average rapidity
loss, and c is a fractional number representing the middle of a
given centrality bin (i.e., c = 0.025 for the 0–5% centrality bin,
c = 0.075 for the 5–10% centrality bin, etc. The BRAHMS
Collaboration reports 〈δy〉 = 2.05 for the 5% most central
collisions at

√
sNN = 200 GeV (yp = 5.36) [16].

IV. RESULTS

A. Determination of geometric parameters

The determination of parameters of the model proceeds
in two steps. First, statistical parameters T ,µB, γq, and γs

are fitted with the use of the experimental ratios of hadron
multiplicities at midrapidity. This has been already done in
Ref. [1] for all available centrality bins of the PHENIX mea-
surements at

√
sNN = 200 GeV [2]. Having put values of these

parameters into the theoretical expression for the invariant
distribution, Eqs. (11) and (12), the two remaining parameters
ρmax and τ can be determined from the simultaneous fit to the
transverse-momentum spectra of π±,K±, p, and p̄. The fits
are performed with the help of the χ2 method.

The final results for the geometric parameters ρmax and τ

are gathered in Table I together with the corresponding values

of χ2/NDF for each centrality class additionally characterized
by the number of participants, Npart. The results are given for
all three cases of the SHM listed in Sec. I (for comparison
the results for the chemical equilibrium case are repeated from
Ref. [7]). Other physical quantities such as the surface velocity
βmax

⊥ , the volume at the beginning of freeze-out, V
(1)

f.o., and
the maximal freeze-out time at the central slice t

(2)
f.o. are also

given there. Values of ρmax and τ (therefore also V
(1)

f.o. and
t

(2)
f.o.) obtained in the case of full chemical nonequilibrium are

substantially lower than corresponding values in both other
cases. This is because γs and γq are significantly greater than
1 in this case, so primordial densities given by Eqs. (9) and
(10) are also greater than in both other cases. And since fits are
done to the same spectra, to keep the normalization unchanged,
values of the geometric parameters have to decrease.

Except for the last three rows of Table I, all fits have
been done with the use of the pT spectra of identified
charged hadrons measured by the PHENIX Collaboration in√

sNN = 200 GeV Au-Au collisions [2,17]. Centrality classes
with footnote marks denote two bins for which fitted spectra
are taken from Ref. [17]. These are 0–10% and 10–40%
centrality bins and they are not included in Ref. [2], so values
of the statistical parameters have not been fitted for them
in Ref. [1]. But for these bins φ meson spectra have been
reported in Ref. [17]. Thus to make predictions for φ spectra,
values of the statistical parameters have been taken as the
averages of the values fitted for bins whose added percent
coverage equals 0–10% or 10–40%. The last three rows of
Table I present results of fits to the PHENIX data com-
plemented with the low-pT data for π± extracted from the
PHOBOS measurements of (π+ +π−) [18]. Since the particle
ratio of π−/π+ ≈ 1 independently of pT and centrality (see,
e.g., Ref. [2]), the low-pT values of π+ and π− spectra have
been taken as one-half of (π+ + π−) reported by PHOBOS.
However, some modification of the original PHENIX data [2]
has been done to match the PHOBOS data conditions. Namely,
the PHOBOS measurements were done for the 15% most
central collisions (Npart = 303), whereas the PHENIX ones are
for the 0–5%, 5–10%, and 10–15% centrality bins. Since the
treatment of counts includes the averaging over the number of
events in a given centrality bin and for the same run the number
of events in the 15% most central bin should be equal to the
sum of numbers of events in the 0–5%, 5–10%, and 10–15%
centrality bins, the rough approximation of the hypothetical
measurement done in the 0–15% centrality bin would be the
average of the measurements done in the 0–5%, 5–10%, and
10–15% centrality bins. Such averages have been taken as
the PHENIX data for the 0–15% centrality bin. Also, values of
the statistical parameters taken for this case are the appropriate
averages of the values given for the 0–5%, 5–10%, and 10–15%
centrality bins.

As can be seen from the last column of Table I, the
best-quality fits have been obtained for the strangeness
chemical nonequilibrium case of the SHM. Also, fits done
in the chemical equilibrium case are slightly better than
those presented for the full chemical nonequilibrium. This
conclusion can be expressed in an informal quantifiable way by
calculating the average of χ2/NDF for each case of the SHM.
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TABLE I. Values of the geometric parameters of the model for various centrality bins fitted with the use of the PHENIX final data for the
pT spectra of identified charged hadrons [2]; NDF = 124. For bins with footnotes a and b the data are from Ref. [17]. Values of the statistical
parameters are taken from Ref. [1]. The last three rows show the results of fits to the set of data that include the PHENIX data and low-pT π+

and π− data taken as a half of the PHOBOS data for (π+ + π−) [18]; here NDF = 132.

Centrality Npart T µB γs γq ρmax τ βmax
⊥ V

(1)
f.o. t

(2)
f.o. χ 2/NDF

(%) (MeV) (MeV) (fm) (fm) (fm3) (fm)

0–5 351.4 141.1 25.67 2.430 1.613 7.24 ± 0.09 6.61 ± 0.06 0.74 2177.5 9.8 0.74
5–10 299.0 141.4 24.52 2.367 1.61169 6.82 ± 0.08 6.17 ± 0.06 0.74 1804.4 9.2 0.73
0–10a 325.2 141.25 25.095 2.3985 1.6125 7.03 ± 0.08 6.39 ± 0.06 0.74 1985.8 9.5 0.80
10–15 253.9 141.6 25.27 2.270 1.603 6.46 ± 0.08 5.81 ± 0.06 0.74 1525.6 8.7 0.72
15–20 215.3 140.8 25.05 2.266 1.61497 6.16 ± 0.08 5.48 ± 0.05 0.75 1304.8 8.2 0.85
20–30 166.6 141.0 26.01 2.212 1.61387 5.58 ± 0.07 4.96 ± 0.05 0.75 969.7 7.5 1.24
30–40 114.2 142.0 25.75 2.096 1.608 4.76 ± 0.07 4.33 ± 0.05 0.74 617.0 6.4 1.64
10–40b 171.8 141.35 25.52 2.211 1.61 5.80 ± 0.07 5.17 ± 0.05 0.75 1093.7 7.8 1.28
40–50 74.4 141.7 26.14 2.003 1.605 4.06 ± 0.06 3.80 ± 0.04 0.73 392.6 5.6 2.02
50–60 45.5 141.0 24.05 1.876 1.613 3.39 ± 0.06 3.32 ± 0.04 0.71 239.1 4.7 1.96
60–70 25.7 140.2 25.32 1.636 1.618 2.72±0.05 2.86±0.04 0.69 133.0 3.9 2.16
70–80 13.4 141.7 24.24 1.026 1.299 2.40 ± 0.06 2.78 ± 0.05 0.65 100.6 3.7 1.43

0–5 351.4 154.6 25.04 1.231 1.0 8.35 ± 0.10 8.57 ± 0.08 0.70 3752.1 12.0 0.57
5–10 299.0 155.2 24.73 1.186 1.0 7.84 ± 0.10 7.97 ± 0.08 0.70 3077.1 11.2 0.43
0–10a 325.2 154.9 24.885 1.2085 1.0 8.10 ± 0.09 8.27 ± 0.07 0.70 3407.3 11.6 0.56
10–15 253.9 155.5 26.29 1.169 1.0 7.37 ± 0.10 7.41 ± 0.07 0.70 2527.0 10.4 0.36
15–20 215.3 154.6 25.68 1.147 1.0 7.07 ± 0.10 7.04 ± 0.07 0.71 2212.2 10.0 0.39
20–30 166.6 155.2 27.18 1.121 1.0 6.37 ± 0.09 6.32 ± 0.06 0.71 1609.9 9.0 0.53
30–40 114.2 155.7 27.21 1.080 1.0 5.47 ± 0.08 5.51 ± 0.06 0.70 1036.6 7.8 0.78
10–40b 171.8 155.25 26.59 1.1293 1.0 6.65 ± 0.08 6.60 ± 0.06 0.71 1833.5 9.4 0.53
40–50 74.4 155.5 26.74 1.018 1.0 4.65 ± 0.07 4.82 ± 0.06 0.69 654.6 6.7 1.07
50–60 45.5 152.6 21.62 0.8906 1.0 4.06 ± 0.07 4.39 ± 0.06 0.68 455.2 6.0 1.04
60–70 25.7 152.2 26.12 0.8076 1.0 3.22 ± 0.07 3.73 ± 0.05 0.65 243.0 4.9 1.32
70–80 13.4 148.6 23.82 0.7163 1.0 2.59 ± 0.06 3.17 ± 0.06 0.63 133.6 4.1 1.20
80–92 6.3 150.8 28.00 0.6788 1.0 1.92 ± 0.06 2.69 ± 0.06 0.58 62.3 3.3 1.21

0–5 351.4 155.2 26.4 1.0 1.0 8.46 ± 0.10 8.84 ± 0.08 0.69 3973.4 12.2 0.80
5–10 299.0 155.2 26.4 1.0 1.0 7.99 ± 0.10 8.23 ± 0.08 0.70 3302.6 11.5 0.61
0–10a 325.2 155.2 26.4 1.0 1.0 8.23 ± 0.09 8.54 ± 0.07 0.69 3629.8 11.9 0.80
10–15 253.9 155.2 26.4 1.0 1.0 7.54 ± 0.10 7.67 ± 0.08 0.70 2736.2 10.8 0.48
15–20 215.3 155.2 26.4 1.0 1.0 7.11 ± 0.10 7.17 ± 0.07 0.70 2275.5 10.1 0.48
20–30 166.6 155.2 26.4 1.0 1.0 6.45 ± 0.09 6.47 ± 0.07 0.71 1689.5 9.1 0.58
30–40 114.2 155.2 26.4 1.0 1.0 5.57 ± 0.08 5.63 ± 0.06 0.70 1097.2 7.9 0.77
10–40b 171.8 155.2 26.4 1.0 1.0 6.74 ± 0.08 6.76 ± 0.06 0.71 1932.3 9.6 0.64
40–50 74.4 155.2 26.4 1.0 1.0 4.68 ± 0.07 4.85 ± 0.06 0.69 669.0 6.7 1.05
50–60 45.5 155.2 26.4 1.0 1.0 3.83 ± 0.07 4.16 ± 0.05 0.68 383.9 5.7 1.13
60–70 25.7 155.2 26.4 1.0 1.0 2.99 ± 0.06 3.47 ± 0.05 0.65 194.3 4.6 1.41
70–80 13.4 155.2 26.4 1.0 1.0 2.22 ± 0.06 2.78 ± 0.05 0.62 86.3 3.6 1.55
80–92 6.3 155.2 26.4 1.0 1.0 1.71 ± 0.06 2.40 ± 0.05 0.58 44.2 2.9 1.40

0–15c 303.0 141.4 25.15 2.356 1.609 6.82 ± 0.08 6.09 ± 0.05 0.75 1778.0 9.1 0.87

0–15c 303.0 155.1 25.35 1.195 1.0 7.87 ± 0.10 8.00 ± 0.07 0.70 3111.7 11.2 0.41

0–15c 303.0 155.2 26.4 1.0 1.0 8.02 ± 0.10 8.26 ± 0.08 0.70 3337.0 11.5 0.59

aHere statistical parameters are the averages of the parameters listed in two sequential rows above this row.
bHere statistical parameters are the averages of the parameters listed in four sequential rows above this row.
cHere statistical parameters are the averages of the parameters given for the 0–5%, 5–10%, and 10–15% centrality classes in the same case of
the SHM.

So, for the chemical full nonequilibrium 〈χ2/NDF〉 = 1.30, for
the strangeness chemical nonequilibrium 〈χ2/NDF〉 = 0.77,

and for the chemical equilibrium 〈χ2/NDF〉 = 0.9. Also,
the wider range of centrality better fulfills the condition
of statistical significance (i.e., χ2/NDF < 1) in both cases

of γq = 1 (up to 40% of centrality) than in the case of
γq �= 1 (up to 20% of centrality). Fits done with the inclusion
of the low-pT π± measured by PHOBOS have confirmed
this conclusion, as can be seen in the last three rows of
Table I.
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FIG. 1. Values of the geometric parameters of the model from
the seventh and eighth column of Table I for the full chemical
nonequilibrium case (γs �= 1, γq �= 1). The lines are the best power
approximations.

Values of the geometric parameters ρmax and τ from
Table I are presented in Figs. 1 and 2 as functions of Npart.
Also, there the lines of the best power approximations are
depicted,

x ∼ Nκ
part, x = ρmax, τ, (24)

with scaling exponents κ ≈ 0.36 for ρmax and κ ≈ 0.28 for τ .

B. Identified hadron spectra

Having obtained parameters of the model we can give the
spectra with the use of Eqs. (11) and (12). In Figs. 3 and 4 (top
plots) the spectra of sums of negative and positive identified
hadrons are depicted. This type of presentation is chosen to

FIG. 2. Values of the geometric parameters of the model from the
seventh and eighth column of Table I for the strangeness chemical
nonequilibrium case (γs �= 1, γq = 1). The lines are the best power
approximations.

FIG. 3. The top plot presents invariant yields as a function of pT

for RHIC at
√

sNN = 200 GeV. The PHOBOS data are for the 15%
most central collisions with the error bars expressed as the sum of
the systematic and statistical uncertainties [18]. The corresponding
PHENIX data [2] are presented as the averages of the invariant yields
for 0–5%, 5–10%, and 10–15% centrality bins. For the PHENIX
data errors are about 10% and are of the size of the symbols. Lines
are the appropriate predictions of the single-freeze-out model for the
full chemical nonequilibrium case (fit to the PHENIX data only). The
bottom plot shows a deviation of data to the model, (fexp−ftheor)/σexp,
where fexp(theor) is the experimental (theoretical) value of the invariant
yield at given pT and σexp is the error of fexp. Both PHENIX and
PHOBOS data are denoted by the same symbol for the same species
[i.e., triangles are for (π+ + π−), squares for (K+ + K−), and open
crosses for (p + p̄)].

compare the model predictions for low-pT values of spectra
with the PHOBOS experimental data [18]. Since the PHOBOS
data are for the 0–15% centrality bin, the PHENIX data for
this bin have been simulated in the same way as explained in
Sec. IV A.

In the case of chemical full nonequilibrium (Fig. 3), the
low-pT pions are mostly overestimated (≈33%), as are the
kaons (≈21%), and the best predictions have been made for
protons and antiprotons (≈5% above the data). In the
case of chemical strangeness nonequilibrium (Fig. 4), the
opposite is true, with pions predicted exactly, but kaons,
protons, and antiprotons being overestimated roughly equally
(≈25%). For the chemical equilibrium case (see Fig. 4 in
Ref. [7], which looks almost the same as the top plot of
Fig. 4 here) the situation in the low-pT range is similar to
this in the chemical strangeness nonequilibrium case; namely,
pions are in complete agreement with the data, kaons are ≈13%
above, and protons and antiprotons are the most overestimated
(≈34%). This discussion confirms the conclusion drawn from
the comparison of the values of χ2/NDF—the chemical
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FIG. 4. Same as Fig. 3 but for the strangeness chemical nonequi-
librium case.

strangeness nonequilibrium case seems to work in the best
way as far as fits to the spectra are concerned.

To visualize the quality of fits and overall predictions, in
the bottom plots of Figs. 3 and 4 and in Fig. 5 deviations of
data to the model are presented. The deviation is defined as

fexp − ftheor

σexp
, (25)

where fexp(theor) is the experimental (theoretical) value of the
invariant yield at given pT and σexp is the error of fexp. The
number of points that are entirely outside of the ±1 band
is the greatest in the case of chemical full nonequilibrium
(21, with most of them corresponding to pions with all the
low-pT sample counted). In both other cases this number is
the same and equals 8. Also the widest deviation is in the first
case, where it reaches −2.9, whereas in the case of chemical
strangeness nonequilibrium the farthest point is −2.1 and in
the chemical equilibrium case −2.8.

To investigate this problem from the other side, fits for the
15% most central bin have been done with the inclusion of the
low-pT π± taken from the PHOBOS data [18]. The data give

FIG. 5. Same as the bottom plot of Fig. 3 but for the chemical
equilibrium case.

FIG. 6. Same as Fig. 3 but for the simultaneous fit to the PHENIX
and low-pT π± PHOBOS data.

values of (h++h−) spectra of identified hadrons (h = π,K, p)
at very low pT . But only for pions is the particle ratio of
h−/h+ ≈ 1 independently of pT and centrality at RHIC (see,
e.g., Ref. [2]). Thus values of π± spectra for very low pT are
taken as one-half of (π+ + π−) reported by PHOBOS [18].
The results of fits have been gathered in the last three rows of
Table I. The corresponding spectra are presented in the top
plots of Figs. 6–8. In the bottom plots of Figs. 6–8 deviations
of data to the model are depicted. Deviation figures show
explicitly what is expressed by the values of χ2/NDF given
in Table I—in the chemical strangeness nonequilibrium case
spectra are fitted much better then in both other cases. The
number of points outside the ±1 band equals 9 in this case and
the farthest one is at −2.1 (see the bottom plot of Fig. 7). In
the chemical full nonequilibrium case this number is 19 and
the farthest point is at −2.5 (see the bottom plot of Fig. 6).
In the chemical equilibrium case the number of points outside
the ±1 band is 8, but one of them reaches the value −2.8 (see
the bottom plot of Fig. 8).

From what has been explained so far one can see that the
chemical full nonequilibrium freeze-out seems to be less likely
in comparison with semi-equilibrium and equilibrium cases.
And if γq = 1 indeed, both these latter cases will be practically
undistinguishable; however, semi-equilibrium will be favored.

C. φ and K (892)∗0 spectra

In this section the predictions for the spectra of φ and
K(892)∗0 resonances will be discussed. This is an interesting
point since the yields of these resonances measured by the
STAR Collaboration [4–6] were used (with the basic yields of
the identified hadrons measured by the PHENIX Collaboration
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FIG. 7. Same as Fig. 4 but for the simultaneous fit to the PHENIX
and low-pT π± PHOBOS data.

[2]) to fit the statistical parameters of the model [1]. In
the fitting procedure presented here (to obtain the geometric
parameters of the model ρmax and τ , see Sec. IV A), identified
hadron spectra measured by PHENIX [2] have been explored.
So the main source of the data used to test the SHM here
and in Ref. [1] is the PHENIX measurement at

√
sNN =

200 GeV. But predictions of the model should be compared
with both PHENIX and STAR data, since the STAR data on

FIG. 8. Same as Fig. 7 but for the chemical equilibrium case.

FIG. 9. The top plot presents invariant yields of φ mesons
measured via the K+K− decay channel as a function of pT for the
0–10% centrality bin at

√
sNN = 200 GeV. Data are from Refs. [6]

(STAR) and [17] (PHENIX). The bottom plot shows a deviation of the
data to the model predictions based on fits to the PHENIX spectra:
chemical full nonequlibrium (circles), strangeness nonequilibrium
(triangles), and chemical equilibrium (asterisks).

K∗(892)/K− and φ/K− ratios were also used in fits of the
statistical parameters in Ref. [1]. However, one should keep
in mind, when the φ spectra are discussed, that the ≈70%
difference has been found between φ yields at midrapidity
measured by STAR [6] and PHENIX [17] for one common
centrality bin, 0–10%. The reason for such behavior is still
unknown and this is probably not a statistical fluctuation of the
lowest mT PHENIX point, as suggested in Ref. [1], because
when the same mT range for both the STAR and the PHENIX
φ data is considered the difference still persists (see Ref. [59]
in Ref. [17]).

In Figs. 9 and 10 predictions for the φ production are
presented for 0–10% and 10–40% centrality classes of the
PHENIX measurement for all three cases of the SHM analyzed
here. Additionally, the results for the equilibrium case, but such
that the statistical and geometric parameters of the model are
fitted to the STAR data only, are also depicted. This is the
case considered in Ref. [7]: the statistical parameters (T =
160.0 MeV, µB = 24.0 MeV) are fitted to the STAR particle
yield ratios [19] and the geometric parameters to the pT spectra
of identified hadrons delivered by the STAR Collaboration in
Ref. [20]. Again, since the STAR-identified hadron spectra
[20] are for different centrality classes than the STAR φ

spectra [6], the values of geometric parameters for 0–10%
and 10–30% centrality bins explored by STAR in φ-meson
measurements are the averages of the values fitted in Ref. [7]
for bins whose added percent coverage equals 0–10% and
10–30%, respectively. This gives ρmax = 8.81 fm, τ =
6.98 fm for the 0–10% centrality bin and ρmax = 7.035 fm,
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FIG. 10. Same as Fig. 9 but for the 10–40% centrality bin. Note
that STAR data are for the 10–30% centrality bin.

τ = 6.095 fm for the 10–30% centrality bin. Results
corresponding to these two equilibrium (STAR) cases are
presented as long-dashed lines in Figs. 9 and 10. Also, both
the PHENIX and the STAR data are depicted in these figures.
Note that the STAR second bin is 10–30%, whereas the second
PHENIX bin is 10–40% (see Fig. 10). Generally, as one can
see in Figs. 9 and 10, all three cases of the SHM agree
qualitatively with both the PHENIX and the STAR data when
the predictions are based on the fits to the PHENIX spectra
(solid, short-dashed, and dashed lines). When the predictions
are based on the fit to the STAR spectra (long-dashed lines)
they agree with the STAR data only up to the intermediate
transverse momentum range and overestimate the high-pT

data. It is not clear why this happens, but within the PHENIX
experiment the picture is consistent.

Figures 9 and 10 are on a logarithmic scale, but to see
quantitative agreement or disagreement of each SHM case,
one should use a linear scale. This has been done in the bottom
plots of Figs. 9 and 10, where deviations of both the PHENIX
and the STAR data to the model are depicted for all three
cases of the SHM considered here. It is clearly seen that
predictions in the equilibrium case are substantially better than
in both nonequilibrium cases. In fact, both nonequilibrium
cases are practically ruled out; however, the strangeness
nonequilibrium case seems to behave slightly better than the
full nonequilibrium case.

In Fig. 11 results for (K∗0 + K̄
∗0

)/2 spectra are presented
together with the STAR data for 0–10% and 10–30% centrality
classes [5]. This figure is very instructive since it explicitly
shows that the data from different collaborations should not
be mixed in any fitting procedure. As one can see, predictions
based on fitting to the PHENIX data for the 0–10% centrality
class (cf. Table I) are very similar to each other and miss the

FIG. 11. The invariant yields of (K∗0 + K̄
∗0

)/2 as a function of
pT for 0–10% and 10–30% centrality bins at

√
sNN = 200 GeV. Data

are from Ref. [5].

STAR data on the (K∗0 + K̄
∗0

)/2 production mainly because
of the different slope. In fact, these predictions are above the
level of the STAR data for the 0–10% centrality class in the low
transverse momenta but they are below even the STAR data for
the 10–30% centrality class in the high transverse momenta.
Additionally, the results for the equilibrium case, but such
that the statistical and geometric parameters of the model are
fitted to the STAR data only, are also depicted. This is the
case considered in Ref. [7]: The statistical parameters (T =
160.0 MeV, µB = 24.0 MeV) are fitted to the STAR
particle yield ratios [19] and the geometric parameters to
the pT spectra of identified hadrons delivered by the STAR
Collaboration in Ref. [20]. Again, since the STAR-identified
hadron spectra [20] are for different centrality classes than

the STAR (K∗0 + K̄
∗0

)/2 spectra [5], the values of geometric
parameters for 0–10% and 10–30% centrality bins explored

by STAR in (K∗0 + K̄
∗0

)/2 measurements are the averages
of the values fitted in Ref. [7] for bins whose added percent
coverage equals 0–10% and 10–30%, respectively. This gives
ρmax = 8.81 fm, τ = 6.98 fm for the 0–10% centrality
bin and ρmax = 7.035 fm, τ = 6.095 fm for the 10–30%
centrality bin. Results corresponding to these two equilibrium
(STAR) cases are presented as solid and shortest dashed lines in
Fig. 11. In fact some overestimation in normalization can be
seen, mostly in the case of the 0–10% centrality bin, but slopes
are correct.

D. π 0 spectra

The occupancy factor γq , when it differs from one, could
influence the π0 spectra strongly. This is because for π0 Nq =
Nq̄ = 1 and Ns = Ns̄ = 0. Then in the primordial distribution
of π0 one has [see Eq. (9)]

γ −1
π0 exp

{
Eπ0

T

}
= exp

{
Eπ0 − µπ

T

}
, (26)
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where the chemical potential of pions is defined as

µπ = 2T lnγq. (27)

It has turned out that in the case of chemical full nonequilib-
rium

µπ ≈ mπ0 (but µπ � mπ0 always) (28)

for the fitted values of γq and T taken from Ref. [1] and
listed in Table I. This means that in this case the values of the
statistical parameters happen to hit the critical values for the
Bose-Einstein condensation of neutral pions. This has been
already stated by the authors of Ref. [1] in Refs. [21,22],
namely that if γq is freed from 1 but is kept in the range
[1, γ cr

q = emπ0 /2T ], it goes to its critical value γ cr
q during

fitting procedure. If this really happened, this could enhance
the production of π0’s with very low pT .

Predictions for π0 spectra are presented in Fig. 12 for two
nonequilibrium cases of the SHM. The π0 spectrum in the
chemical equilibrium case is roughly the same as that for the
chemical strangeness nonequilibrium case, so it is not depicted.
However, it is impossible to compare the predictions for the

FIG. 12. The top plot presents invariant yields of π0 in com-
parison with the half of (π+ + π−) yields for RHIC at

√
sNN =

200 GeV. The PHOBOS data (diamonds) are for the 15% most central
collisions [18]. The corresponding PHENIX data [2] (triangles) are
presented as the averages of the invariant yields for the 0–5%, 5–10%,
and 10–15% centrality bins. The PHENIX data for π 0 (stars) are for
the 10% most central bin [23]. For both PHENIX data, errors are
about 10% and are of the size of symbols. Lines are the appropriate
predictions of the single-freeze-out model. The bottom plot shows a
ratio of predicted π 0 to the half of measured (π+ + π−) for the full
chemical nonequilibrium case (triangles), the strangeness chemical
nonequilibrium case (dots), and the chemical equilibrium case (open
stars). Values of the ratio calculated with the use of the experimental
data are also depicted (crosses).

low pT with the data since the appropriate data are not yet
available. Thus in Fig. 12 the comparison is done with the half
of the (π+ +π−) spectrum delivered by PHOBOS for the 15%
most central bin [18] and with the corresponding spectrum
compiled from the PHENIX data [2]. As is shown in the bottom
plot of Fig. 12, the experimental ratio of 2π0/(π+ + π−) ≈ 1
in the range of pT common for π± [2] and π0 [23] PHENIX
measurements at

√
sNN = 200 GeV (i.e., for 1 < pT < 3 GeV).

One can see from the top plot of Fig. 12 that down to pT ≈
0.2 GeV all three cases of the SHM predict roughly the same
spectrum of π0. (The curve for the chemical equilibrium case
is not depicted because, on a logarithmic scale, it would exactly
cover the curve for the chemical strangeness nonequilibrium
case.) The difference between predictions in the chemical full
nonequilibrium case and predictions in both other cases arises
at very low transverse momenta and is about 40%. This can
be seen very clearly in the bottom plot of Fig. 12, where the
ratio of predicted π0 to the half of measured (π+ + π−) is
depicted as a function of pT for all three cases of the SHM.
The enhancement of neutral pions over one-half of charged
pions is ≈80% in the case of chemical full nonequilibrium,
whereas for both other cases it is ≈30%. This suggests that the
measurement of very low pT π0’s could be helpful to judge
whether γq ≈ γ cr

q (as is claimed in Refs. [1,21,22] on the basis
of fits to particle yields/ratios) or γq = 1.

E. Transverse energy and charged particle multiplicity
estimations

The results of numerical estimations of dNch/dη|mid di-
vided by the number of participant pairs for various centrality
classes are presented in Fig. 13 for RHIC at

√
sNN = 200 GeV.

The results are given for two nonequilibrium cases of the SHM.
(The estimates in the case of chemical equilibrium are almost
the same as in the chemical strangeness nonequilibrium case
and have been already presented in Ref. [7]; see Fig. 6 therein.)

FIG. 13. dNch/dη per pair of participants vs Npart for RHIC
at

√
sNN = 200 GeV. The original PHENIX data are from

Ref. [11], whereas the recalculated PHENIX data are from summing
the integrated charged hadron yields delivered in Ref. [2]. The lines
connect the results and are a guide.
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In addition to the straightforward PHENIX measurements
of the charged particle multiplicity density, the data from
summing the integrated charged hadron yields [2] are depicted
in these figures, too. (These data are called “recalculated”; for
more explanations see Ref. [7].) Note that the recalculated data
differ from the direct ones, especially for more central bins.
This has been already noticed by the PHENIX Collaboration
(see backup slides of [24]). In Ref. [2] the feeding of p(p̄) from
�(�̄) decays is excluded. To diminish this effect, integrated p

and p̄ yields delivered in Ref. [2] were corrected to re-include
the feeding. The correction was done by division by a factor of
0.65, which is the rough average of a pT -dependent multiplier
used by the PHENIX Collaboration (see Fig. 4 in Ref. [2] and
Eq. (5) therein).

Generally, in both presented cases the model predictions
underestimate much more the directly measured dNch/dη|mid

than the recalculated dNch/dη|mid. However, the estimates in
the chemical full nonequilibrium case are slightly closer to
the data and for the four most central bins they agree entirely
with the recalculated data points. In the full range of centrality
the predictions agree with the recalculated data within errors
in this case and almost agree within errors in the chemical
strangeness nonequilibrium case. In principle, since the fits of
the geometric parameters of the model have been done to the
same pT spectra here, which were integrated to deliver charged
hadron yields in Ref. [2], the predictions for dNch/dη|mid

should agree exactly with the recalculated data. However, the
transverse momentum spectra are measured in limited ranges,
so very important low-pT regions are blank in Ref. [2]. To
obtain integrated yields some extrapolations below and above
the measured ranges are used. In fact these extrapolations are
only analytical fits, but contributions from regions covered
by them account for about 25–40% of the integrated yields
[25]. These extrapolations could differ from the distributions
obtained in the framework of this model and this could be the
main source of the discrepancy between the predictions and
the recalculated data. So the question of why the significant
underestimation of the predicted dNch/dη|mid with respect
to the directly measured charged particle multiplicity density
occurs should be addressed to the experimentalists: Why does
the directly measured dNch/dη|mid differ substantially from
the sum of the integrated hadron yields for central collisions?

The values of dET /dη|mid per pair of participants as a
function of participant pairs are shown in Fig. 14 for

√
sNN =

200 GeV. The quality of the model predictions is much better in
this case then for dNch/dη|mid; they agree with the data almost
completely. Note that predictions in both presented cases are
practically the same and do not differ from the corresponding
results in the chemical equilibrium case (see Fig. 7 in
Ref. [7]).

Values of the ratio 〈dET /dη〉/〈dNch/dη〉 as a function of
Npart are presented in Fig. 15. Again, as for dNch/dη|mid, the
values predicted in the chemical full nonequilibrium case are
slightly closer to the data; they agree with the recalculated
data within errors. For the most central bins both sets of
predictions agree with the recalculated data within errors.
Estimates of 〈dET /dη〉/〈dNch/dη〉 done within the chemical
equilibrium case are practically the same as in the strangeness
nonequilibrium case (see Fig. 10 in Ref. [7]). As far as the

FIG. 14. dET /dη per pair of participants vs Npart for RHIC at√
sNN = 200 GeV. The PHENIX data are from Ref. [11]. The lines

connect the results and are a guide.

comparison with the direct data [11] is concerned, the position
of model predictions is very regular and exactly resembles the
configuration of the data in each case, with the estimates being
shifted up by only about 10% as a whole.

The last discussed global variable is the total multiplicity
of charged particles Nch, which can be calculated with the
use of Eqs. (22) and (23). The results presented as the total
charged particle multiplicity per participating pair versus Npart

are gathered in Fig. 16. Both sets of predictions exhibit almost
ideal centrality independence within the range of the PHOBOS
measurement, (i.e., Npart ≈ 60–360). Note that in the chemical
full nonequilibrium case also normalization agrees almost
exactly with the data. In the case of chemical strangeness
nonequilibrium a 6% underestimation has resulted, but the
predictions still agree with the data within errors. For the

FIG. 15. 〈dET /dη〉/〈dNch/dη〉 vs Npart for RHIC at
√

sNN =
200 GeV. The original PHENIX data are from Ref. [11]. The
recalculated PHENIX data are also depicted; here “recalculated”
means that the sum of the integrated charged hadron yields [2] has
been substituted for the denominator in the ratio. The lines connect
the results and are a guide.
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FIG. 16. Nch per pair of participants vs Npart for RHIC at
√

sNN =
200 GeV. The PHOBOS data are from Ref. [12] and the pp/p̄p data
point of the UA5 measurement is from Fig. 39.5 in Ref. [13]. The
lines connect the results and are a guide.

chemical equilibrium similar underestimation was obtained
(6.4%; see Fig. 12 in Ref. [7]).

The general conclusion that could be drawn from this
discussion is that predictions for global variables agree pretty
well with the data in each case of the SHM. However, the
chemical full nonequilibrium scenario works slightly better in
this respect.

V. CONCLUSIONS

The extensive analysis of the RHIC data on the particle
production in Au-Au collisions at

√
sNN = 200 GeV has been

performed within three possible scenarios of the statistical
hadronization model. The SHM explored here is the gener-
alized version of the model of Ref. [1]. The generalization
means the explicit inclusion of the fireball expansion in a way
as proposed in the single-freeze-out model of Refs. [8–10].

Generally, no definite rejection of any of these scenarios
could be done on the basis of this analysis, since different
observables prefer different scenarios. However, the chemical
full nonequilibrium case seems to be the least likely. This is
evident from the studies of particle spectra of stable charged
hadrons, both from the statistical significance point of view
(values of χ2/NDF in Table I) and from the behavior of the
deviation factor (bottom plots of Figs. 3–8). The φ-spectrum
test confirms this conclusion (see Sec. IV C). In contrast,
the global variable test prefers the full chemical nonequilib-
rium scenario and does not distinguish between strangeness
chemical nonequilibrium and chemical equilibrium cases (see
Sec. IV E) but the differences are not significant. The semi-
equilibrium and equilibrium scenarios seem to be of similar
likelihood, even though the φ-spectrum analysis discredits the
strangeness chemical nonequilibrium case. This is because the
fits to spectra of identified charged hadrons seem to weigh most
when the conclusion is to be drawn from the present studies.
The pT spectra of stable charged hadrons comprise the most
numerous and highest quality samples of the experimental

data. For each centrality class of the PHENIX measurement
at

√
sNN = 200 GeV, the pT -spectra counts more than

120 points, whereas each sample of the discussed resonance
spectra or of the global variable has about 10 points. Moreover,
the measurement of a stable charged hadron seems to be more
accurate since such a hadron is measured directly whereas
resonances can be measured only via their decay products. The
last point that supports the relevance of the fits to identified
hadron spectra is that all data used in the fitting procedure
(here particle yields and pT spectra), as well as the data to
which predictions are compared, should originate from the
same experiment, as has been shown explicitly in Sec. IV C in

the example of (K∗0 + K̄
∗0

)/2 spectra (Fig. 11). This is the
case of the fits to identified hadron spectra, since the statistical
parameters were fitted to the sample comprising six particle
yields from PHENIX (π±,K±, p, and p̄) and only two yield
ratios from STAR (see Ref. [1]). And with these parameters
entering the expression for the invariant distribution, Eq. (11),
pT spectra of π±,K±, p, and p̄ measured by PHENIX have
been fitted to determine the geometric parameters of the
model. Thus the main results presented in Table I have been
obtained within practically one experiment (i.e., the PHENIX
Collaboration).

This remark should be kept in mind when the SHM
predictions for yields of other particles (other then used in the
fitting procedure) are compared with the data. For instance,
in Ref. [26] predictions for (anti)hyperons were done on
the basis of fits from Ref. [1] (i.e., fits done to the data
set of which the main part is from PHENIX at

√
sNN =

200 GeV). However the conclusion is drawn from the
comparison with the STAR data at

√
sNN = 130 GeV. The

conclusion is that the chemical full nonequilibrium case is
favored. But in the main figure of Ref. [26] (Fig. 2 there), which
led to this conclusion, there are no corresponding predictions
in the strangeness chemical nonequilibrium case. It is only
stated there that these predictions are in between the chemical
full nonequilibrium and the chemical equilibrium cases. All
these arguments suggest that neither the strangeness chemical
nonequilibrium case nor the chemical equilibrium case can be
entirely discredited in the context of (anti)hyperon production.

Also, particle yield fluctuations have been proposed as
a definite test of what scenario of the SHM is the most
likely [27] but one has to await the appropriate data to make a
conclusion. This test distinguishes between (semi)equilibrium
and nonequilibrium scenarios. What is interesting is that values
of the statistical parameters given there for the chemical
full nonequilibrium case are again at the condition for the
Bose-Einstein condensation of neutral pions, γq ≈ γ cr

q . (These
values are T = 140.0 MeV and γq = 1.62 [27], which gives
µπ = 135.079 MeV, Eq. (27), so µπ > mπ0 but this is a
matter of rounding off [28]; if one takes γq = 1.619 then
µπ < mπ0 .) In fact, as is explained in Refs. [21,22], γ cr

q is the
upper limit of the allowed range of γq superimposed before
the fitting procedure has started. So by definition γq � γ cr

q

always (if the value of γq in a table of Refs. [1,21,22] happens
to exceed γ cr

q this is the result of rounding up [28], as in
the aforementioned example). But from the technical point of
view, when γq slightly exceeds this limit the fitting procedure
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will still proceed, since π0 yield is not included in the set of
yields and/or ratios to the fit. So the true upper limit should
be emπ± /2T , because exceeding this limit causes divergences
in primordial densities of π+ and π−, yields of which are
included usually in the set of data to fit. Thus the fitted values
of γq [1,21,22] seem to be untrustworthy. All these facts put
in question the idea of introducing the parameter γq into the
model. But this supports the conclusion that the chemical full
nonequilibrium freeze-out is the least likely. Nonetheless, if
values of γq were at the critical point for the Bose-Einstein
condensation of π0 (as is claimed in Refs. [1,21,22]), then the
significant π0 overproduction at low pT could happen with
respect to one-half of (π+ +π−) (see Sec. IV D), which seems
to be checkable at least in principle.

Our last remark is that the present analysis has been done
within a particular hypersurface, as given by Eqs. (1)–(4). Of
course, the natural question is to what extent the results depend
on the choice of a hypersurface. One of the indirect arguments
for this hypersurface are the results of fits to the PHENIX
spectra of π±,K±, p, and p̄ done in Ref. [17] within the very
popular blast-wave model [29]. For those fits χ2/NDF ≈ 3–4,
so from the statistical point of view such a hypothesis should
be rejected. In contrast, in the present work χ2/NDF < 1 has
been obtained for all central and mid-central bins (see Table I).

Thus at least for these bins the hypothesis that the hypersurface
has the form as given here cannot be rejected. Moreover, the
possible overproduction of low-pT π0’s seems not to depend
very much on a form of the hypersurface chosen since this
effect is the result of approaching the condition for the Bose-
Einstein condensation of neutral pions. This causes the abrupt
increase of the distribution function of π0, f

primordial
π0 (p · u),

when pT → 0 for all hypersurfaces that have a region with
negligible flow.

In summary, in the view of this analysis the chemical full
nonequilibrium freeze-out seems to happen least likely during
Au-Au collisions at

√
sNN = 200 GeV and both other cases

are of similar likelihood. To help verify this conclusion, the
low-pT π0 measurement is proposed since at low pT the ratio
of π0 over one-half of (π+ + π−) distinguishes very clearly
between γq ≈ γ cr

q and γq = 1.
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