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Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI)
constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence
of the symmetry energy Esym(ρ, T ) and symmetry free energy Fsym(ρ, T ) for hot, isospin asymmetric nuclear
matter. It is shown that the symmetry energy Esym(ρ, T ) generally decreases with increasing temperature while
the symmetry free energy Fsym(ρ, T ) exhibits opposite temperature dependence. The decrement of the symmetry
energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy
with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite
small around the saturation density of nuclear matter. While at very low densities, they differ significantly from
each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from
the isotopic scaling analysis of intermediate mass fragments (IMF’s) in heavy-ion collisions, the resulting density
and temperature dependent symmetry energy Esym(ρ, T ) is then used to estimate the average freeze-out density
of the IMF’s.
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I. INTRODUCTION

The equation of state (EOS) of isospin asymmetric nuclear
matter, especially the nuclear symmetry energy, is essential
in understanding not only many aspects of nuclear physics,
but also a number of important issues in astrophysics [1–9].
Information about the symmetry energy at zero temperature
is important for determining ground state properties of exotic
nuclei and properties of cold neutron stars at β-equilibrium,
while the symmetry energy or symmetry free energy of hot
neutron-rich matter is important for understanding the liquid-
gas phase transition of asymmetric nuclear matter, the dynam-
ical evolution of massive stars and the supernova explosion
mechanisms. Heavy-ion reactions induced by neutron-rich
nuclei provide a unique means to investigate the symmetry
energy [1,2,7]. In particular, recent analyses of the isospin
diffusion data in heavy-ion reactions [10–12] have already
put a stringent constraint on the symmetry energy of cold
neutron-rich matter at subnormal densities. On the other
hand, the temperature dependence of the symmetry energy or
symmetry free energy for hot neutron-rich matter has received
so far little theoretical attention [13–15].

For finite nuclei at temperatures below about 3 MeV, the
shell structure and pairing as well as vibrations of nuclear
surfaces are important and the symmetry energy was predicted
to increase slightly with the increasing temperature [16,17].
Interestingly, an increase by only about 8% in the symmetry
energy in the range of T from 0 to 1 MeV was found to
affect appreciably the physics of stellar collapse, especially
the neutralization processes [16]. At higher temperatures, one
expects the symmetry energy to decrease as the Pauli blocking
becomes less important when the nucleon Fermi surfaces
become more diffused at increasingly higher temperatures

[13–15]. Based on a simplified degenerate Fermi gas model
at finite temperatures, two of the present authors [15] have
recently studied the temperature dependence of the symmetry
energy and it was shown that the experimentally observed
decrease of the nuclear symmetry energy with the increasing
centrality or the excitation energy in isotopic scaling analyses
of heavy-ion reactions can be well understood analytically
within the degenerate Fermi gas model. In particular, it was
argued that the symmetry energy extracted from isotopic
scaling analyses of heavy-ion reactions reflects the symmetry
energy of bulk nuclear matter for the emission source.
Furthermore, it was found that the evolution of the symmetry
energy extracted from the isotopic scaling analysis is mainly
due to the variation in the freeze-out density rather than
temperature when the fragments are emitted in the reactions
carried out under different conditions.

In the present work, within a self-consistent thermal
model using an isospin and momentum dependent interaction
(MDI) constrained by the isospin diffusion data in heavy-ion
collisions, we study systematically the temperature depen-
dence of the nuclear matter symmetry energy Esym(ρ, T )
and symmetry free energy Fsym(ρ, T ). It is shown that
the nuclear matter symmetry energy Esym(ρ, T ) generally
decreases with increasing temperature while the symmetry free
energy Fsym(ρ, T ) exhibits opposite temperature dependence.
The decrement of the symmetry energy with temperature
is essentially due to the decrement of the potential energy
part of the symmetry energy with temperature. Furthermore,
the difference between the nuclear matter symmetry energy
Esym(ρ, T ) and symmetry free energy Fsym(ρ, T ) is found
to be quite small around nuclear saturation density. Using the
resulting density and temperature dependent symmetry energy
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Esym(ρ, T ), we estimate the average freeze-out density of the
fragment emission source based on the measured temperature
dependent symmetry energy from the isotopic scaling analysis
in heavy-ion collisions.

The paper is organized as follows. In Sec. II, we introduce
the isospin and momentum dependent MDI interaction and
the detailed numerical method to obtain the EOS of the
symmetric nuclear matter and pure neutron matter at finite
temperatures. Results on the temperature dependence of the
symmetry energy and symmetry free energy are presented
in Sec. III. In Sec. IV, we discuss the experimental data of
the isotopic scaling in heavy-ion collisions by means of the
obtained density and temperature dependent symmetry energy.
A summary is given in Sec. V.

II. HOT NUCLEAR MATTER EOS IN MOMENTUM
DEPENDENT INTERACTION

Our study is based on a self-consistent thermal model using
a modified finite-range Gogny effective interaction, i.e., the
isospin- and momentum-dependent MDI interaction [18]. In
the MDI interaction, the potential energy density V (ρ, T , δ)
of a thermal equilibrium asymmetric nuclear matter at total
density ρ, temperature T and isospin asymmetry δ is expressed
as follows [11,18]:

V (ρ, T , δ) = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xδ2) + 1

ρ0

∑
τ,τ ′
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×
∫ ∫
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1 + ( �p − �p′)2/�2

. (1)

In mean field approximation, Eq. (1) leads to the following
single particle potential for a nucleon with momentum �p
and isospin τ in the thermal equilibrium asymmetric nuclear
matter, i.e., [11,18]

U (ρ, T , δ, �p, τ ) = Au(x)
ρ−τ
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+ Al(x)
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+ B

(
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1 + ( �p − �p′)2/�2
. (2)

In the above τ = 1/2 (−1/2) for neutrons (protons);
σ = 4/3; fτ (�r, �p) is the phase space distribution func-
tion at coordinate �r and momentum �p. The parameters
Au(x), Al(x), B,Cτ,τ , Cτ,−τ and � have been assumed to
be temperature independent and are obtained by fitting
the momentum-dependence of U (ρ, T = 0, δ, �p, τ ) to that
predicted by the Gogny Hartree-Fock and/or the Brueckner-
Hartree-Fock calculations, the zero temperature saturation
properties of symmetric nuclear matter and the symmetry
energy of 31.6 MeV at normal nuclear matter density ρ0 =

0.16 fm−3 [18]. The incompressibility K0 of cold symmetric
nuclear matter at saturation density ρ0 is set to be 211 MeV.
The parameters Au(x) and Al(x) depend on the x parameter
according to

Au(x) = −95.98 − x
2B

σ + 1
, Al(x) = −120.57 + x

2B

σ + 1
.

(3)

The different x values in the MDI interaction are introduced to
vary the density dependence of the nuclear symmetry energy
while keeping other properties of the nuclear equation of state
fixed [11] and they can be adjusted to mimic predictions on the
density dependence of nuclear matter symmetry energy by mi-
croscopic and/or phenomenological many-body theories. The
last two terms of Eq. (2) contain the momentum-dependence
of the single-particle potential. The momentum dependence
of the symmetry potential stems from the different interaction
strength parameters Cτ,−τ and Cτ,τ for a nucleon of isospin
τ interacting, respectively, with unlike and like nucleons in
the background fields. More specifically, we use Cτ,−τ =
−103.4 MeV and Cτ,τ = −11.7 MeV. We note that the MDI
interaction has been extensively used in the transport model
for studying isospin effects in intermediate energy heavy-ion
collisions induced by neutron-rich nuclei [11,12,19–24]. In
particular, the isospin diffusion data from NSCL/MSU have
constrained the value of x to be between 0 and −1 for nuclear
matter densities less than about 1.2ρ0 [11,12], we will thus in
the present work consider the two values of x = 0 and x = −1.

At zero temperature, fτ (�r, �p) = 2
h3 �(pf (τ ) − p) and the

integral in Eqs. (1) and (2) can be calculated analytically [18].
For an asymmetric nuclear matter at thermal equilibrium with
a finite temperature T , the phase space distribution function
becomes the Fermi distribution

fτ (�r, �p) = 2

h3

1

exp( ε(ρ,T ,δ, �p,τ )−µτ

T
) + 1

, (4)

where µτ is the chemical potential and ε(ρ, T , δ, �p, τ ) is the
total single particle energy for a nucleon with isospin τ and
momentum �p, which includes the kinetic energy and the single
particle potential U (ρ, T , δ, �p, τ ), i.e.,

ε(ρ, T , δ, �p, τ ) = p2

2mτ

+ Au
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ρτ

ρ0
+ B

(
ρ

ρ0

)σ
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0
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+Rτ,τ (ρ, �p) + Rτ,−τ (ρ, �p) (5)

with

Rτ1,τ2 (ρ, �p) = 2Cτ1,τ2

ρ0

∫
d3p′ fτ2 (�r, �p′)

1 + ( �p − �p′)2/�2
, (6)

where τ1 and τ2 can be chosen as the same or different to
mimic the last two terms of Eq. (2).

The chemical potential µτ is therefore independent of the
nucleon momentum �p and can be determined from

ρτ = 8π

h3

∫ ∞

0

p2dp

exp( ε(ρ,T ,δ, �p,τ )−µτ

T
) + 1

. (7)
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From Eq. (7), we can see that, at finite temperature, to obtain
the chemical potential µτ requires knowing ε(ρ, T , δ, �p, τ )
[and thus Rτ1,τ2 (ρ, �p)] for all �p, while from Eq. (6) knowing
Rτ1,τ2 (ρ, �p) needs further to know fτ (�r, �p) which again
depends on the chemical potential µτ from Eq. (4). Therefore.
Eqs. (4), (5), (6), and (7) constitute closed sets of equations
whose solution can be obtained by a self-consistency iteration,
just as in the Hartree-Fock theory.

Following the recipe used in Ref. [25], the self-consistency
problem of Eqs. (4), (5), (6), and (7) can be solved by the
following iterative scheme. Firstly, we make an initial guess
for Rτ1,τ2 (ρ, �p) from the zero temperature condition, i.e.,

R0
τ1,τ2

(ρ, �p) = 2Cτ1,τ2

ρ0

∫
d3p′

2
h3 �(pf (τ2) − p′)
1 + ( �p − �p′)2/�2

, (8)

where pf (τ ) = h̄(3π2ρτ )1/3 is the Fermi momentum. The
right hand side of Eq. (8) is not related to the chemical
potential µτ and thus the initial form of the single nu-
cleon energy ε0(ρ, T , δ, �p, τ ) can be obtained. Secondly,
substitute ε0(ρ, T , δ, �p, τ ) into Eq. (7) to obtain the initial
chemical potential µ0

τ for protons and neutrons. Then, use
ε0(ρ, T , δ, �p, τ ) and µ0

τ to obtain new Rτ1,τ2 (ρ, �p) function,
namely, R1

τ1,τ2
(ρ, �p) from Eqs. (4) and (6). This in turn gives

the new single nucleon energy ε1(ρ, T , δ, �p, τ ) from Eq. (5)
and then the new chemical potential µ1

τ can be obtained from
Eq. (7). The cycle is repeated and a few iterations are sufficient
to achieve convergence for the chemical potential µτ with
enough accuracy. It should be mentioned that the neutron
and proton chemical potentials are coupled with each other in
asymmetric nuclear matter and thus the convergence condition
must be satisfied simultaneously for neutrons and protons.

With the self-consistency iteration, we can finally obtain
the chemical potential µτ and the single nucleon energy
ε(ρ, T , δ, �p, τ ) for an asymmetric nuclear matter at thermal
equilibrium with a finite temperature T . The potential energy
density V (ρ, T , δ) of the thermal equilibrium asymmetric
nuclear matter then can be calculated from Eq. (1) and the
energy per nucleon E(ρ, T , δ) is then obtained as

E(ρ, T , δ) = 1

ρ

[
V (ρ, T , δ) +

∑
τ

∫
d3p

p2

2mτ

fτ (�r, �p)

]
. (9)

Furthermore, we can obtain the entropy per nucleon
Sτ (ρ, T , δ) of the thermal equilibrium asymmetric nuclear
matter as

Sτ (ρ,T ,δ) = − 8π

ρh3

∫ ∞

0
p2[nτ lnnτ + (1 − nτ ) ln(1 − nτ )]dp

(10)

with the occupation probability

nτ = 1

exp( ε(ρ,T ,δ, �p,τ )−µτ

T
) + 1

. (11)

Finally, the free energy per nucleon F (ρ, T , δ) of the thermal
equilibrium asymmetric nuclear matter can be obtained from
the thermodynamic relation

F (ρ, T , δ) = E(ρ, T , δ) − T
∑

τ

Sτ (ρ, T , δ). (12)

FIG. 1. (Color online) Density dependence of the energy per
nucleon E (left panel) and free energy per nucleon F (right panel)
for symmetric nuclear matter at T = 0 MeV, 5 MeV, 10 MeV, and
15 MeV with the MDI interaction.

Using the MDI interaction, we can now calculate the energy
per nucleon E(ρ, T , δ) and free energy per nucleon F (ρ, T , δ)
of nuclear matter at finite temperature from Eqs. (9) and (12).
Shown in Fig. 1 is the density dependence of E(ρ, T , δ) and
F (ρ, T , δ) for symmetric nuclear matter at T = 0 MeV, 5 MeV,
10 MeV, and 15 MeV using the MDI interaction with x = 0
and −1. For symmetric nuclear matter (δ = 0), the parameter
x = 0 would give the same results as the parameter x = −1 as
we have discussed above, and thus the curves shown in Fig. 1
are the same for x = 0 and −1. From Fig. 1, one can see that
the energy per nucleon E(ρ, T , δ) increases with increasing
temperature T while the free energy per nucleon F (ρ, T , δ)
decreases with increment of T . The increment of the energy per
nucleon E(ρ, T , δ) with the temperature reflects the thermal
excitation of the nuclear matter due to the change of the phase-
space distribution function fτ (�r, �p). With the increment of
the temperature, more nucleons move to higher momentum
states and thus lead to larger internal energy per nucleon. On
the other hand, the decrement of the free energy per nucleon
F (ρ, T , δ) with T is mainly due to the increment of the entropy
per nucleon with increasing temperature. This feature also
implies that the increment of T S(ρ, T ) with T is larger than
the increment of E(ρ, T ) with T . Furthermore, the temperature
effects are seen to be stronger at lower densities while they
become much weaker at higher densities. At lower densities,
the Fermi momentum pf (τ ) is smaller and thus temperature
effects on the energy per nucleon E(ρ, T , δ) are expected to be
stronger. Meanwhile, the entropy per nucleon becomes larger
at lower densities where the particles become more free in
phase space and thus leads to a smaller free energy per nucleon.

Similarly, shown in Fig. 2 are the density dependence
of the E(ρ, T , δ) and F (ρ, T , δ) for pure neutron matter at
T = 0 MeV, 5 MeV, 10 MeV, and 15 MeV using the MDI
interaction with x = 0 and −1. The temperature dependence
of the E(ρ, T , δ) and F (ρ, T , δ) for pure neutron matter is seen
to be similar to that of the symmetric nuclear matter as shown in
Fig. 1. However, the parameters x = 0 and −1 display different
density dependence for the energy per nucleon E(ρ, T , δ) and
free energy per nucleon F (ρ, T , δ), which just reflects that the
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FIG. 2. (Color online) Same as Fig. 1 but for pure neutron matter
using the MDI interaction with x = 0 (solid lines) and −1 (dashed
lines).

parameters x = 0 and −1 give different density dependence
of the nuclear symmetry energy and symmetry free energy as
will be discussed in the following.

III. NUCLEAR SYMMETRY ENERGY AND
SYMMETRY FREE ENERGY

As in the case of zero temperature, phenomenological and
microscopic studies [13,14] indicate that the equation of state
of hot neutron-rich matter at density ρ, temperature T , and an
isospin asymmetry δ can also be written as a parabolic function
of δ, i.e.,

E(ρ, T , δ) = E(ρ, T , δ = 0) + Esym(ρ, T )δ2 + O(δ4). (13)

The temperature and density dependent symmetry energy
Esym(ρ, T ) for hot neutron-rich matter can thus be ex-
tracted from Esym(ρ, T ) ≈ E(ρ, T , δ = 1) − E(ρ, T , δ = 0).
The symmetry energy Esym(ρ, T ) is the energy cost to convert
all protons in symmetry matter to neutrons at the fixed
temperature T and density ρ. In order to check the empirical
parabolic law Eq. (13) for the MDI interaction, we show
in Fig. 3E(ρ, T , δ) − E(ρ, T , δ = 0) as a function of δ2 at
temperature T = 0 MeV, 5 MeV, 10 MeV, and 15 MeV for
three different baryon number densities ρ = 0.5ρ0, 1.5ρ0 and
2.5ρ0 using the MDI interaction with x = 0. The clear linear
relation between E(ρ, T , δ) − E(ρ, T , δ = 0) and δ2 shown
in Fig. 3 indicates the validity of the empirical parabolic law
Eq. (13) for the hot neutron-rich matter. We note that the
empirical parabolic law Eq. (13) is also well satisfied for the
parameter x = −1.

Similarly, we can define the symmetry free energy
Fsym(ρ, T ) by the following parabolic approximation to the
free energy per nucleon

F (ρ, T , δ) = F (ρ, T , δ = 0) + Fsym(ρ, T )δ2 + O(δ4). (14)

The temperature and density dependent symmetry free energy
Fsym(ρ, T ) for hot neutron-rich matter can thus be extracted
from Fsym(ρ, T ) ≈ F (ρ, T , δ = 1) − F (ρ, T , δ = 0) which is
just the free energy cost to convert all protons in symmetry
matter to neutrons at the fixed temperature T and density ρ.

(a) (b)

(c) (d)

FIG. 3. (Color online) E(ρ, T , δ) − E(ρ, T , δ = 0) as a function
of δ2 at temperature T = 0 MeV (a), 5 MeV (b), 10 MeV (c), and
15 MeV (d) for three different baryon number densities ρ =
0.5ρ0, 1.5ρ0 and 2.5ρ0 using the MDI interaction with x = 0.

In order to check if the empirical parabolic law is also valid
for the free energy per nucleon of hot neutron-rich matter, we
show in Fig. 4 F (ρ, T , δ) − F (ρ, T , δ = 0) as a function of δ2

at temperature T = 0 MeV, 5 MeV, 10 MeV, and 15 MeV for
three different baryon number densities ρ = 0.5ρ0, 1.5ρ0, and
2.5ρ0 using the MDI interaction with x = 0. One can see from
Fig. 4 that the parabolic law Eq. (14) is also approximately
satisfied though at low densities and high temperatures, the
linear relation between F (ρ, T , δ) − F (ρ, T , δ = 0) and δ2 is
violated slightly. For the parameter x = −1, we also obtained
the similar conclusion.

In Fig. 5, we show the density dependence of the symmetry
energy Esym(ρ, T ) and the symmetry free energy Fsym(ρ, T )
at T = 0 MeV, 5 MeV, 10 MeV, and 15 MeV using the MDI

(c)

(a) (b)

(d)

FIG. 4. (Color online) Same as Fig. 3 but for the free energy per
nucleon F (ρ, T , δ).
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FIG. 5. (Color online) Density dependence of the symmetry
energy Esym(ρ, T ) (left panel) and the symmetry free energy
Fsym(ρ, T ) (right panel) at T = 0 MeV, 5 MeV, 10 MeV and 15 MeV
using the MDI interaction with x = 0 and −1.

interaction with x = 0 and −1. For different choice of the
parameter x = 0 and −1, Esym(ρ, T ) and Fsym(ρ, T ) display
different density dependence with x = 0 (−1) giving larger
(smaller) values for the symmetry energy and the symmetry
free energy at lower densities while smaller (larger) ones
at higher densities for a fixed temperature. Similar to the
E(ρ, T , δ) and F (ρ, T , δ) as shown in Figs. 1 and 2, the
temperature effects on the symmetry energy Esym(ρ, T ) and
the symmetry free energy Fsym(ρ, T ) are found to be stronger
at lower densities while they become much weaker at higher
densities.

Interestingly, we can see from Fig. 5 that the sym-
metry energy Esym(ρ, T ) and the symmetry free energy
Fsym(ρ, T ) exhibit opposite temperature dependence, namely,
with increasing temperature T ,Esym(ρ, T ) decreases while
Fsym(ρ, T ) increases. This also means that Fsym(ρ, T ) always
has larger values than Esym(ρ, T ) at fixed density and temper-
ature since they are identical at zero temperature. At higher
temperatures, one expects the symmetry energy Esym(ρ, T ) to
decrease as the Pauli blocking (a pure quantum effect) becomes
less important when the nucleon Fermi surfaces become more
diffused at increasingly higher temperatures [13–15]. On the
other hand, the symmetry free energy Fsym(ρ, T ) is related
to the entropy per nucleon of the asymmetric nuclear matter,
which is not a pure quantum effect, and its increment with
increasing temperature can be understood by the following
expression:

Fsym(ρ, T ) = Esym(ρ, T ) + T [Sn(ρ, T , δ = 0)

+ Sp(ρ, T , δ = 0)] − T Sn(ρ, T , δ = 1). (15)

The first term of the right hand side in Eq. (15) is the
symmetry energy Esym(ρ, T ), which decreases with increasing
temperature as discussed above. However, the total entropy
per nucleon of the symmetric nuclear matter is larger than
that of the pure neutron matter and their difference becomes
larger with increasing temperature, which leads to a positive
value for the difference between the last two terms of the
right hand side in Eq. (15). Therefore, Fsym(ρ, T ) has larger
values than Esym(ρ, T ) at fixed density and temperature.

(a)

(b)

(c)

FIG. 6. (Color online) Temperature dependence of the symmetry
energy Esym(ρ, T ) as well as its potential energy part and kinetic
energy part using MDI interaction with x = 0 at ρ = ρ0 (a), 0.5ρ0

(b), and 0.1ρ0 (c).

Furthermore, the increment of T S(ρ, T ) with T is stronger
than the increment of E(ρ, T ) with T as mentioned above,
and the combinational effects thus cause the symmetry free
energy Fsym(ρ, T ) increase with increasing temperature.

Within the present self-consistent thermal model, because
the single particle potential is momentum dependent with the
MDI interaction, the potential part of the symmetry energy is
expected to be temperature dependent. It is thus interesting
to study how the potential and kinetic parts of the symmetry
energy Esym(ρ, T ) may vary respectively with temperature.
However, for the symmetry free energy Fsym(ρ, T ), one
cannot separate its potential and kinetic parts since Fsym(ρ, T )
depends on the entropy that is determined by the phase
space distribution function. Figure 6 displays the temperature
dependence of the symmetry energy Esym(ρ, T ) as well as its
potential and kinetic energy parts using the MDI interaction
with x = 0 at ρ = ρ0, 0.5ρ0, and 0.1ρ0. With the parameter
x = −1, the same conclusion is obtained. It is seen that both
the symmetry energy Esym(ρ, T ) and its potential energy part
decrease with increasing temperature at all three densities
considered. While the kinetic energy part of the Esym(ρ, T )
increases slightly with increasing temperature for ρ = ρ0

and 0.5ρ0 and decreases for ρ = 0.1ρ0. These features are
uniquely determined by the momentum dependence in the
MDI interaction within the present self-consistent thermal
model. The decrement of the kinetic energy part of the
symmetry energy with temperature at very low densities is
consistent with predictions of the Fermi gas model at high
temperatures and/or very low densities [15,26]. In the study
of Ref. [15] using the simplified degenerate Fermi gas model
the potential part of the symmetry energy was assumed to
be temperature independent for simplicity. The decrease of
the symmetry energy observed there is thus completely due
to the decrease in the kinetic contribution. However, we note
that the temperature dependence of the total symmetry energy
Esym(ρ, T ) is consistent with each other for the two models.
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This is due to the fact that the phase space distribution function
will vary self-consistently according to if the single particle
potential is or not momentum dependent. From the present self-
consistent thermal model with momentum dependent MDI
interaction, our results indicate that the decreasing symmetry
energy with increasing temperature is essentially due to the
decrement of its potential contribution.

IV. ISOTOPIC SCALING IN HEAVY-ION COLLISIONS

It has been observed experimentally and theoretically in
many types of reactions that the ratio R21(N,Z) of yields of a
fragment with proton number Z and neutron number N from
two reactions reaching about the same temperature T satisfies
an exponential relationship R21(N,Z) ∝ exp(αN ) [27–38].
Particularly, in several statistical and dynamical models under
some assumptions [34–36], it has been shown that the scaling
coefficient α is related to the symmetry energy Csym(ρ, T ) via

α = 4Csym(ρ, T )

T
� [(Z/A)2], (16)

where �[(Z/A)2] ≡ (Z1/A1)2 − (Z2/A2)2 is the difference
between the (Z/A)2 values of the two fragmenting sources
created in the two reactions.

As mentioned in Ref. [15], however, because of the different
assumptions used in the various derivations, the validity of
Eq. (16) is still disputable as to whether and when the Csym

is actually the symmetry energy or the symmetry free energy.
Moreover, the physical interpretation of the Csym(ρ, T ) is also
not clear, sometimes even contradictory, in the literature. The
main issue is whether the Csym measures the symmetry energy
of the fragmenting source or that of the fragments formed
at freeze-out. This ambiguity is also due to the fact that the
derivation of Eq. (16) is not unique. In particular, within
the grand canonical statistical model for multifragmentation
[34,35] the Csym refers to the symmetry energy of primary
fragments. While within the sequential Weisskopf model in the
grand canonical limit [34] it refers to the symmetry energy of
the emission source. Following the arguments in Ref. [15], we
assume in the present work that the Csym reflects the symmetry
energy of bulk nuclear matter for the emission source.

In Fig. 7, we show the symmetry energy Esym(ρ, T ) and
symmetry free energy Fsym(ρ, T ) as a function of temperature
using MDI interaction with x = 0 and −1 at different densities
from 0.1ρ0 to ρ0. The temperature dependence of the symmetry
energy Esym(ρ, T ) is seen to be very similar to that in
Ref. [15] where a simplified degenerate Fermi gas model
at finite temperatures has been used. The symmetry energy
does not change much with the temperature at a given density,
especially around the saturation density ρ0. Furthermore, it
is seen that while the symmetry energy Esym(ρ, T ) deceases
slightly with the increasing temperature at a given density, the
symmetry free energy Fsym(ρ, T ) increases instead. Around
the saturation density ρ0, it is found that the difference between
the symmetry energy Esym(ρ, T ) and the symmetry free
energy Fsym(ρ, T ) is quite small, i.e., only several percents,
though at higher temperature, compared with their values
at T = 0 MeV. This feature confirms the assumption on

FIG. 7. (Color online) Temperature dependence of the symmetry
energy (solid lines) and symmetry free energy (dashed lines) using
MDI interaction with x = 0 (left panel) and −1 (right panel) at
different densities from 0.1ρ0 to ρ0. The experimental data from
Texas A&M University (solid squares) and the INDRA-ALADIN
Collaboration at GSI (open squares) are included for comparison.

identifying Csym(ρ, T ) to Esym(ρ, T ) at lower temperatures
and not so low densities [28–30]. At low densities, on the
other hand, the symmetry free energy Fsym(ρ, T ) exhibits
a stronger temperature dependence and it is significantly
larger than the symmetry energy Esym(ρ, T ) at moderate and
high temperatures. This is due to the fact that the entropy
contribution to the symmetry free energy Fsym(ρ, T ) becomes
stronger at low densities as mentioned in Secs. II and III.
It should be noted that, at low densities the entropy may be
affected strongly by the clustering effects [33,39] which are
not included in the present work.

Experimentally, the temperature T and scaling coefficient
α (thus the Csym) of the fragment emission source can be
directly measured while the determination of the density of
emission source usually depends on the model used. Also
included in Fig. 7 are the experimental data of the measured
temperature dependent symmetry energy from Texas A&M
University (TAMU) (solid squares) [30] and the INDRA-
ALADIN Collaboration at GSI (open squares) [31,32]. From
Fig. 7, it is seen clearly that the experimentally observed
evolution of the symmetry energy is mainly due to the change
in density rather than temperature, as shown in Ref. [15].
Meanwhile, we can estimate from Fig. 7 the average freeze-out
density of the fragment emission source from the measured
temperature dependent symmetry energy based on the isotopic
scaling analysis in heavy-ion collisions. In particular, using the
symmetry energy Esym(ρ, T ) from the MDI interaction with
x = 0, we find the average freeze-out density of the fragment
emission source ρf is between about 0.41ρ0 and 0.52ρ0 for
TAMU data while about 0.42ρ0 and 0.75ρ0 for INDRA-
ALADIN Collaboration data. On the other hand, using the
symmetry energy Esym(ρ, T ) from the MDI interaction with
x = −1, the ρf is found to be between about 0.57ρ0 and
0.68ρ0 for TAMU data while about 0.58ρ0 and 0.84ρ0 for
INDRA-ALADIN Collaboration data. It is interesting to see
that the extracted values of ρf from the MDI interaction with
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x = 0 is very similar to those extracted in Ref. [30] using
different models.

Furthermore, if the symmetry free energy Fsym(ρ, T ) from
the MDI interaction with x = 0 is used to estimate the
ρf , we find the ρf is between about 0.36ρ0 and 0.49ρ0

for TAMU data and about 0.33ρ0 and 0.72ρ0 for INDRA-
ALADIN Collaboration data. While if the symmetry free
energy Fsym(ρ, T ) from the MDI interaction with x = −1 is
used, the ρf is between about 0.52ρ0 and 0.66ρ0 for TAMU
data and about 0.51ρ0 and 0.83ρ0 for INDRA-ALADIN
Collaboration data. Therefore, the extracted ρf values are
not sensitive to if the measured Csym(ρ, T ) is the symmetry
energy or the symmetry free energy. However, the extracted ρf

values are indeed sensitive to the x parameter used in the MDI
interaction, namely, the density dependence of the symmetry
energy. We note that the zero-temperature symmetry energy for
the MDI interaction with x = 0 and −1 can be parametrized,
respectively, as 31.6(ρ/ρ0)0.69 MeV and 31.6(ρ/ρ0)1.05 MeV
[11]. Therefore, the isotopic scaling in heavy-ion collisions
provides a potential good probe for the density dependence of
the nuclear matter symmetry energy once the average density
of the emission source has been determined in the isotopic
scaling measurement, as pointed out in Ref. [15].

V. SUMMARY

Within a self-consistent thermal model using the isospin
and momentum dependent MDI interaction with x = 0 and
−1 constrained by the isospin diffusion data in heavy-ion
collisions, we have investigated the temperature dependence of
the nuclear matter symmetry energy Esym(ρ, T ) and symmetry
free energy Fsym(ρ, T ). It is shown that the nuclear matter
symmetry energy Esym(ρ, T ) generally decreases with increas-
ing temperature while the symmetry free energy Fsym(ρ, T )
exhibits opposite temperature dependence. The decrement of
the symmetry energy with temperature is essentially due to the
decrement of the potential energy part of the symmetry energy
with temperature. The temperature effects on the nuclear
matter symmetry energy and symmetry free energy are found
to be stronger at lower densities while become much weaker

at higher densities. Furthermore, the difference between the
nuclear matter symmetry energy Esym(ρ, T ) and symmetry
free energy Fsym(ρ, T ) is found to be quite small around
nuclear saturation density, although significantly large at very
low densities.

Comparing the theoretical density and temperature de-
pendent symmetry energy Esym(ρ, T ) with the Csym(ρ, T )
parameter extracted from the isotopic scaling data from
TAMU and the INDRA-ALADIN Collaboration at GSI, we
found that the experimentally observed evolution of the
symmetry energy is mainly due to the change in density
rather than temperature, as shown in the previous work [15].
Meanwhile, we have estimated the average freeze-out density
of the fragment emission source formed in these reactions by
comparing the calculated Esym(ρ, T ) or Fsym(ρ, T ) with the
measured Csym(ρ, T ). Our results indicate that the extracted
average freeze-out densities are not sensitive to whether
the experimentally measured Csym(ρ, T ) parameter is the
symmetry energy Esym(ρ, T ) or the symmetry free energy
Fsym(ρ, T ) in the temperature and density ranges reached in
the TAMU and INDRA/GSI experiments. They are, however,
sensitive to the x parameter used in the MDI interaction,
namely, the density dependence of the symmetry energy.
Therefore the isotopic scaling in heavy-ion collisions provides
a potentially good probe for the density dependence of the
nuclear matter symmetry energy provided the average density
of the emission source can be determined simultaneously in
the isotopic scaling measurements.
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