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Recently, we developed a mean-field-type framework that treats the correlation induced by the tensor force.
We treat the tensor correlation by introducing intrinsic single-particle states with parity and charge mixing. We
make a total wave function with definite charge number and good parity by performing the charge number and
parity projections. Taking a variation of the total energy calculated with the projected wave function, we obtain a
Hartree-Fock-like equation (charge- and parity-projected Hartree-Fock equation). We extend further the charge-
and parity-projected Hartree-Fock method to include a three-body force, which is important to reproduce the
saturation property of nuclei in a mean-field framework. We apply the charge- and parity-projected Hartree-Fock
method to sub-closed-shell oxygen isotopes (14O, 16O, 22O, 24O, and 28O) to study the effect of the tensor
correlation and its dependence on neutron number. We obtain reasonable binding energies and matter radii
for these nuclei. It is found that relatively large energy gains come from the tensor force in these isotopes and
further the blocking effect on the tensor correlation arises due to additional neutrons.
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I. INTRODUCTION

The tensor force plays important roles in nuclear structure.
The study of nuclear matter with the Brueckner theory
showed that the tensor force has a large effect on the binding
mechanism and provides the saturation property of nuclear
matter [1]. The variational calculations with very large model
space exhibit a large attractive energy comes from the tensor
force [2,3]. The tensor force seems to be responsible for
about a half of the single-particle spin-orbit splitting in light
nuclei [4–6].

Recently due to the development of experimental tech-
niques, we have an access to various kinds of unstable
nuclei experimentally. Those experiments reveal that the shell
structures of unstable nuclei may change from those of stable
nuclei [7,8]. Considering the importance of the tensor force
in nuclear structure, the tensor force probably has an effect
on such structure changes of nuclei [9]. Therefore, the study
of the effect of the tensor force in neutron-rich nuclei is very
important.

To study the effect of the tensor force in medium and
heavy mass regions in the nuclear chart, including unstable
nuclei, we developed a theoretical framework based on a
mean-field-type model [10–13]. One of the most important
tensor correlation in closed-shell nuclei is expressed in two-
particle–two-hole (2p2h) configuration mixing. In a usual
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Hartree-Fock calculation, the 2p2h correlation induced by the
tensor force cannot be treated properly. The effect of the tensor
force is thought to be included effectively in other kinds of
forces like the central, LS, and density-dependent forces in
the usual Hartree-Fock calculations. To treat the tensor force
explicitly, we introduce intrinsic single-particle states with
parity and charge mixing considering the pseudoscalar and
isovector characters of the pion, which mediates the tensor
force [10,11]. Because the total wave function made of such
single-particle states with parity and charge mixing does not
have a good parity and a definite charge number, we perform
the parity and charge number projections before variation
[12,13]. We call this method the charge- and parity-projected
Hartree-Fock (CPPHF) method. In the previous studies we
applied the CPPHF method to the α particle and showed that
the tensor correlation can be treated in the CPPHF method. The
CPPHF method was also applied to 8Be to study the effect of
the tensor force on α clustering [14].

There are other attempts to treat the tensor correlation by
expanding usual model spaces like a mean-field model [15],
a shell model [6], and antisymmetrized molecular dynamics
(AMD) [16]. Those studies, including ours, showed the impor-
tance of the 2p2h configuration mixing and high-momentum
components in single-particle states, which are not treated
in usual model-space calculations. Neff and his collaborators
took a different approach to treat the tensor correlation [17].
They used the unitary correlation operator method (UCOM)
to make an effective interaction in a moderate model space.
In their effective interaction, the attractive correlation by the
tensor force is included in other forces like the central and LS
forces. They performed the calculations up to the second-order
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perturbation based on Hartree-Fock calculations using their
effective interaction and obtained a nice reproduction of
binding energies over the whole mass region [18]. Otsuka
and his collaborators [9] showed that a particle-hole (ph)
correlation by the tensor force is also important and changes
single-particle spin-orbit splittings of neutron (proton) orbits
with proton (neutron) numbers. This effect of the tensor force
was discussed in Hartree-Fock calculations in the literature
[19,20].

In the present article, we apply the CPPHF method to
sub-closed-shell oxygen isotopes, 14O, 16O, 22O, 24O, and
28O, which are assumed to have sub-closed-shell structures
for neutron orbits up to 0p3/2, 0p1/2, 0d5/2, 1s1/2, and 0d3/2

respectively, to see the dependence of the correlation induced
by the tensor force on neutron number. We extend the CPPHF
method to treat a three-body force, which is needed to
reproduce the saturation property of nuclei with large mass
numbers. In Sec. II we explain the CPPHF method with a
three-body force. In Sec. III the results of the CPPHF method
are presented. In Sec. IV we summarize the article.

II. CHARGE- AND PARITY-PROJECTED HARTREE-FOCK
METHOD WITH A THREE-BODY FORCE

In this section we formulate the CPPHF method in the case
where a three-body force exists. A Hamiltonian for an A-body
system with two-body and three-body forces can be written as

Ĥ =
A∑

a=1

t̂(xa) +
A∑

a>b=1

v̂(2)(xa, xb) +
A∑

a>b>c=1

v̂(3)(xa, xb, xc),

(1)

where t̂ , v̂(2), and v̂(3) are one-body, two-body, and three-body
operators, respectively. x’s are coordinates that include spin
and isospin. In the CPPHF method, we assume as single-
particle states the ones with parity and charge mixing. It means
each single-particle wave function has both positive-parity
and negative-parity components and both proton and neutron
components. The single-particle wave function that consists
of these four components has the following form,

ψα(x) =
∑
pα=±

∑
tzα=±1/2

ψpα,tzα (x). (2)

In the above equation, pα denotes parities, + for positive parity
and − for negative parity, and tzα denotes isospins, +1/2 for
proton and −1/2 for neutron. In the CPPHF method, we take
as a wave function of an A-body system a Slater determinant
that consists of the single-particle states with parity and charge
mixing,

� intr = 1√
A!

Â
A∏

a=1

ψαa
(xa). (3)

Here, Â is the antisymmetrization operator. Because � intr does
not have a good parity and a definite charge number, we need
to perform the projection operators of parity (±) and charge
number (Z) on � intr to obtain the wave function with a good

parity and a definite charge number;

�(±;Z) = P̂p(±)P̂c(Z)� intr. (4)

Here, P̂p(±) is the parity-projection operator, where P̂p(+)
projects out a positive-parity state and P̂p(−) projects out a
negative-parity one. P̂c(Z) is the charge-number-projection
operator, which projects out a wave function with a charge
number Z. Therefore, �(±;Z) has a good parity (±) and a
definite charge number (Z). The parity projection operator
P̂p(±) is defined as

P̂p(±) = 1 ± P̂

2

(
P̂ =

A∏
a=1

p̂a

)
, (5)

where the total parity operator P̂ is the product of the
parity operator p̂a for each single-particle state. The charge
projection operator P̂c(Z) is defined as

P̂c(Z) = 1

2π

∫ 2π

0
dθei(Ẑ−Z)θ

= 1

2π

∫ 2π

0
dθe−iZθ Ĉ(θ )

(
Ẑ =

A∑
a=1

1 + τ 3
a

2

)
, (6)

where Ẑ is the charge number operator, which is the sum of
the single-particle proton projection operator (1 + τ 3

a )/2, and
the charge-rotation operator is defined as Ĉ(θ ) = eiẐθ .

We take the expectation value for the Hamiltonian Ĥ with
the projected wave function and obtain the energy functional,

E(±;Z) = 〈�(±;Z)|Ĥ |�(±;Z)〉
〈�(±;Z)|�(±;Z)〉

= 〈� intr|Ĥ |P̂p(±)P̂c(Z)� intr〉
〈� intr|P̂p(±)P̂c(Z)� intr〉

=
1

4π

∫ 2π

0 dθe−iZθ [E(0)(θ ) ± E(P)(θ )]
1

4π

∫ 2π

0 dθe−iZθ [n(0)(θ ) ± n(P)(θ )]
. (7)

The denominator in the right-hand side of the above
equation is the normalization of the total wave function,

n(±;Z) ≡ 〈�(±;Z)|�(±;Z)〉

= 1

4π

∫ 2π

0
dθe−iZθ [n(0)(θ ) ± n(P)(θ )]. (8)

Here, n(0)(θ ) is the determinant of the norm matrix between
the original single-particle wave functions ψαa

and the charge-
rotated single-particle wave functions ψαa

(θ ). n(P)(θ ) is the
determinant of the norm matrix between the original single-
particle wave functions ψαa

and the parity-inverted and charge-
rotated single-particle wave functions ψ

(p)
αa

(θ ).

n(0)(θ ) ≡ 〈� intr|Ĉ(θ )|� intr〉 = det B(0)(θ )[
B(0)(θ )ab ≡ 〈

ψαa

∣∣ψαb
(θ )

〉]
,

(9)
n(P)(θ ) ≡ 〈� intr|P̂ Ĉ(θ )|� intr〉 = det B(P)(θ )[

B(P)(θ )ab ≡ 〈
ψαa

∣∣ψ (p)
αb

(θ )
〉]
.

The charge-rotated wave function ψαa
(xb; θ ) and the parity-

inverted and charge-rotated wave function ψ
(p)
αa

(xb; θ ) are
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defined as

ψαa
(xb; θ ) ≡ eiθ(1+τ 3

b )/2ψαa
(xb)

= eiθψpα=+,tzα=1/2(xb) + eiθψpα=−,tzα=1/2(xb)

+ψpα=+,tzα=−1/2(xb) + ψpα=−,tzα=−1/2(xb),

(10)

ψ (p)
αa

(xb; θ ) ≡ p̂be
iθ(1+τ 3

b )/2ψαa
(xb)

= eiθψpα=+,tzα=1/2(xb) − eiθψpα=−,tzα=1/2(xb)

+ψpα=+,tzα=−1/2(xb) − ψpα=−,tzα=−1/2(xb),

(11)

where p̂b is the single-particle parity operator in Eq. (5) and
(1 + τ 3

b )/2 is the single-particle proton projection operator in
Eq. (6).

The numerator in the right-hand side of Eq. (7) is the
unnormalized total energy,

〈�(±;Z)|Ĥ |�(±;Z)〉 ≡ 1

4π

∫ 2π

0
dθe−iZθ [E(0)(θ ) ± E(P)(θ )].

(12)

E(0)(θ ) in the right-hand side of Eq. (12) has a similar form
as a simple Hartree-Fock energy but the single-particle wave
functions in the ket are modified by the charge rotation,

E(0)(θ ) ≡ 〈
� intr

∣∣Ĥ Ĉ(θ )
∣∣� intr

〉
=

A∑
a=1

〈
ψαa

∣∣t̂∣∣ψ̃αa
(θ )

〉
+

A∑
a>b=1

〈
ψαa

ψαb

∣∣v̂(2)
∣∣ ̂ψ̃αa

(θ )ψ̃αb
(θ )

〉
+

A∑
a>b>c=1

〈
ψαa

ψαb
ψαc

∣∣v̂(3)
∣∣ ̂ψ̃αa

(θ )ψ̃αb
(θ )ψ̃αc

(θ )
〉
.

(13)

Here, ψ̃αa
(x; θ ) is the superposition of ψαa

(x; θ ) weighted by
the inverse of the charge-rotated norm matrix [B(0)(θ )−1]ba ,

ψ̃αa
(x; θ ) =

A∑
b=1

ψαb
(x; θ )[B(0)(θ )−1]ba. (14)

This summation for ψαb
(x; θ ) comes from the antisymmetriza-

tion of the total wave function. The hats in the last two terms
represent the antisymmetrization as∣∣ ̂ψ̃αa

(θ )ψ̃αb
(θ )

〉 = ∣∣ψ̃αa
(θ )ψ̃αb

(θ ) − ψ̃αb
(θ )ψ̃αa

(θ )
〉
,

(15)∣∣ ̂ψ̃αa
(θ )ψ̃αb

(θ )ψ̃αc
(θ )

〉 = ∣∣ψ̃αa
(θ )ψ̃αb

(θ )ψ̃αc
(θ )

+ ψ̃αb
(θ )ψ̃αc

(θ )ψ̃αa
(θ )

+ ψ̃αc
(θ )ψ̃αa

(θ )ψ̃αb
(θ )

− ψ̃αa
(θ )ψ̃αc

(θ )ψ̃αb
(θ )

− ψ̃αc
(θ )ψ̃αb

(θ )ψ̃αa
(θ )

− ψ̃αb
(θ )ψ̃αa

(θ )ψ̃αc
(θ )

〉
. (16)

E(0)(θ = 0) reduces to a simple Hartree-Fock energy. E(P)(θ )
in the right-hand side of Eq. (12) has a similar form as E(0)(θ )

but ψ̃αa
(θ )’s are replaced by ψ̃

(p)
αa

(θ )’s,

E(P)(θ ) ≡ 〈� intr|Ĥ P̂ Ĉ(θ )|� intr〉

=
A∑

a=1

〈
ψαa

∣∣t̂∣∣ψ̃ (p)
αa

(θ )
〉

+
A∑

a>b=1

〈
ψαa

ψαb

∣∣v̂∣∣ ̂
ψ̃

(p)
αa

(θ )ψ̃ (p)
αb

(θ )
〉

+
A∑

a>b>c=1

〈
ψαa

ψαb
ψαc

∣∣v̂∣∣ ̂
ψ̃

(p)
αa

(θ )ψ̃ (p)
αb

(θ )ψ̃ (p)
αc

(θ )
〉
.

(17)

Here, ψ̃
(p)
αa

(x; θ ) is the sum of ψ
(p)
αa

(x; θ ) weighted by the
inverse of the parity-inverted and charge-rotated norm matrix
[B(P)(θ )−1]ba ,

ψ̃ (p)
αa

(x; θ ) =
A∑

b=1

ψ (p)
αb

(x; θ )[B(P)(θ )−1]ba. (18)

We then take the variation of E(±;Z) with respect to a single-
particle wave function ψαa

,

δ

δψ
†
αa

(xa)

{
E(±;Z) −

A∑
b,c=1

εbc

〈
ψαb

∣∣ψαc

〉} = 0. (19)

The Lagrange multiplier εab is introduced to guarantee
the ortho-normalization of single-particle wave functions,
〈ψαa

|ψαb
〉 = δαa,αb

. As the result, we obtain the following
Hartree-Fock-like equation with the charge and parity pro-
jections (the CPPHF equation) for each ψαa

,

1

4π

∫ 2π

0
dθe−iZθ

(
n(0)(θ )

{
[ĥ(1)(xa; θ ) + ĥ(2)(xa; θ )

+ ĥ(3)(xa; θ )]ψ̃αa
(xa; θ ) − [E(±;Z) − E(0)(θ )]ψ̃αa

(xa; θ )

−
A∑

b=1

η
(0)
ba (θ )ψ̃αb

(xa; θ )

}
± n(P)(θ )

{
[ĥ(1)(p)(xa; θ )

+ ĥ(2)(p)(xa; θ ) + ĥ(3)(p)(xa; θ )]

− [E(±;Z) − E(P)(θ )]ψ̃ (p)
αa

(xa; θ )

−
A∑

b=1

η
(P)
ba (θ )ψ̃ (p)

αb
(xa; θ )

})
= n(±;Z)

A∑
b=1

εabψαb
(xa),

(20)

where a = 1, 2, . . . , A. Here, η
(0)
ab (θ ) and η

(P)
ab (θ ) are defined

as follows

η
(0)
ab (θ ) ≡ 〈

ψαa

∣∣t̂∣∣ψ̃αb
(θ )

〉 + A∑
c=1

〈
ψαa

ψαc

∣∣v̂(2)
∣∣ ̂ψ̃αb

(θ )ψ̃αc
(θ )

〉

+1

2

A∑
c,d=1

〈
ψαa

ψαc
ψαd

∣∣v̂(3)
∣∣ ̂ψ̃αb

(θ )ψ̃αc
(θ )ψ̃αd

(θ )
〉
,

(21)
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η
(P)
ab (θ ) ≡ 〈

ψαa

∣∣t̂∣∣ψ̃ (p)
αb

(θ )
〉 + A∑

c=1

〈
ψαa

ψαc

∣∣v̂(2)
∣∣ ̂
ψ̃

(p)
αb

(θ )ψ̃ (p)
αc

(θ )
〉

+1

2

A∑
c,d=1

〈
ψαa

ψαc
ψαd

∣∣v̂(3)
∣∣ ̂
ψ̃

(p)
αb

(θ )ψ̃ (p)
αc

(θ )ψ̃ (p)
αd

(θ )
〉
.

(22)

ĥ(1), ĥ(2), and ĥ(3) are the single-particle operators originated
from the one-body, two-body, and three-body operators, which
are defined as follows

ĥ(1)ψ̃αa
(xa; θ ) ≡ t̂(xa)ψ̃αa

(xa; θ ), (23)

ĥ(2)ψ̃αa
(xa; θ ) ≡

A∑
b=1

{〈
ψαb

∣∣v̂(2)(xa)
∣∣ψ̃αb

(θ )
〉
1ψ̃αa

(xa; θ )

− 〈
ψαb

∣∣v̂(2)(xa)
∣∣ψ̃αa

(θ )
〉
1ψ̃αb

(xa; θ )
}
, (24)

ĥ(3)ψ̃αa
(xa; θ ) ≡ 1

2

A∑
b,c=1

{〈
ψαb

ψαc

∣∣v̂(3)(xa)
∣∣ ̂ψ̃αb

(θ )ψ̃αc
(θ )

〉
1,2

× ψ̃αa
(xa; θ ) + 〈

ψαb
ψαc

∣∣v̂(3)(xa)

× ∣∣ ̂ψ̃αc
(θ )ψ̃αa

(θ )
〉
1,2ψ̃αb

(xa; θ )

+ 〈
ψαb

ψαc

∣∣v̂(3)(xa)
∣∣ ̂ψ̃αa

(θ )ψ̃αb
(θ )

〉
1,2

× ψ̃αc
(xa; θ )

}
. (25)

The expressions of ĥ(1)(p), ĥ(2)(p), and ĥ(3)(p) are obtained
from those of ĥ(1), ĥ(2), and ĥ(3) by replacing ψ̃α(x, θ ) with
ψ̃

(p)
α (x, θ ). The notation for the integration of the two-body

matrix elements,〈
ψαb

∣∣v̂(2)(xa)
∣∣ψαc

〉
1 =

∫
dx1ψ

†
αb

(x1)v̂(2)(xa, x1)ψαc
(x1), (26)

and that of the three-body matrix elements,〈
ψαb

ψαc

∣∣v̂(3)(xa)
∣∣ψαd

ψαe

〉
1,2 =

∫
dx1

∫
dx2ψ

†
αb

(x1)ψ†
αc

(x2)

× v̂(3)(xa, x1, x2)ψαd
(x1)

×ψαe
(x2) (27)

are introduced. The system of the coupled Eqs. (20) for a =
1, · · · , A are solved self-consistently.

We give here the expressions for the expectation value of
the kinetic energy 〈T̂ 〉(±;Z) with the center-of-mass correction,
that of the two-body potential energy 〈v̂(2)〉(±;Z), and that of
three-body potential energy 〈v̂(3)〉(±;Z).

〈T̂ 〉(±;Z) = 1

4πn(±;Z)

∫ 2π

0
dθe−iZθ

[
n(0)(θ )

×
{

A∑
a=1

〈
ψαa

∣∣t̂∣∣ψ̃αa
(θ )

〉 + A∑
a>b=1

〈
ψαa

ψαb

∣∣
× h̄2

AM
∇a · ∇b

∣∣ ̂ψ̃αa
(θ )ψ̃αb

(θ )
〉}

± n(P)(θ )

{
A∑

a=1

〈
ψαa

∣∣t̂∣∣ψ̃ (p)
αa

(θ )
〉 + A∑

a>b=1

〈
ψαa

ψαb

∣∣
× h̄2

AM
∇a · ∇b

∣∣ ̂
ψ̃

(p)
αa

(θ )ψ̃ (p)
αb

(θ )
〉}]

, (28)

〈v̂(2)〉(±;Z) = 1

4πn(±;Z)

∫ 2π

0
dθe−iZθ

×
A∑

a>b=1

[
n(0)(θ )

〈
ψαa

ψαb

∣∣v̂(2)
∣∣ ̂ψ̃αa

(θ )ψ̃αb
(θ )

〉
± n(P)(θ )

〈
ψαa

ψαb

∣∣v̂(2)
∣∣ ̂
ψ̃

(p)
αa

(θ )ψ̃ (p)
αb

(θ )
〉]
, (29)

〈v̂(3)〉(±;Z) = 1

4πn(±;Z)

∫ 2π

0
dθe−iZθ

×
A∑

a>b>c=1

[
n(0)(θ )

〈
ψαa

ψαb
ψαc

∣∣v̂(3)

× ∣∣ ̂ψ̃αa
(θ )ψ̃αb

(θ )ψ̃αc
(θ )

〉 ± n(P)(θ )
〈
ψαa

ψαb
ψαc

∣∣
× v̂(3)

∣∣ ̂
ψ̃

(p)
αa

(θ )ψ̃ (p)
αb

(θ )ψ̃ (p)
αc

(θ )
〉]
. (30)

III. APPLICATIONS TO SUB-CLOSED-SHELL OXYGEN
ISOTOPES

In this section, we apply the CPPHF method formulated
in the last section to the ground states of the sub-closed
oxygen isotopes, 14O, 16O, 22O, 24O, and 28O. The parities
of these nuclei in the ground states are positive. These
nuclei are assumed to have the closed-shell structure up
to 0p1/2 for proton and sub-closed or closed shells up to
0p3/2 (14O), 0p1/2 (16O), 0d5/2 (22O), 1s1/2 (24O), and 0d3/2

(28O) for neutron. Although 28O is know to be unbound
from the experiment, we calculate the nucleus to study the
shell-configuration dependence of the contribution from the
tensor force theoretically. We assume the spherical symmetry.
In this case, only the total angular momentum j is a good
quantum number of a single-particle state, because parities
and charges are mixed in intrinsic single-particle states. An
intrinsic wave function can be written in the following form,

� intr = Â
∏

0� j � jmax

∏
−j � m� j

∏
1� nj � nmax

j

ψnj jm(x). (31)

A single-particle wave function ψnj jm is composed of four
components, proton and positive parity, proton and negative
parity, neutron and positive parity, and neutron and negative
parity,

ψnj jm(x) =
∑

tz=± 1
2

[
φnj jl+tz (r)Yj l+m(�)ζ (tz)

+φnj jl−tz (r)Yj l−m(�)ζ (tz)
]
. (32)

Here, Yj lm(�) is the eigenfunction of the total angular
momentum j = l + s, ζ (tz) is the isospin wave function with
tz = 1/2 for proton and tz = −1/2 for neutron. l+ and l−
are the orbital angular momenta with positive parity and
negative parity, respectively. For example, l+ = 0 and l− = 1
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for j = 1/2, l+ = 2 and l− = 1 for j = 3/2, and so on.
Equation (32) indicates that in the present calculation assuming
the spherical symmetry only the correlations among the same
j orbits can be treated. It is a limitation of the CPPHF method
with the spherical symmetry. For the calculation of 16O four
single-particle states with j = 1/2 and two states with j = 3/2
are included. They correspond to πs1/2, νs1/2, πp1/2, and
νp1/2 for j = 1/2 and πp3/2 and νp3/2 for j = 3/2. Because
parities and charges are mixed in single-particle states such
a classification is approximately valid. For the calculation of
14O one state with j = 1/2 is subtracted and for the calculation
of 22O, 24O, and 28O new states with j = 5/2, j = 1/2, and
j = 3/2 are added one by one.

In the present study we use the modified Volkov force
no. 1 (MV1 force) [21] for the central force and the G3RS
force [22] for the noncentral forces. The MV1 force is the
modified version of the Volkov force no. 1 [23] and includes the
δ-function-type three-body force,

v̂(3)(xa, xb, xc) = t3δ(xa − xb)δ(xb − xc). (33)

The Majorana parameter in the MV1 force is fixed to 0.6.
The G3RS is determined from the nucleon-nucleon scattering
data. The effect of the tensor force is effectively included in
the MV1 force because the MV1 force is determined so as to
reproduce the binding energy of 16O in the absence of the tensor
force. The effect of the tensor force is thought to appear in the
3E channel of the central force as a medium range attraction.
Therefore, we multiply the medium range attraction part in the
3E channel of the central force by xC . We also multiply the
three-body-force part by x3B . The δ-function-type three-body
force in Eq. (33) reduces to the density-dependent two-body
force, 1

6 t3ρ[(xa + xb)/2][1 + Pσ (ab)/2]δ(xa − xb), for the
wave functions of even-even nuclei with time-reversal sym-
metry in the Hartree-Fock level [24]. Pσ is the spin-exchange
operator and ρ is a single-particle density. In this case the
density-dependent force only acts on the 3E channel. In the
MV1 force t3 is positive and the density-dependent force has
the repulsive effect on the 3E channel. The LS force determined
from the NN scattering data is usually weak to be used in a
mean field (Hartree-Fock) calculation. Hence, we multiply the
LS force by 2. In this case the strength of the LS force is
comparable to those adopted in the Skyrme forces and the
Gogny forces [25].

We also multiply the τ1 · τ2 part of the tensor force a numer-
ical factor xT as in the previous study [12], because the CPPHF
method is a mean-field-type calculation and can only take into
account the correlations induced by limited couplings among
single-particle states. Actually, in the spherical symmetry the
2p2h correlation which can be treated in the CPPHF method
is like (jp1jp2j

−1
h1

j−1
h2

) with jp1 = jh1 and jp2 = jh2 . However,
2p2h configurations with jp1 �= jh1 and jp2 �= jh2 are also
important [6,26]. Furthermore, other effects may enhance the
tensor correlation as mentioned in our previous article [12]. To
take into account such effects effectively, we take xT = 1.5 (the
strong tensor force case) in addition to xT = 1.0 (the normal
tensor force case). xC and x3B are determined to reproduce the
binding energy and the charge radius of 16O for each xT .

We expand single-particle wave functions in the Gaussian
basis as in the previous study [12]. The number of the Gaussian

basis used is 10 for each orbit with the minimum range
0.5 fm and the maximum range 10 fm. The CPPHF Eq. (20)
is solved by the gradient or the damped gradient method [27].
The convergence of the calculation is quite slow for the case
with a large difference between a proton number (Z) and a
neutron number (N ) as in 28O. To remedy it, the quadratic
constraint potential term [28] for Z,

〈� intr|λ
2

(Ẑ − Z)2|� intr〉, (34)

is added to the energy functional (7). The addition of the
constrained potential makes the convergence faster. The value
of λ is taken as 1000 MeV.

A. Results for 16O

We first take 16O as a typical example and show the effect
of the tensor force in the CPPHF method.

In Table I the results for 16O in the Hartree-Fock (HF)
and the CPPHF schemes are shown. In the HF scheme we fix
xT , xC , and x3B to 1.0. In the CPPHF scheme xC and x3B are
1.025 and 1.25 for the normal tensor force (xT = 1.0) case,
and 1.040 and 1.55 for the strong tensor force (xT = 1.5) case.
The root-mean-square charge radius Rc is calculated from

the proton root-mean-square radius Rp as Rc =
√
R2

p + 0.64.
This prescription for Rc corresponds to the assumption of the
charge radius of proton as 0.80 fm. In the HF calculation the
expectation value for the potential energy from the tensor force
VT is negligibly small. If we perform the charge and parity
projection before variation (the CPPHF case), VT comes out
to be a sizable value. It becomes about 10 MeV for the normal
tensor force case and about 40 MeV for the strong tensor
force case. This result indicates that the CPPHF method is
effective to treat the correlation from the tensor force. In the
CPPHF cases the kinetic energy T becomes larger than in the
HF case. In the CPPHF scheme, to gain the tensor correlation
energy the opposite-parity components compared to the simple
shell-model picture have to be mixed into single-particle states.
This mixing causes an over shell correlation and, as a result,
the kinetic energy becomes larger. A similar tendency is also
observed in the α-particle case [12,13].

In Figs. 1, 2, and 3 the intrinsic single-particle wave
functions in 16O with the strong tensor force (xT = 1.5) are
plotted. The wave functions plotted have proton components

TABLE I. Results for 16O in the HF and CPPHF method. xT is a
numerical factor multiplied to the τ1 · τ2 part of the tensor force. E

and T are the total energy and the total kinetic energy respectively.
VC, V3B, VT , VLS, and VCoul are the potential energies for the central,
the three-body force, the tensor force, the LS force, and the Coulomb
force, respectively. Those are give in the unit of MeV. Rc is the
root-mean-square charge radius in the unit of fm.

xT E T VC + V3B +
VCoul

VT VLS Rc

HF 1.0 −124.1 230.0 −353.2 0.0 −0.9 2.73
CPPHF 1.0 −127.1 237.1 −351.6 −11.7 −1.0 2.73
CPPHF 1.5 −127.6 253.9 −342.2 −38.3 −1.0 2.73
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FIG. 1. (Color online) Intrinsic single-particle wave function of
the j = 1/2 state with an s1/2 proton component as a dominant one
in 16O as a function of the radial distance R. The solid, dashed,
dotted, and dashed-dotted curves correspond to s1/2 proton, p1/2

proton, s1/2 neutron, and p1/2 neutron, respectively. P (−) and P (ν)
are the mixing probabilities of the negative-party and the neutron
components, respectively.

as dominant ones. The wave function in Fig. 1 has a
proton s1/2 component as a dominant component. The mixing
probabilities for negative parity (p1/2) and neutron are 19.5
and 27.4%, respectively. From the figure you can see that
the spread of the p1/2 components are smaller than that of
the s1/2 ones. It indicates that the opposite-parity components
induced by the tensor force have high-momentum components.
The wave function that has a proton p3/2 component as
a dominant one is plotted in Fig. 2 and the shrinkage of
d3/2 components compared to p3/2 ones are clearly seen also.
In the wave function that has a proton p1/2 component as a
dominant one, which is plotted in Fig. 3, the shrinkage is not so
clear compared to the previous two cases, probably because of
the orthogonality condition on the wave function with respect
to the first j = 1/2 state in Fig. 1.

FIG. 2. (Color online) Intrinsic single-particle wave function of
the j = 3/2 state with a p3/2 proton component as a dominant one
in 16O as a function of the radial distance R. The solid, dashed,
dotted and dashed-dotted curves correspond to d3/2 proton, p3/2

proton, d3/2 neutron, and p3/2 neutron, respectively. P (+) and P (ν)
are the mixing probabilities of the positive-party and the neutron
components, respectively.

FIG. 3. (Color online) Intrinsic single-particle wave function of
the j = 1/2 state with a p1/2 proton component as a dominant one
in 16O as a function of the radial distance R. The solid, dashed,
dotted, and dashed-dotted curves correspond to s1/2 proton, p1/2

proton, s1/2 neutron, and p1/2 neutron, respectively. P (+) and P (ν)
are the mixing probabilities of the positive-party and the neutron
components, respectively.

In the α-particle case, p1/2 components mixed into s1/2

ones are also compact in size [12,13,15]. The importance of
this shrinkage is confirmed in a shell-model calculation [6]
and the AMD calculation [16], too. The present result infers
that the shrinkage of the opposite-parity components induced
by the tensor force is generally important in heavier-mass re-
gion. There are also wave functions with a neutron component
as a dominant one. The general tendency just mentioned above
is almost the same if proton and neutron are interchanged.

In Fig. 4 the densities for 16O in the HF and CPPHF
calculations are shown. Because the tensor force induces the
opposite-parity components with narrower widths in single-
particle wave functions, the densities are depleted in the
middle in the CPPHF calculations compared to the one in
the HF calculation. This effect is larger for the case with
the strong tensor force as expected. To see the effect of the
tensor correlation more clearly, in Fig. 5 the charge form

FIG. 4. (Color online) Densities for 16O in the Hartree-Fock (HF)
and the CPPHF methods as a function of the radial distance (R).
The solid, the dashed, and the dotted curves correspond to the HF
calculation, the CPPHF calculation with the normal tensor force
(xT = 1.0), and the CPPHF calculation with the strong tensor force
(xT = 1.5).
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FIG. 5. (Color online) Absolute values of the charge form factor
for 16O in the HF and the CPPHF methods as a function of the
momentum squared (q2). The solid, the dashed, and the dotted curves
correspond to the HF calculation, the CPPHF calculation with the
normal tensor force (xT = 1.0), and the CPPHF calculation with the
strong tensor force (xT = 1.5).

factors are plotted as a function of the momentum squared.
From the figure, higher-momentum components appear in the
CPPHF calculation. It indicates that the tensor force enhances
the charge form factor in a high-momentum region. We need
further investigation to compare the present result of the charge
form factor in the CPPHF method with the experimental data,
taking into account other correlations that cannot be treated
in the present model like the short-range correlation and the
meson exchange current. The enhancement of the charge form
factor in a high-momentum region is also found in 4He in the
calculation with the charge- and parity-projected relativistic
mean-field model [13].

B. Results for the oxygen isotopes

In this subsection we show the results for the sub-closed-
shell oxygen isotopes.

In Fig. 6, the results for the binding energies per particle
in the HF calculation (the circle symbols), the CPPHF
calculation with the normal tensor force (xT = 1.0) (the
triangle symbols) and the CPPHF calculation with the strong
tensor force (xT = 1.5) (the diamond symbols) are shown.
The experimental data (the square symbols) [29] are also
plotted. The general tendency is reproduced in our result,
although the agreement with the experimental data is not as
good as the Hartree-Fock-type calculations [25,30–34]. The
HF calculation with the MV1 force underestimates the binding
energy of 14O and 22O a little bit largely. It indicates that
if we adopt the central and the density-dependent forces in
the recent sophisticated effective interaction, the agreement
with the experimental data should become better. There
is an ambiguity in the treatment of the density-dependent
force when we perform the parity and charge projections,
because the density-dependent force cannot be written in a
simple two-body operator form. It causes a difficulty when
we use the density-dependent force in the CPPHF calculation.
The optimization of the central force and the management
of the density-dependent force will be our future problems.

FIG. 6. (Color online) Binding energies per particle with minus
sign for sub-closed-shell oxygen isotopes. The horizontal line
indicates mass numbers. The circle symbols correspond to the HF
calculation, the triangle ones to the CPPHF calculation with the
normal tensor force (xT = 1.0), and the diamond ones to the CPPHF
calculation with the strong tensor force (xT = 1.5). The square
symbols indicate the experimental data [29].

The agreement with the experimental data is good for 14O in
the CPPHF method with the strong tensor force. In this case
quite a large attractive potential energy comes from the tensor
force as shown later.

In Fig. 7, the results for the root-mean-square matter radii
(Rm) are plotted with the experimental data [30]. We use the
same symbol for each case as in Fig. 6. Except for 14O the
results for all the three cases are almost the same and reproduce
the experimental data well. For 14O the CPPHF calculation
with the strong tensor force gives a smaller matter radius
compared to the other two calculations and the agreement with
the experimental data becomes better in the strong tensor force
case. The reduction of the radius is caused by the shrinkage
of the opposite parity components in single-particle wave
functions induced by the tensor correlation. Such an effect
cannot be treated in simple Hartree-Fock calculations.

FIG. 7. (Color online) Root-mean-square matter radii for sub-
closed-shell oxygen isotopes. The horizontal line indicates mass
numbers. The circle symbols correspond to the HF calculation,
the triangles correspond to the CPPHF calculation with the normal
tensor force (xT = 1.0), and the diamonds correspond to the CPPHF
calculation with the strong tensor force (xT = 1.5). The square
symbols indicate the experimental data with error bars [30].
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FIG. 8. (Color online) Kinetic energy (T ) per particle and the sum
of the potential energies from the central force VC , the Coulomb force
VCoul, and the three-body force V3B divided by mass numbers. The
horizontal axis indicates mass numbers. The dashed lines correspond
to the kinetic energy and the solid lines to the sum of the potential
energies. The circle, triangle, and diamond symbols correspond to the
HF calculation, the CPPHF calculation with the normal tensor force
(xT = 1.0), and the CPPHF calculation with the strong tensor force
(xT = 1.5).

To see the effect of the tensor force on the binding
mechanism in the oxygen isotopes in Fig. 8 the results for
the total kinetic energy T (the dashed lines) and the sum of
the potential energies from the central, the three-body and the
Coulomb forces VC + V3B + VCoul (the solid lines) are plotted.
We also show in Fig. 9 the result for the potential energies
from the tensor force VT (the solid lines) and the LS force
VLS (the dashed line). The same symbols are used for the HF
calculation and the CPPHF calculations with the normal and
strong tensor forces as in Fig. 6. All values are divided by mass
numbers to make an isotope dependence clear. The total kinetic
energy and the sum of the potential energies from the central,
three-body, and Coulomb forces show a volumelike behavior.
The kinetic energy for 14O in the CPPHF calculation with

FIG. 9. (Color online) Potential energies from the tensor force
(VT ) and the LS force (VLS) divided by mass numbers. The horizontal
axis indicates mass numbers. The solid lines correspond to the
potential energy from the tensor force. The dashed line corresponds
to the potential energy from the LS force in the CPPHF calculation
with the normal tensor force. The potential energies from the LS force
in other cases are almost unchanged. The meanings of the symbols
are the same as in Fig. 8.

the strong tensor force is larger than the other two cases. The
increase of the kinetic energy is also caused by the strong tensor
correlation in 14O, because to gain the correlation energy from
the tensor force the opposite-parity components must be mixed
into single-particle states and the opposite-parity components
have larger kinetic energy.

The potential energies from the LS force behave in almost
the same manner for the three cases. It becomes attractive if
neutron shells are jj closed and negligibly small if neutron
shells are LS closed. The potential energy from the tensor
force becomes weakly repulsive in the HF calculation for all
the oxygen isotopes. In the CPPHF calculations the potential
energies from the tensor force become attractive for all the
oxygen isotopes. In contrast to the LS potential energies, the
tensor potential energies have sizable values in LS-closed shell
nuclei like 16O and 28O. The attraction from the tensor force
is the same order as that from the LS force even in the case
with the normal tensor force. In the CPPHF case VT becomes
maximum in 14O and decreases with the mass number. For
the strong tensor force case, the attractive energy from the
tensor force becomes larger as expected. The attractive energy
is quite large for 14O in the CPPHF calculation with the strong
tensor force. For other isotopes the attractive energies from the
tensor force are small and do not change so much with neutron
number.

In Fig. 10 the probabilities of the mixing of the opposite
parity components Pmix in the single-particle states with
neutron components as the dominant ones are shown. It is
the result of the CPPHF calculation with the normal tensor
force. The result for the strong tensor force case shows almost
the same tendency. In the usual shell-model classification the
first j = 1/2 state (s1/2 dominant), the first j = 3/2 state
(p3/2 dominant), the second j = 1/2 state (p1/2 dominant),
the first j = 5/2 state (d5/2 dominant), the third j = 1/2
state (s1/2 dominant), and the second j = 3/2 state (d3/2

FIG. 10. (Color online) Probabilities of the mixing of the
opposite-parity components for single-particle states with neutron
components as dominant ones in the CPPHF calculation with the
normal tensor force. The horizontal axis indicates mass numbers.
The square, circle, triangle, asterisk, diamond, and star symbols
correspond to the first j = 1/2 (0s ′

1/2; s1/2 dominant), the first
j = 3/2 (0p′

3/2; p3/2 dominant), the second j = 1/2 (0p′
1/2; p1/2

dominant), the first j = 5/2 (0d ′
5/2; d5/2 dominant), the third j =

1/2 (1s ′
1/2; s1/2 dominant), and the second j = 3/2 (0d ′

3/2; d3/2

dominant), respectively.
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dominant) correspond to 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, and
0d3/2, respectively. All those states are mixing states of positive
and negative parities as in Eq. (32). We add a prime in
the following to indicate each single-particle state has both
positive-parity and negative-parity components. For example,
a 0s ′

1/2 state has s1/2 (positive-parity) and p1/2 (negative-parity)
components with an s1/2 component as a dominant one. For
14O the neutron orbits are filled up to 0p′

3/2. The mixing
probability of the opposite parity components for 0s ′

1/2 is
larger than 20% and that for 0p′

3/2 is a few percentages in
14O. In the CPPHF method the tensor correlation energy is
gained by parity mixing and, therefore, Pmix is a measure
to indicate how each single-particle orbit contributes to the
tensor correlation. The large Pmix for 0s ′

1/2 indicates that this
orbit is largely affected by the tensor correlation. In 16O, the
neutron 0p′

1/2 orbit is added newly. The addition of the 0p′
1/2

orbit reduces the parity mixing of the 0s ′
1/2 orbit because they

have the same total angular momentum j = 1/2. As the result,
the tensor correlation energy becomes smaller. This effect is
more significant for the strong tensor force case as seen in
Fig. 9. In 22O the neutron 0d ′

5/2 orbit is filled. Because there
are no j = 5/2 orbit below, Pmix’s for the states filled already
in 16O do not change largely. In 24O the neutron 1s ′

1/2 orbit
is newly occupied. The occupation of 1s ′

1/2 reduces Pmix’s for
the states with j = 1/2, 0s ′

1/2 and 0p′
1/2. The tensor correlation

energy is enhanced, although the amount of the change is small.
Finally, in 28O the neutron 0d ′

3/2 orbit is filled. Pmix’s for the
previously filled orbits change by this addition but the changes
are not so large.

The change of Pmix as shown above indicates that the large
change of the tensor correlation energy from 14O to 16O in the
strong tensor force case is caused by the blocking effect for the
j = 1/2 orbits. The blocking effect of this kind is shown to
be important in the single-particle ls splitting in 5He [6]. The
effect of the blocking is less significant for the excess neutron
orbits. The effect of the blocking on binding energies in neutron
excess oxygen isotopes seems to be small but the blocking may
affect single-particle natures or collectivity in neutron excess
oxygen isotopes, because the mixing probability is affected by
the blocking effect.

The negligible Pmix for the 0d ′
5/2 orbit indicates that this

orbit does not contribute to the tensor correlation although
there are no other occupied orbits that have j = 5/2. The main
part of the tensor correlation comes from the T = 0 channel.
Because the proton j = 5/2 orbit is not filled in neutron-excess
oxygen isotopes, the 0d ′

5/2 orbit is hard to contribute to the
tensor correlation and the mixing probability of it becomes
small.

IV. SUMMARY

We studied the effect of the tensor force in the sub-closed-
shell oxygen isotopes using the CPPHF method. We extended
the CPPHF method to the cases with Hamiltonians, including
three-body forces, although the extension is straightforward. In
the CPPHF method the parity- and charge-number projections
are performed before variation. By applying the CPPHF
method to the oxygen isotopes actually, we have found that
a sizable potential energy from the tensor force is obtained in

the CPPHF method, whereas in the Hartree-Fock calculation
quite a small potential energy from the tensor force is obtained.

We investigated 16O in some detail. The correlation energy
from the tensor force is about 10 MeV for the normal tensor
force case and about 40 MeV for the strong tensor force
case. In the strong tensor force case the strength of the
τ1 · τ2 channel in the tensor force is multiplied by 1.5. The
opposite parity components induced in single-particle states
by the tensor force have compact sizes as compared to the
normal parity components. This indicates that for the tensor
correlation high-momentum components are important. This
fact is already found in the α-particle case [6,12,13,15,16]. The
present result infers that the importance of the high-momentum
component for the tensor correlation is valid in heavier-mass
nuclei. We have also shown the density and the charge form
factor calculated in the CPPHF method. The density in the
CPPHF method is reduced around the center and is pulled in
to the inside region. This is caused by the parity mixing and
the shrinkage of single-particle wave functions of the opposite
parities. The effect of the shrinkage appears in the charge
form factor as a tail in a high-momentum region, because
the shrinkage of the single-particle wave functions induces
high-momentum components in the density.

In the results for the oxygen isotopes, the general tendencies
for the binding energies and the matter radii are reproduced in
the CPPHF calculation with the effective interaction adopted
here, whereas the agreement of the binding energy with the
experimental data is not so good compared to the Hartree-
Fock-type calculations with recent effective interactions. The
root-mean-square matter radii are well reproduced within error
bars except for 14O with both the normal tensor force and the
strong tensor force. In the strong tensor force case, the matter
radius of 14O becomes smaller and close to the experimental
data. The reduction of the matter radius in 14O with the strong
tensor force is due to the shrinkage of single-particle wave
function by the strong tensor correlation, which is quite large
in 14O. Because the 0p1/2 neutron orbit is not occupied in
14O, there are no blocking states for the 0s1/2 proton orbit and,
therefore, the tensor correlation becomes large. Actually, the
correlation energy from the tensor force per particle amounts
to more than 5 MeV in this case. For all the oxygen isotopes
the calculated potential energy from the tensor force is in the
same order as that from the LS force for the normal tensor
force case. In the strong tensor force case it becomes about
two times larger. In contrast to the potential energy from the
LS force, the potential energy from the tensor force in an
LS-closed-shell nucleus does not become close to zero in the
CPPHF calculation. In the Hartree-Fock calculation it becomes
negligibly small because both the total spin and the total
orbital angular momenta are almost zero in an LS-closed-shell
nucleus. The sudden decrease of the potential energy from the
tensor force from 14O to 16O is attributed to the blocking effect
of the j = 1/2 orbits. The blocking effect is also seen in the
neutron-excess oxygen isotopes but does not affect the binding
energy largely.

In the present study we have applied the CPPHF method
to the ground states of the sub-closed-shell oxygen isotopes.
The application to odd-mass nuclei and open-shell nuclei to
study the effect of the tensor force on single-particle natures
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and the change of collectivity by the tensor correlation in a
neutron excess region are interesting because the tensor force
changes the spin, the orbital angular momenta and the isospin
of nucleon orbits simultaneously. Such correlations can be
treated in the CPPHF method by the parity and charge mixing.
As for an effective interaction, we combine the available
effective interaction and the tensor force in the free space with
some modifications. We need to use effective interactions that
have the connection with the realistic nuclear forces to reveal
the relation between nuclear structure and the underlying
nuclear force and have the consistency between the tensor
force and other forces like the central and LS forces. The study
in such a direction is also important and now under progress.
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