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The systematics of g factor of the first excited 2+ state vs neutron number N is studied by the projected shell
model. The study covers the even-even nuclei of all isotopic chains from Gd to Pt. g factors are calculated by
using the many-body wave functions that well reproduce the energy levels and B(E2)s of the ground-state bands.
For Gd to W isotopes the characteristic feature of the g factor data along an isotopic chain is described by the
present model. Deficiency of the model in the g factor description for the heavier Os and Pt isotopes is discussed.
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I. INTRODUCTION

Nuclear magnetic dipole moment can provide valuable
information on the microscopic structure of a nuclear system.
It is a sensitive probe of nuclear wave functions and hence
can serve as a strict testing ground for theoretical models.
Because of the intrinsically opposite signs of the neutron and
proton gs , a study of the gyromagnetic factor (g factor) enables
the determination of the detailed structure for underlying
states. For example, a variation of g factors often is a
clear indicator for a single-particle component that strongly
influences the total wave function. With advances in modern
experimental techniques and sensitive detectors, progress in
g factor measurement has continuously been made. In a
recent paper [1], Berant et al., by summarizing their new and
the accumulated data from Refs. [2,3], raised an interesting
question on the systematic behavior of the first excited 2+
g factors [denoted as g(2+

1 ) hereafter] in the rare earth nuclei
and the heavier mass region. The data for these even-even
nuclei indicate characteristic features of the systematics (see
Fig. 4 below): with increasing neutron number, g(2+

1 ) factors
display a decreasing trend in the Gd, Dy, and Er isotopes; stay
nearly constant within a range of the Yb and Hf chains; then
change to an increasing trend in the W and Os isotopes; but
show a flat behavior in the Pt chain.

Clearly, the overall behavior of these g factors exhibits a
large deviation from the rotor value, Z/A, which has only a
very weak and smooth dependence on nucleon numbers [4].
On the other hand, the proton-neutron version of the interacting
boson model [5] gives an overly strong particle number
dependence, and thus fails to reproduce the flat behavior of
the g factors near the midshell [1]. These facts may suggest
that in realistic nuclear systems, g factors reflect a delicate
interplay between collective and single-particle degrees of
freedom, which is dictated by the detailed shell structure. Very
recently, Zhang et al. have discussed the systematical behavior
of these g(2+

1 ) factors in terms of a simple phenomenological
model [6]. However, it is desired that the g(2+

1 ) systematics can

be described by microscopic theories. Spherical shell model
calculation is applicable only to those heavy nuclei near the
shell closures (for a recent example, see Ref. [7]). There have
been microscopic models employed in the g factor calculation
for heavy, deformed nuclei [8–15]. However, except in
Ref. [11], those calculations focused mainly on one or a
few chosen examples in an isotopic chain. A microscopic
description of the experimental g(2+

1 ) data for the large mass
region as presented in Ref. [1] remains as a challenge to
microscopic theories.

In the present article, we carry out a systematical study
for g(2+

1 ) factors. As a theoretical tool, we employ the code
developed in Ref. [12], which is based on the projected shell
model (PSM) [16]. In the PSM approach, one introduces an ax-
ially deformed basis and performs exactly angular-momentum
projection on the intrinsic states from deformed mean-field
calculations. For even-even nuclei, angular-momentum pro-
jection on the lowest K = 0 state generates a rotational band,
which is the main component of the ground-state (g.s.) band
including the 2+

1 state of our interest. The lowest K = 0 state is
the quasiparticle vacuum obtained microscopically through the
Nilsson+BCS calculations in a large single-particle space. We
thus expect this model to be an appropriate microscopic theory
for the present investigation. The calculation is performed
for nuclei from the Gd (Z = 64) to the Pt (Z = 78) isotopic
chains, with neutron numbers ranging from N = 88 to 120.
The nuclei studied here are known to have very different
collective properties; for example, they can be well-deformed,
less-deformed, or soft nuclei. The g factor of the first 2+ state is
dependent on details of the total wave function. The deviations
from the collective Z/A trend are mainly understood as a
consequence of single-particle make-up of the wave function
and the interplay between the collective degree of freedom
and single particles. The present model employs deformed
Nilsson single-particle states at fixed deformation. As we shall
discuss, this scheme works well for well-deformed nuclei but
is insufficient for the description of soft nuclei in the heavier
Os and Pt region.
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II. OUTLINE OF THE THEORY

A calculation for medium to heavy deformed nuclei in
terms of the conventional (spherical) shell model is not
feasible despite recent computational advances. The successful
description of heavy deformed nuclei can be traced back to
the introduction of the Nilsson potential [17]. In the Nilsson
model, nuclear states are described by considering nucleons
moving in a deformed potential. Deformed states are defined
in the body-fixed frame of reference in which the rotational
symmetry is broken. In order to calculate the observables, it
is necessary to restore the broken rotational symmetry in the
wave function. This can be done by using the standard angular
momentum projection method. The projected states are then
used to diagonalize a two-body shell model Hamiltonian.
Thus, our approach follows closely with the basic philosophy
of the conventional shell model. The main difference to the
conventional shell model is that in the PSM, one starts with a
deformed basis rather than a spherical one. For the details of
the projection method, we refer to the PSM review article [16]
and references cited therein.

The PSM constructs the shell-model space by using the ax-
ially symmetric Nilsson states with a quadrupole deformation
ε2. Pairing correlations are incorporated into the Nilsson states
by the BCS calculations. The consequence of the Nilsson-BCS
calculations defines a quasiparticle vacuum |�(ε2)〉 ≡ |�〉 and
the associated set of quasiparticle states in the intrinsic frame.
For the low-lying nuclear states near the ground state the PSM
wave function can be expressed as∣∣�I

M

〉 = f I
K=0 P̂ I

MK=0|�〉, (1)

which is the angular-momentum-projected quasiparticle vac-
uum state with f being the normalization factor. In Eq. (1),
P̂ I

MK is the angular-momentum-projection operator [18]

P̂ I
MK = 2I + 1

8π2

∫
d�DI

MK (�)R̂(�). (2)

As in the early PSM calculations, we use the pairing plus
quadrupole-quadrupole (QQ) Hamiltonian with inclusion of
the quadrupole-pairing term

Ĥ = Ĥ0 − 1

2
χ

∑
µ

Q̂†
µQ̂µ − GMP̂ †P̂ − GQ

∑
µ

P̂ †
µP̂µ. (3)

In Eq. (3), Ĥ0 is the spherical single-particle Hamiltonian,
which contains a proper spin-orbit force [17]. As discussed
in Ref. [16], the QQ-force strength χ is adjusted such that
the quadrupole deformation ε2 is obtained as a result of the
self-consistent mean-field HFB calculation. The monopole
pairing strength GM is of the standard form GM = [20.12 ∓
13.13(N − Z)/A]/A, with “−” for neutrons and “+” for
protons, which approximately reproduces the observed odd-
even mass differences in this mass region [16]. The quadrupole
pairing strength GQ is assumed to be proportional to GM , with
the proportionality constant being fixed to be 0.16 for all nuclei
considered in this paper. The same constant has been used in
the previous calculations for rare earth nuclei [16]. For the
valence single-particle space, we have included three major
shells, N = 4, 5, 6 (3, 4, 5), for neutrons (protons).

In short, the procedure of the present calculation is that
based on a deformed Nilsson potential with pairing included in
the BCS treatment, one performs explicit angular-momentum
projection with a two-body interaction which conforms
(through self-consistent conditions) with the mean-field Nils-
son potential. The Hamiltonian with separable forces serves
as an effective interaction, the strengths of which have been
fitted to experimental data. The deformed single-particle states
with deformation parameters ε2 are used solely as a starting
basis. It is sufficient for a calculation to have these deformation
parameters close to the “true” nuclear deformation. Of course,
a large departure from a true deformation would result in a
significant enhancement in dimension of the configuration
space, with the extreme case being the conventional shell
model based on a spherical basis (ε2 ≡ 0).

III. ENERGY LEVELS AND BE(2) VALUES

We study 61 nuclei from the Gd, Dy, Er, Yb, Hf, W, Os,
and Pt isotopic chains. This large group includes nuclei with
very different collective behavior. It is well-known that with a
neutron number around 90, nuclei are traditionally known as
γ -soft nuclei. On the other hand, the heavier isotopes in the Os
and Pt chains contain also significant γ -softness, and these are
typical examples of O(6) nuclei according to the interacting
boson model [19]. Between these two regions, nuclei are
strongly deformed, for most of which the deformation is axial
and the low-lying spectrum typically exhibits a rotor behavior.
In Table I, we list the deformation parameters with which
the deformed bases are constructed. The listed quadrupole
deformations ε2 agree with the systematic trend of those
experimentally adopted ones [20] although the absolute values
of ours are smaller. Note that it is not necessary for our input
deformations to be exactly the same as those extracted from
experiment as long as the so-constructed bases can correctly
describe experimental B(E2)s (see Figs. 2 and 3 below). In
the calculation, when the calculation condition is fixed we do
not have a freedom to readjust the parameters to reproduce
the g-factors. Namely, under a fixed calculation condition,
g factors are predicted and the underlying physics is discussed.

Figure 1 shows the calculated energy levels for g.s. bands
together with experimental data. We include in the figure
only one nucleus selected from each of the isotopic chains
because all the calculations have achieved the same level of
agreement. These examples are chosen to represent nuclei with
distinct collective behavior. For instance, with neutron number
88, 152Gd and 154Dy are typical γ -soft nuclei lying in the
transitional region. 166Er, 172Yb, and 176Hf are representative
examples of strongly deformed nuclei lying in the midshell,
which have nearly constant moment of inertia. Finally, 186Os
and 192Pt are again γ -soft in the transitional region. For all
these nuclei with very different rotational behavior, it can
be seen from Fig. 1 that the energy levels have been well
reproduced by the calculation. Note that for the strongly
deformed nuclei lying in the midshell, the energy intervals
are considerably smaller, corresponding to larger moments of
inertia in these nuclei. The deviation seen in the higher-spin
states in 152Gd, 154Dy, and 192Pt is caused by the g.s. band
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TABLE I. The quadrupole deformation parameters with which the deformed bases are constructed.

Z = 64 152Gd 154Gd 156Gd 158Gd 160Gd
ε2 0.212 0.278 0.295 0.305 0.320

Z = 66 154Dy 156Dy 158Dy 160Dy 162Dy 164Dy
ε2 0.200 0.240 0.260 0.270 0.280 0.290

Z = 68 156Er 158Er 160Er 162Er 164Er 166Er 168Er 170Er
ε2 0.195 0.230 0.257 0.265 0.258 0.262 0.273 0.276

Z = 70 164Yb 166Yb 168Yb 170Yb 172Yb 174Yb 176Yb
ε2 0.245 0.250 0.260 0.265 0.269 0.266 0.263

Z = 72 166Hf 168Hf 170Hf 172Hf 174Hf 176Hf 178Hf 180Hf
ε2 0.219 0.235 0.240 0.250 0.253 0.246 0.241 0.231

Z = 74 168W 170W 172W 174W 176W 178W 180W 182W 184W 186W
ε2 0.193 0.201 0.217 0.220 0.225 0.195 0.190 0.195 0.195 0.190

Z = 76 178Os 180Os 182Os 184Os 186Os 188Os 190Os 192Os
ε2 0.188 0.172 0.170 0.173 0.158 0.154 0.150 0.145

Z = 78 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt 198Pt
ε2 0.197 0.187 0.175 0.135 0.128 0.116 0.113 0.120 0.170

interactions with other configurations that have not been
considered in Eq. (1).

We further calculate the g.s. band B(E2) values for all
nuclei studied in this paper using the same deformation
parameters listed in Table I. The B(E2) values that are related
to an electric transition probability from an initial state I to a
final state I − 2 are given by

B(E2, I → I − 2) = 1

2I + 1
|〈�I−2‖Q̂2‖�I 〉|2, (4)

where wave functions |�I 〉 are those in Eq. (1). The effective
charges used in the calculation are the standard ones eπ =
1.5e and eν = 0.5e. The effective charges are fixed for all
nuclei studied in this paper without any individual adjustment.
Any variations in the calculated B(E2) values, among one
rotational band or between those in different nuclei, are subject
to the structure change in wave functions. The calculation is
compared with available data in Fig. 2. Again, we include in
this figure only one nucleus selected from each of the isotopic

FIG. 1. Comparison of calculated energies with experimental
data for g.s. bands. Open squares represent the calculated results
and solid circles the data.

chains, the same set of nuclei as shown in Fig. 1. It can be
seen that the B(E2) values are also nicely reproduced. Not
only are the absolute values in each nucleus correctly given,
but also the variations as a function of angular-momentum are
described. We note in particular that the B(E2)s in 192Pt are
well reproduced; as we shall see later, for the Pt isotopic chain
we encounter difficulties in the g-factor calculation.

In Fig. 3, we plot the calculated B(E2, I = 2 → I = 0)
values for all the 61 nuclei considered in this work, and
compare them with available data. The numbers used for the
figure are listed in Table II. We stress that the variations in
B(E2) along each isotopic chain, i.e., a rapid increase up to
N ≈ 94, the flat behavior for 96 � N � 108, and a decreasing
trend after the midshell, are correctly described. A few local
exceptions with rather large B(E2) values in the data (such
as in 172W, 182W, and 182Os) cannot be understood by the
present calculation. The global trend of the B(E2) values with
exclusion of the Os and Pt chains has been discussed by a
simple one-parameter model [6].

FIG. 2. Comparison of calculated g.s. band B(E2) values with
available data. Open squares represent the calculated results and solid
circles (with error bars) the data.
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FIG. 3. Comparison of calculated B(E2, I = 2 → I = 0) with
available data. Open squares represent the calculated results and solid
circles (with error bars) the data.

The agreement of the calculated B(E2, I = 2 → I = 0)
values with data (Figs. 2 and 3) as well as the reproduction

of the g.s. band energies (Fig. 1) indicate that under the
present calculation conditions, we are able to describe the basic
structure quantities for these nuclei. As far as the low-lying
energy levels and B(E2)s are concerned, the method works
well. The systematical agreement between the calculated
and experimental B(E2)s (Fig. 3) justifies the use of the
deformation parameters in Table I.

IV. G-FACTOR RESULTS AND DISCUSSION

We now turn our discussion to g factors. In the PSM,
g factors can be directly computed as

g(I ) = µ(I )

µNI
= 1

µNI
[µπ (I ) + µν(I )], (5)

with µτ (I ) being the magnetic moment of a state �I

µτ (I ) = 〈
�I

I

∣∣µ̂τ
z

∣∣�I
I

〉
= I√

I (I + 1)
〈�I‖µ̂τ‖�I 〉

= I√
I (I + 1)

[gτ
l 〈�I‖ĵ τ‖�I 〉

+ (
gτ

s − gτ
l

)〈�I‖ŝτ‖�I 〉], (6)

where τ = π and ν for protons and neutrons, respectively.
We use the same wave functions that are used to evaluate

B(E2) values. In the angular-momentum-projection theory,
the reduced matrix element for an operator m̂ [with m̂ being

TABLE II. Comparison of calculated B(E2, I = 2 → I = 0) (in e2b2) with available data.

Z = 64 152Gd 154Gd 156Gd 158Gd 160Gd
Exp. 0.35(3) 0.76(2) 0.93(3) 1.01(3) 1.03(3)
Th. 0.57 0.92 1.03 1.09 1.18

Z = 66 154Dy 156Dy 158Dy 160Dy 162Dy 164Dy
Exp. 0.48(4) 0.75(1) 0.93(4) 1.00(3) 1.04(3) 1.11(2)
Th. 0.55 0.77 0.90 0.97 1.04 1.10

Z = 68 156Er 158Er 160Er 162Er 164Er 166Er 168Er 170Er
Exp. 0.33(1) 0.60(3) 0.86(4) 1.00(5) 1.16(8) 1.16(5) 1.14(3) 1.16(2)
Th. 0.52 0.72 0.89 0.96 0.97 1.02 1.10 1.14

Z = 70 164Yb 166Yb 168Yb 170Yb 172Yb 174Yb 176Yb
Exp. 0.93(3) 1.03(5) 1.15(4) 1.12(3) 1.20(1) 1.16(4) 1.07(4)
Th. 0.83 0.90 0.96 1.03 1.08 1.10 1.07

Z = 72 166Hf 168Hf 170Hf 172Hf 174Hf 176Hf 178Hf 180Hf
Exp. 0.69(4) 0.84(4) 1.01(30) 0.88(6) 0.88(5) 1.07(5) 0.95(3) 0.94(3)
Th. 0.66 0.77 0.83 0.89 0.94 0.92 0.90 0.85

Z = 74 168W 170W 172W 174W 176W 178W 180W 182W 184W 186W
Exp. 0.64(3) 0.69(2) 0.97(9) 0.78(5) 0.83(4) 1.06(2) 0.74(2) 0.70(1)
Th. 0.51 0.57 0.66 0.69 0.73 0.65 0.63 0.64 0.62 0.59

Z = 76 178Os 180Os 182Os 184Os 186Os 188Os 190Os 192Os
Exp. 0.72(18) 0.77(2) 0.61(15) 0.58(2) 0.51(1) 0.47(1) 0.42(1)
Th. 0.54 0.51 0.51 0.49 0.45 0.43 0.40 0.37

Z = 78 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt 198Pt
Exp. 0.70(3) 0.59(3) 0.53(9) 0.36(2) 0.38(1) 0.33(1) 0.27(1)
Th. 0.51 0.45 0.39 0.26 0.25 0.22 0.20 0.20 0.29
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either ĵ or ŝ in Eq. (6)] can be explicitly expressed as

〈�I‖m̂τ‖�I 〉 =
∑

Ki,Kf

f I
Ki

f I
Kf

∑
Mi,Mf ,M

(−)I−Mf

×
(

I 1 I

−Mf M Mi

)
〈�|P̂ I

Kf Mf
m̂1MP̂ I

KiMi
|�〉

= (2I + 1)
∑

Ki,Kf

(−)I−Kf f I
Ki

f I
Kf

×
∑

M ′,M ′′

(
I 1 I

−Kf M ′ M ′′

)

×
∫

d�DM′′Ki (�)〈�|m̂1M′ R̂(�)|�〉.

In our calculation, the following standard values for gl and gs

appearing in Eq. (6) are taken:

gπ
l = 1, gπ

s = 5.586 × 0.75,

gν
l = 0, gν

s = −3.826 × 0.75.

gπ
s and gν

s are damped by a usual 0.75 factor from the
free-nucleon values to account for the core-polarization and
meson-exchange current corrections [21]. The same values
are used for all g factor calculations in the present paper, as in
the previous projected shell model calculations, without any
adjustment for individual nuclei.

We present the systematics of the g factor of the first 2+
state for all the isotopic chains from Gd to Pt. In Fig. 4,

FIG. 4. Comparison of calculated 2+ state g factor with available
data. Open squares represent the calculated results and solid circles
(with error bars) the data.

a comparison of calculated results with available data [1–3] is
given. The numbers used for the figure are listed in Table III.
Interesting systematical features are clearly observed. The
experimental g(2+

1 ) values of Gd, Dy, and Er isotopes show a
down-sloping trend with increasing neutron number N ; those
of heavier W and Os isotopes exhibit an up-sloping behavior;
and, according to the current set of data, the g(2+

1 ) factors
of Yb, Hf, and Pt isotopes are almost constant within each
isotopic chain. From Fig. 4, it can be seen that the observed
trends for the isotopic chains from Gd to W are qualitatively
reproduced by the present calculation. Especially for most
Dy, Er, and W nuclei, a quantitative agreement with data is
achieved. The down-sloping trend of Gd, Dy, and Er isotopes
is well described. The calculation further predicts that for
the Yb, Hf, and W isotopic chains, a down-sloping trend is
still visible for N < 100, but becomes nearly constant at the
neutron midshell. The up-sloping trend of W isotopes with
N � 106 is well reproduced by the calculation. Nevertheless,
there are cases where we find disagreement. We shall comment
on those cases later.

Figure 5 shows the calculated g(2+
1 ) factors for Er and

W isotopes. To understand the N -dependent variations, the-
oretical results are decomposed further into the individual
contributions from the proton and neutron operator [see
Eq. (5)], the sum of which is the total g factor that was
compared with data in Fig. 4. Remarkably, we find that the
g(2+

1 ) variations originate mostly from the proton contribution
while the neutron contribution is very small and stays nearly
constant within each of the isotopic chain. Therefore, the
change of the proton contribution alone describes the observed
variation trends of g(2+

1 ) factors, namely, a rapid decrease
followed by a constancy in the Er nuclei and probably a
U-shape in the W nuclei (see Fig. 5). It is rather interesting that
the proton contribution varies as the neutron number changes
along an isotopic chain. This can only be possible with the
presence of strong neutron-proton interaction. In this regard,
we notice that Zhang et al. [6] suggested that the observed
constancy of the g(2+

1 ) factors in the well-deformed region

FIG. 5. Calculated first excited 2+ state g factors for Er and
W isotopes, with decomposition of the total g factor (open squares)
into proton (open circles) and neutron (open triangles) contributions.
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TABLE III. Comparison of calculated 2+ state g factor with available data.

Z = 64 152Gd 154Gd 156Gd 158Gd 160Gd
Exp. 0.48(4) 0.48(3) 0.41(7) 0.39(3) 0.36(2)
Th. 0.43 0.31 0.29 0.27 0.26

Z = 66 154Dy 156Dy 158Dy 160Dy 162Dy 164Dy
Exp. 0.36(2) 0.39(4) 0.36(3) 0.35(2) 0.35(2) 0.34(1)
Th. 0.47 0.39 0.34 0.31 0.28 0.26

Z = 68 156Er 158Er 160Er 162Er 164Er 166Er 168Er 170Er
Exp. 0.40(6) 0.36(6) 0.33(6) 0.349(8) 0.325(5) 0.31(3) 0.317(7)
Th. 0.49 0.41 0.35 0.32 0.29 0.25 0.27 0.26

Z = 70 164Yb 166Yb 168Yb 170Yb 172Yb 174Yb 176Yb
Exp. 0.32(3) 0.337(4) 0.335(8) 0.338(4) 0.34(2)
Th. 0.32 0.29 0.25 0.26 0.25 0.23 0.25

Z = 72 166Hf 168Hf 170Hf 172Hf 174Hf 176Hf 178Hf 180Hf
Exp. 0.32(3) 0.24(2) 0.31(2)
Th. 0.32 0.28 0.24 0.25 0.24 0.21 0.22 0.24

Z = 74 168W 170W 172W 174W 176W 178W 180W 182W 184W 186W
Exp. 0.25(5) 0.25(5) 0.26(2) 0.26(1) 0.289(7) 0.31(2)
Th. 0.32 0.27 0.23 0.22 0.21 0.21 0.20 0.24 0.24 0.26

Z = 76 178Os 180Os 182Os 184Os 186Os 188Os 190Os 192Os
Exp. 0.26(2) 0.29(1) 0.35(1) 0.40(1)
Th. 0.26 0.26 0.25 0.25 0.25 0.26 0.26 0.26

Z = 78 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt 198Pt
Exp. 0.28(3) 0.27(3) 0.29(4) 0.29(2) 0.29(2) 0.30(2) 0.30(3) 0.32(1)
Th. 0.11 0.11 0.11 0.11 0.11 0.12 0.13 0.16 0.23

is attributed to the reduction of proton-neutron interaction
strengths near the midshell.

While the calculation predicts a flat behavior of g(2+
1 ) for

the lighter Os nuclei, a clear departure from data occurs for
heavier Os isotopes and for all the Pt isotopes considered in
this paper. Although for 198Pt, the theoretical value becomes
closer to the data, we must conclude that the present calculation
fails to describe the observed g(2+

1 ) trend in the Os and Pt
chains. We have tried various calculations by constructing
our deformed model space with different ε2 deformations.
In the example of 192Pt, it is found that with artificially
increasing basis deformation, the g(2+

1 ) factor values starts
going up, and at ε2 = 0.24 the calculated g(2+

1 ) agrees with
data. However, the experimental energy levels and B(E2)
values in this nucleus cannot be simultaneously described. This
may indicate that, although g.s. band energies and B(E2)s
in the Os and Pt chains are reproduced by the model, the
obtained wave functions with respect to the single-particle
content can be wrong. We note that energy levels and B(E2)s
near the ground state reflect mainly the collective properties
of even-even nuclei and are not sensitive to single particles.

This calls for further improvement of the projected shell
model type approaches to generally describe transitional
nuclei. More correlations in the wave function need to be
included, which goes beyond what an axially deformed
quasiparticle vacuum state can contain. These correlations
can be introduced by the addition of the D-pair operators
to the vacuum state [22], which takes both quasiparticle and
collective degrees of freedom explicitly into account in a shell
model basis. The generator coordinate method, which consists

of a construction of a linear superposition of different product
wave functions, can also be adopted.

V. SUMMARY

Inspired by the recent experimental work of Berant et al.,
[1], we have made an attempt to study systematically g(2+

1 )
for all the isotopes from Gd to Pt, using the projected shell
model approach. With a single set of interaction strengths, we
have carried out calculations for each nucleus in a projected
basis constructed with appropriate deformations. We have been
able to reproduce the energy levels and B(E2)s for low-lying
states in the g.s. band for all the 61 nuclei considered in the
paper. With the same set of calculation conditions, we have
calculated g factors of the first 2+ state. It has been found that
for the isotopes from the Gd to W chain, the characteristics
of experimental data along each isotopic chain are described
by the theoretical calculations, such as the down-sloping trend
in the Gd, Dy, and Er isotopes, the up-sloping trend in the
W isotopes, and the flat behavior of the Yb and Hf isotopes.
For the heavier Os and Pt nuclei, the results have indicated
that although the energy levels and B(E2)s can be described
equally well as in the lighter nuclei, the calculated g factors
are wrong. Study of the separate contributions of proton and
neutron to the g(2+

1 ) factors suggests that the variations of the
g factors as the neutron number changes originate mainly from
the proton contribution. The overly weak proton contribution
to the g factors for Os and Pt isotopes indicates deficiency in
the wave functions. To describe the heavier isotopes in the Os
and Pt chains, improvement in the theory is required.
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