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Damping mechanisms of high-lying single-particle states in 91Nb

H. K. T. van der Molen,1 H. Akimune,2 A. M. van den Berg,1 I. Daito,2 H. Fujimura,2 Y. Fujita,3 M. Fujiwara,2,4

M. N. Harakeh,1,* M. Hunyadi,1,† F. Ihara,2 T. Inomata,2 K. Ishibashi,2 J. Jänecke,5 N. Kalantar-Nayestanaki,1 H. Laurent,6
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6Institut de Physique Nucléaire, IN2P3-CNRS, F-91406 Orsay Cedex, France
7Department of Theoretical Nuclear Physics, MEPI, RU-115409 Moscow, Russia

8Department of Physics, Kyoto University, Sakyo, Kyoto 606-8224, Japan
9SPring-8, Japan Synchrotron Research Institute, Hyogo 679-5198, Japan

(Received 26 September 2006; published 18 January 2007)

Decay by proton emission from high-lying states in 91Nb, populated in the 90Zr(α, t) reaction at Eα = 180 MeV,
has been investigated. Decay to the ground state and semidirect decay to the low-lying (2+, 5−, and 3−) phonon
states in 90Zr were observed. It was found that these phonon states play an important role in the damping process
of the single-particle states. An optical-model coupled-channel approach was used successfully to describe the
direct and semidirect parts of the decay.
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I. INTRODUCTION

In the shell model, single-particle (s.p.) states are eigen-
states of the Hamiltonian, and they have a narrow width if
particle decay is forbidden. On the other hand, if the s.p. states
are unbound to particle decay, they acquire a width (escape
width �↑) due to coupling to the continuum. This escape
width depends on a number of factors, i.e., the available decay
energy, orbital angular momentum of the s.p. state, and height
of the Coulomb barrier (if the emitted particle is charged, i.e.,
a proton). At high excitation energies, s.p. states, even those
bound to particle decay, usually exhibit a giant-resonance-
like structure. The width in this case (spreading width �↓)
is acquired by coupling to the underlying, more complex
configurations. The first step in this damping mechanism is
mediated via coupling to a special class of particle-hole states,
i.e., the surface vibrations [1,2]. In successive steps, these
states with simple configurations couple to those with more
complex ones. This finally leads to statistical decay at the end
of the equilibration process, which is quite well described in
the Hauser-Feshbach formalism (see Ref. [3]).

High-lying s.p. states have been studied by s.p. stripping
reactions [4–8] and have been observed as broad giant-
resonance-like structures superimposed on top of a nuclear
continuum, the main source of which is breakup processes. In
these studies, it was possible to determine some systematics
of these high-lying s.p. states such as the excitation energies,
spin and parity, total width, and depletion of the s.p. strength
expected on the basis of a simple shell model. However, direct
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information on the microscopic structure of these high-lying
s.p. states and their damping mechanism is only obtained from
their decay properties. These include in particular the particle
decays to the ground state (g.s.) and to the low-lying collective
states of the target nucleus, as well as to the continuum states
of the target nucleus followed by particle decay to relevant
daughter nuclei.

Such studies have been made for the decay of the high-lying
s.p. neutron states of 209Pb and some medium-weight nuclei
[9–11]. In these studies, however, disentangling the statistical
and direct and semidirect neutron decays to low-lying states
is not straightforward, since the relative contributions depend
very strongly on statistical-model calculations in the spirit of
the Hauser-Feshbach formalism with its inherent uncertainties.
The statistical-model calculations involve some ambiguities
which can lead to difficulties in interpreting the experimental
results against the theoretical calculations.

The present work aims to study the damping mecha-
nisms of high-lying s.p. states in a medium-heavy nucleus
through the measurement of decay by proton emission. We
used the 90Zr(α, t) reaction to populate high-spin states in
91Nb. The thresholds for proton and neutron emission are Sp =
5.15 MeV and Sn = 12.05 MeV, respectively. It should be
noted that for a medium-heavy nucleus, neutron emission
will be the dominant mode for statistical decay, once the
neutron channel is open. In the present case in which
proton-decay channels are being studied, the determination
of the branching ratios for direct and semidirect proton
decay from the experimental data is not hampered by large
amounts of statistical proton decay. These branching ratios
are, therefore, less affected by statistical-model calculations.
Moreover, the detection of protons is relatively easy, and
detection inefficiencies can be neglected, which is in contrast
to the detection of neutrons. Using the (7Li,6He) reaction,
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Galès [9] has also studied high-spin states in 91Nb. Simi-
lar to the present investigation, protons were measured in
coincidence with ejectiles detected at a scattering angle of
0◦. However, no information was obtained on the branching
ratios for the decay from high-lying states to the phonon states
in 90Zr. Furthermore, the energy resolution in the (7Li,6He)
experiment was rather poor.

The theoretical framework for the calculations used to
compare with the present 90Zr(α, t) data will be discussed
in Sec. II. In Sec. III we will describe the experimental
setup used and the reduction of the data obtained from the
experiment. In Sec. IV, the experimental data and the results of
the calculations will be discussed. Finally, the conclusions will
be presented in Sec. V. The initial results of this experiment
have been reported elsewhere [12]. Furthermore, the popula-
tion and decay of isobaric analog states (IAS’s), which were
studied in the same experiment, have already been published
[13].1

II. THEORETICAL FRAMEWORK

A. Description of the theoretical model

In a potential scattering model, direct (D) and semidirect
(SD) nucleon decay can be described as phenomena that differ
only by the scattering of the particle from either the g.s. or
the phonon state, respectively. The optical model and the
coupled-channel approach, which is a generalized version of
the optical model, are widely used to describe the scattering
(see, e.g., Refs. [14,15]). Therefore, it is natural to use an
optical-model coupled-channel (OMCC) approach to describe
these phenomena. Such an approach has been developed in
Refs. [16,17] to describe the direct neutron decay of high-spin
quasibound single-neutron states in 209Pb and 91Zr to the g.s.
and to low-lying collective (one-phonon) states of 208Pb and
90Zr, respectively. An attempt to describe these phenomena
without the use of an OMCC approach was undertaken by Van
Giai et al. [18]. The experimental data reported by Fortier et al.
[11] were qualitatively described in Refs. [16,18]. An attempt
to theoretically describe the decay of quasibound single-proton
states in 91Nb has been undertaken recently by Urin and
Chekomazov [17]. However, the calculation was limited by
the small number of single-proton states and by the rather high
excitation-energy interval examined in 91Nb. Furthermore,
a schematic optical-model potential was used in that work.
In the present calculations, we attempt to eliminate those
shortcomings by (i) expanding the excitation-energy region
for 91Nb, (ii) considering all quasibound single-proton states in
the excitation-energy region, and (iii) using a modern optical-
model potential for the system p-90Zr described recently by
Romanovsky et al. [19].

1The single-, double- and triple-differential cross sections presented
in Refs. [12] and [13] should be multiplied by a correction factor 3.0.
This renormalization factor for the absolute cross sections has been
determined from a recent measurement of the absolute cross sections
of the g.s., 9/2+ and IAS, 11/2− in 91Nb in the 90Zr (α, t) reaction; see
Sec. III A.

1. Single-particle strength

For a meaningful comparison of the observed direct and
semidirect decay from s.p. states with theoretical values, it is
also necessary to calculate the excitation cross sections for
these states. In the calculation of the cross section for a certain
reaction, one usually separates the nuclear structure part from
the part that involves the reaction mechanism. For the case
of an isolated level at an excitation energy ε populated in a
stripping reaction, as in the present (α, t) reaction, the cross
section can be written as

dσlj (θ, ε)

d�
= N

2Jf + 1

2Ji + 1
C2Slj

σ DW
lj (θ, ε)

2j + 1
. (1)

Here, σ DW
lj (θ, ε) is the part that describes the reaction

mechanism. It can be calculated for a s.p. transfer with
orbital and total angular momentum l and j , respectively, in
the distorted-wave Born approximation (DWBA) using the
code DWUCK [20]. In this equation, N is the factor needed
to normalize the calculated cross section to the experimental
one, and C2Slj is the spectroscopic factor with the isospin
Clebsch-Gordan coefficient C. Furthermore, Ji and Jf are the
spins of the g.s. of the target nucleus and the level populated
in the final nucleus, respectively. When the g.s. of the target
nucleus has Ji = 0, then Jf = j and the spin factors cancel
out, and the cross section simplifies to

dσlj (θ, ε)

d�
= N · C2Sljσ

DW
lj (θ, ε). (2)

Experimentally, it is not always possible in the (α, t) reaction
studied to unambiguously determine the spin of an observed
state. In many cases, especially at higher excitation energies,
the observed cross sections originate from the excitation of
a number of overlapping s.p. states. As a result, the different
contributions cannot be derived from the experimental data,
and calculated cross sections have to be used:

σ inc(ε) = N
∑
lj

C2Slj (ε) · �ε · σ DW
lj (θ, ε). (3)

Here, Slj (ε) is the spectroscopic strength function which
describes the nuclear-structure part as a function of excitation
energy ε, and �ε is the excitation-energy interval over which
the s.p. strength is integrated. Because of the coupling to other
states, the strength of a s.p. state is fragmented over many
states, especially at higher excitation energies. Note that the
s.p. Green’s function contains all information on the damping
of s.p. states. We use the optical-model approach [16] to
evaluate the energy-averaged s.p. Green’s function. Within
this approach, the strength function of bound s.p. states can be
calculated using the expression

Slj (ε) = − 1

π

∫ ∞

0
Imglj (r, r; ε) dr. (4)

Here, (rr ′)−1glj (r, r ′; ε) is the radial part of the optical-model
Green’s function. In the vicinity of a s.p. state with energy
ε0 < 0, Green’s function can be represented in the following
form [21]:

glj (r, r ′; ε) = χnlj (r)χnlj (r ′)
ε − ε0 + i�↓/2

, (5)
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where χnlj (r) is the radial part of the s.p. bound wave function
and �↓ is the spreading width of the state. Substituting
Eq. (5) into Eq. (4), one arrives at the usual expression for
the s.p. strength function:

Snlj (ε) = 1

2π

�
↓
lj

(ε − ε0)2 + �
↓
lj

2
/4

. (6)

For positive energies (ε > 0), the integral in Eq. (4)
formally diverges because of the nonvanishing value of the
continuum wave function for r → ∞. Nevertheless, in the
vicinity of a quasibound s.p. state with energy ε0 > 0, an
approximate expression similar to Eq. (5) can be written for
r, r ′ � R [21]:

glj (r, r ′; ε) = χ0(r)χ0(r ′)
ε − ε0 + i(�↓ + �↑)/2

. (7)

Here, χ0(r) is normalized approximately to unity in the interval
r < R, and �↑ is the escape width of the s.p. resonance. In
the actual calculation of the strength function, a cutoff radius
R∗ is used as the upper limit of the integral shown in Eq. (4),
with R∗ chosen to satisfy the condition

∫ R∗

0 χ2
0 (r)dr ≈ 1. Of

course, R∗ is chosen to be larger than the nuclear radius R.
This procedure allows us to also use Eq. (4) for the calculation
of the strength function of quasibound s.p. states; in this case,
the cutoff parameter R∗ replaces the upper limit in this integral.

2. Direct decay to the ground state

Let σ inc
lj (ε) be the energy-averaged inclusive cross section

for a one-proton transfer reaction with given values of the
energy ε and total and orbital angular momenta j and l,
respectively. Furthermore, let σD

lj,0+ (ε) denote the direct part of
the energy-averaged partial decay cross section, corresponding
to the population of the 0+ g.s. of a (double-even) target
nucleus, which in the present case is 90Zr. The inclusive cross
section can be expressed in terms of an ordinary optical model
and a vertex function flj (r, ε), which is, generally speaking,
unknown and depends on the reaction considered. From
Refs. [16,17] we find that

σ inc
lj (ε) ∼ − 1

π
Im

∫
f ∗

lj (r, ε)glj (r, r ′; ε)flj (r ′, ε) dr dr ′ (8)

and

σ D
lj,0+ (ε) ∼

∣∣∣∣
∫

flj (r, ε)χ (+)
εlj (r)dr

∣∣∣∣
2

, (9)

where r−1χ
(+)
εlj (r) is the radial part of the optical-model

continuum wave function for the proton. This function is
normalized such that both cross sections are the same in the
‘potential’ limit (W → 0), where the spreading effect can be
neglected. In the vicinity of the single-proton state {l, j}, the
branching ratio for the decay to the g.s. of the daughter (target)
nucleus is independent of the vertex function flj and has the
simple form [16,17]

bD
lj,0+ (ε) = σ D

lj,0+ (ε)

σ inc
lj (ε)

−→ �
↑
lj,0+ (ε)

�
↓
lj (ε)

, (10)

where �↑ and �↓ are the s.p. escape and spreading widths,
respectively. It is assumed that �↑ 
 �↓.

3. Semidirect decay to phonon states

The semidirect part of the decay cross section can be
calculated within the coupled-channel approach assuming that
the particle-phonon coupling is weak [16,17]:

σ SD
lj,Lπ (ε) ∼

∑
l′j ′

∣∣∣∣
∫

flj (r, ε)glj (r, r ′; ε)vL(r ′)χ (+)
ε′l′j ′ (r ′) dr dr ′

∣∣∣∣
2

× ηL(lj, l′j ′). (11)

Here, ηL(lj, l′j ′) ≡ 〈lj‖YL‖l′j ′〉2
/

(2j + 1) is the kinematic
factor, ε′ = ε − ωL with ωL the phonon energy, and Lπ is
the one-phonon angular momentum and its associated parity.
We use the phenomenological one-phonon transition potential
vL(r) which is often used in the coupled-channel approach:

vL(r) = 1√
2L + 1

βLR
∂U (r)

∂r
, (12)

where βL is the dynamic-deformation parameter and U (r)
is the central part of the nuclear mean field for protons.
A description of the potential and the dynamic deformation
parameters used in the present analysis is given in Sec. II B1.
Similar to Eq. (10), our definition of the branching ratio for
the semidirect decay of the s.p. state {l, j} to the one-phonon
state of the product nucleus is

bSD
lj,Lπ (ε) = σ SD

lj,Lπ (ε)

σ inc
lj (ε)

−→ �
↓↑
lj,Lπ (ε)

�
↓
lj (ε)

, (13)

where �↓↑ represents the semidirect decay width. Again, in
the vicinity of a quasibound state {l, j}, this branching ratio is
equal to the ratio of corresponding widths [16,17]. In transfer-
reaction experiments leading to the population of states in the
continuum, cross sections summed over all available values
for l and j are measured. Therefore, only the integral ratio bLπ

can be compared with the theoretical estimates given as

bLπ (ε) =
∑

σ
D,SD
lj,Lπ (ε)∑
σ inc

lj (ε)
=

∑
b

D,SD
lj,Lπ (ε)wlj (ε), (14)

where Lπ includes the g.s. with 0+, and wlj (ε) is the relative
probability for the excitation of the {l, j}-state

wlj (ε) = σ inc
lj,Lπ (ε)/

∑
σ inc

lj (ε). (15)

These probabilities can be calculated using DWBA, provided
that the s.p. strength functions Slj (ε) are known as described
in Sec. II A1.
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4. Angular correlations

The angular correlation between a decay particle and
an ejectile is determined by the quantum numbers and the
magnetic substate population amplitudes of the intermediate
state of the decaying nucleus and the spin and orbital angular
momenta carried by the decay particle. When only one
intermediate state is populated in the nucleus and subsequent
particle decay occurs to a 0+ state, like the g.s. in 90Zr, only
one l value is allowed; therefore, the unknown Jπ of the
intermediate state can be determined uniquely from the angular
correlation of the decay particle. In the case of a nonzero spin
of the target nucleus, a number of transfer angular momenta
may contribute. When the solid angle of the ejectile detector
is finite and the associated spin transfer is not zero, more
than one magnetic substate will be populated. Furthermore,
when the final state is not a 0+ state, various combinations
of {l, j} for the decay particle are possible. Finally, if two
or more intermediate overlapping states are involved in the
decay process, the contributions of these states should be added
coherently.

The angular correlation functions were calculated using the
program ANGCOR [22]. This program takes into account the
finite solid angle for both ejectile and decay-particle detectors.
The m-state population of the intermediate state is obtained
from the DWBA program DWUCK [20]. Although more than
two l values can be taken into account using ANGCOR, only two
l values were used in the calculation, because it can be assumed
that only the lowest values of l give a significant contribution.
Decay with larger l values is suppressed by the centrifugal
barrier. The calculated theoretical angular correlations W (θ )
can be fitted to the experimental data using a χ2 minimization.
This yields the partial cross sections for the decay from the
excited state to the final state, provided that the correlation
functions are normalized properly.

Interference between states with opposite parity gives
rise to angular correlations which are not symmetric around
90◦. Different angular correlations, with similar shapes at
(backward) angles where the detectors were located but rather
different shapes at other (forward) angles, can give rise to
significantly different cross sections integrated over θ from
0 to π . It is, therefore, important to take these interference
effects into account. This effect is especially important in
the decay to the 0+ g.s., because a few s.p. decays can
contribute. The angular correlations for decay to higher-lying
states are more isotropic.

B. Input parameters for the calculations

1. Single-particle strength and direct and
semidirect decay cross sections

The optical-model potential for the proton relative to
the 90Zr core is needed to calculate the strength functions
according to Eq. (4) and the direct and semidirect decay cross
sections according to Eqs. (9) and (11). This potential was
taken from Wang et al. [23] who made a dispersive optical-
model analysis of proton scattering from 90Zr. This potential
has been used to reproduce the experimental single-proton

spectrum and the proton separation energy. Here, we use a
modified version of this potential as suggested by Ref. [19].

The parameterization and parameters of the real and
imaginary parts of the optical potential as functions of the
proton energy εp are

Uopt(r, εp) = VC(r) − V (r, εp) − iWI (r, εp), (16)

where VC(r) is the Coulomb potential of a uniformly charged
sphere with a reduced radius rC = 1.264 fm. The real part
V (r, εp), is given as

V (r, εp) = V0(εp)f (r, r0, a0) + 2Vso
1

r
f ′(r, rso, aso)(�l · �s).

(17)

The imaginary part WI (r, εp) is

WI (r, εp) = WW (εp)f (r, rW , aW ) − 4aDWD(εp)f ′(r, rD, aD).

(18)

The potentials are factorized as strength functions
V0(εp),WW (εp),WD(εp), and Vso multiplied by a Woods-
Saxon function f or its derivative f ′ = ∂f/∂r , with

f (r, ri, ai) = (1 + exp[(r − riA
1/3)/ai])

−1. (19)

The parameters V0, a0, and r0 of the real potential for the
proton bound to the 90Zr core are listed in Table I and have
been taken from Ref. [19]. For the spin-orbit part, Vso listed
in Eq. (17), the parameters are Vso = 5.9 MeV fm2, rso =
1.072 fm, and aso = 0.63 fm. The strength parameters of the
imaginary part of the optical-model potential, Wi(i = W,D),
are determined by

WW (εp) = JW (εp)/

[∫
f (r, rW , aW )d3r

]
, (20)

WD(εp) = −JD(εp)/

[∫
4aDf ′(r, rD, aD)d3r

]
. (21)

Here, the volume integrals JW (εp) and JD(εp) of the imag-
inary potential are approximated by the relations given in
Refs. [23,24] as

Ji(εp) = αi

(εp − εF )4

(εp − εF )4 + β4
i

, i = (I,W ), (22)

JD(εp) = JI (εp) − JW (εp) (23)

TABLE I. Parameters of the real part of
the proton optical potential (Woods-Saxon
form; a0 = 0.68 fm) as functions of the
proton energy εp , taken from Ref. [19].

εp (MeV) V0 (MeV) r0 (fm)

1 54.735 1.280
5 53.246 1.290

10 51.589 1.277
15 50.157 1.258
20 48.931 1.240
25 47.870 1.224
30 46.912 1.210
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TABLE II. Optical-model parameters used in the DWBA calculations.

Particle V0 r0 a0 WW WD rI aI Vso rC Ref.
(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm)

α 118.4 1.24 0.79 21.7 1.54 0.59 1.3 [25]
t 131.4 1.218 0.677 20.6 1.128 0.939 1.3 [26]
p varied 1.25 0.65 λ = 25 1.3

with αI = αW = 100 MeV fm3, βI = 12.21 MeV, βW =
60.3 MeV, and εF = −6.8 MeV. The geometrical parameters
depend on the energy range of εp. For εp > 20 MeV, the values
are rW = rD = 1.236 fm and aW = aD = 0.61 fm. In the lower
energy range, εp < 20 MeV, these parameters depend on εp,
that is,

rW (εp) = rD(εp) = r1 − r2(εp − εF )4
/[

(εp − εF )4 + ε4
1

]
,

(24)

aW (εp) = aD(εp) = a1 + a2(εp − εF )4
/[

(εp − εF )4 + ε4
2

]
,

(25)

with r1 = 1.5 fm, r2 = 0.276 fm, ε1 = 12.3 MeV, a1 =
0.18 fm, a2 = 0.566 fm, and ε2 = 20.1 MeV.

For the calculation of the excitation cross sections for the
different {l, j} values, the strength function for a specific
transition [see Eq. (4)] is folded with the DWBA cross
sections. These DWBA cross sections σ DW(θ, ε) are calculated
using the code DWUCK [20]. For the α particle and tritons,
the optical-model parameters, following the notation of Eqs.
(16)–(18), were taken from Refs. [25] and [26], respectively;
see Table II. The triton optical-model parameters are based on
the 3He optical-model parameters deduced from 3He elastic
scattering from 90Zr at a bombarding energy of 89.3 MeV [27].
The parameters of the proton real optical-model potential are
given in Table II. The proton s.p. wave function was determined
by varying the potential depth to reproduce the proton binding
or resonance energy. Furthermore, in the DWBA calculations
for the 90Zr(α, tp), a finite-range correction parameter of 0.7
was used and the Vincent-Fortune procedure [28] for unbound
levels was employed to calculate the DWBA cross sections.

Finally, the parameters βL for 90Zr which are used to
describe the transition potentials according to Eq. (12) are
taken from Ref. [29] and listed in Table III. The potential U

used to describe the nuclear mean field for the protons needed
in Eq. (12) is the part V0(εp)f (r, r0, a0) given by Eq. (17).

TABLE III. Dynamic deforma-
tion parameters βL for the phonon
states in 90Zr; from Ref. [29].

State Ex (MeV) βL

2+
1 2.18 0.07

3−
1 4.16 0.20

5−
1 4.56 0.08

2. Statistical-decay cross sections

The branching ratio bstat
lj,i for statistical decay of a s.p. state to

a final state i, bi(Ex, lj ), is calculated using the code CASCADE

[3,30]. The cross sections for statistical decay are calculated
by folding the spin distributions, following the procedure
outlined in Sec. II B1, with the calculated branching ratios
bi(Ex, lj ) related to them. For these calculations, the relevant
parameters concerning the level densities for the various nuclei
in the decay chain are listed in Table IV. For the lowest
excitation-energy region, individual levels were used. These
were taken from the literature [31] up to an excitation energy
Ea , listed in Table IV, below which levels were well identified.
In the excitation-energy region Ea < Ex < Eb, with Eb ≡
60A−1/3 MeV, the parameters of the back-shifted Fermi gas
model from Dilg et al. [32] were used. In some cases,
however, the value of �, the pairing energy that determines
the zero point of the effective excitation energy, was ad-
justed slightly such that the sums of all levels determined
in the different procedures match at the transition regions
near Ea and Eb. Beyond an excitation energy Ex = Ec ≡
120A−1/3 MeV, the level densities are described by the
liquid-drop model, with the level-density parameter a =
A/8 MeV−1. In the region Eb < Ex < Ec, the level-density
parameters were calculated from extrapolations and interpola-
tions of the level densities in the neighboring regions (Ex < Eb

and Ex > Ec).

III. EXPERIMENTAL PROCEDURE AND RESULTS

A. The experimental setup

The 90Zr(α, tp) experiment was performed at the Research
Center for Nuclear Physics (RCNP), Osaka University using
180 MeV α-particles from the RCNP ring cyclotron. The tri-
tons were analyzed using the Grand Raiden spectrometer [33].
The horizontal acceptance of the spectrometer was 40 mrad,
which is the maximum in the bending plane; slits were used
for the vertical acceptance, allowing an acceptance of also

TABLE IV. Parameters used in the statistical-model
calculations.

Nucleus a (MeV−1) � (MeV) Ea (MeV)

91Nb 9.0 −0.20 2.034
90Nb 9.0 −1.40 0.813
90Zr 9.0 1.86 4.126
89Zr 9.0 0.21 2.995
89Y 9.0 0.90 3.138
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40 mrad. Therefore, the solid angle during the experiment
was 1.6 msr. The direct beam from the cyclotron was stopped
in a well-shielded Faraday cup, from which the current was
measured and integrated. For 90Zr we used a 1 mg/cm2 thick
metallic target, isotopically enriched to 98%. For calibration
purposes we used a 2 mg/cm2 thick 90Zr target and a natural
carbon target with a thickness of 4 mg/cm2.

Although the cross sections for the population of high-spin
states are maximum at 0◦, the spectrometer was positioned
at a scattering angle of 0.3◦. This was done because it was
found that in the focal-plane detector system the background
from the Faraday cup is the lowest at the angle at which
the direct beam is stopped somewhat more upstream from its
nominal position at 0◦. The magnetic fields of the spectrometer
were set such that excitation energies in 91Nb between 6 and
21 MeV were covered. Additional (singles) measurements
were done with magnet settings at which lower excitation
energies, including the g.s. of 91Nb, were also observed.
Furthermore, measurements were made using a carbon target.
The combination of these data and those of the low excitation-
energy region was used for the energy calibration of the
detected tritons in the focal-plane detectors. These detectors
were a set of two multiwire-drift chambers (MWDC’s) backed
by two plastic scintillator arrays [34]. Each MWDC has
x, u, and v planes for the determination of the trajectory
of a detected particle at the position of the focal plane.
Between the two scintillators, a 1 cm thick aluminum plate was
placed which is thin enough to allow tritons to pass through.
Heavier ions, such as α particles, were stopped in this plate.
Therefore, the second scintillator was used as a coincidence
detector for tritons, substantially reducing the singles count
rate and possible sources of background. The energy resolution
obtained for the tritons detected in the focal-plane detector
was 150 keV (full width at half maximum. FWHM), mainly
determined by the spread of the energy in the incoming beam.

Protons emitted from the excited 91Nb nuclei were detected
using a setup consisting of 37 lithium-drifted silicon solid-state
detectors (SSD’s). These detectors, with a thickness of 5 mm
and an area of 400 mm2 each, were mounted in a spherical
structure at a distance of 10 cm from the target, covering
backward angles between 100◦ and 160◦. To reduce possible
edge effects in these detectors, their acceptance was limited
with a 21 mm diameter diaphragm. The solid angle per detector
was 15.4 msr. The number of detectors and the total solid angle
at each polar angle are listed in Table V. The energy calibration

TABLE V. Number of proton detectors at different polar
angles.

θp(lab.)(deg) Number of detectors ��total (msr)

160 4 61.6
150 5 77.0
140 6 92.4
130 5 77.0
120 6 92.4
110 5 77.0
100 6 92.4

of the silicon detectors was done using 5.486 MeV α particles
from a 241Am source. In addition, coincidence data for the
12C(α, tp) reaction were measured and used to calibrate the
proton detectors. After proton decay from an excited state in
91Nb, the energy of the final state in 90Zr is given by

Efinal = Ex(91Nb) − Ep − Sp − Er, (26)

where Er is the recoil energy of the 90Zr nucleus. The energy
resolution obtained for the final-state spectra was 300 keV
(FWHM).

The complete setup (except for the number of SSD’s) and
data-acquisition system used in this experiment were very
similar to the ones used by Akimune et al. [35]. Both singles
and coincidence events were recorded event by event, and
scalers were used to record the integrated beam current and
the dead time of the data-acquisition system. These were
read out at regular intervals. For the protons, both the energy
signal and the timing signal with respect to that from the
focal-plane detector were recorded. Two coincidence windows
were set to record prompt and random coincidence events.
The trigger for the first window was set to record protons
originating from the beam burst related to prompt tritons.
The second window instead recorded protons arriving after
or before the burst associated with prompt tritons. In this way,
both prompt and random coincidences were recorded, and
in the off-line analysis the prompt events were corrected for
random contributions.

To obtain an overall normalization of the cross sections,
singles measurements were made for the population of the
IAS’s in the range between 0◦ and 8◦ in steps of 2◦.
Since the spectroscopic factor for the transition to the g.s.
of 91Nb is well known [36,37], the cross section for this
transition near 0◦ was also used for the normalization of
the absolute cross sections. For this purpose, a singles
measurement was also performed at KVI with the Big-Bite
magnetic spectrometer (BBS) [38]. The BBS was set at 4◦
with horizontal and vertical opening angles of 4◦ and 6◦,
respectively. A 180 MeV α-particle beam from the AGOR
(Accélérateur Groningen-ORsay) cyclotron bombarded a
5 mg/cm2 90Zr target. The triton ejectiles were detected with
the EuroSuperNova (ESN) detector [39,40]. This allowed the
identification of the particles through their energy loss in two
scintillator pads and their time of flight through the BBS. Two
vertical-drift chambers furnished information on the x and
y positions of the tritons at the focal plane. This further
allowed us to determine the momenta and the horizontal and
vertical angles of incidence at the focal plane. The scattering
angle could then be reconstructed with ray-tracing algorithms.
The deduced differential cross sections for the population of
the Jπ = 9/2+ g.s. and the Jπ = 11/2− IAS at Ex = 12 MeV
in 91Nb are shown as dots in Fig. 1. The systematic error in
the absolute cross sections is taken to be 20%. The data for the
IAS obtained earlier at RCNP are also shown in Fig. 1 (open
circles). They were normalized to the more recent KVI data.
A renormalization factor of 3.0 was needed. All cross sections
presented in Refs. [12] and [13] should be multiplied by this
factor.
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FIG. 1. Differential cross sections (filled circles) for the popula-
tion of the ground state and the IAS at Ex = 12.07 MeV in 91Nb
obtained from a measurement at KVI. The more extensive data for
the IAS (open circles) were obtained at RCNP. Curves are the results
of DWBA calculations assuming a g9/2 transfer for the g.s. transition
and an h11/2 transfer for the IAS transition. The two curves for the
IAS are obtained with an unbound s.p. wave function employing the
Vincent-Fortune procedure for the DWBA calculation (dashed curve)
and a slightly bound wave function (dotted curve); see text for more
details. Normalization factors f are obtained by normalizing σ DW

lj to
the data.

B. Data reduction

As a first step in the analysis, the position and angle of the
particles crossing the focal plane were calculated from the data
of the MWDC’s. A good reconstruction of the scattering angle
in the vertical plane was not possible because of the large
magnification of the spectrometer in the vertical direction,
My = 6.0. Background, most likely coming from the Faraday
cup, appeared to be present in the excitation-energy spectra.
This background could be removed successfully using a gate
on the triton time-of-flight data. In the proton-energy spectra,
background was observed at low (mainly below 2 MeV) proton
energy. To remove this background, a gate was applied to the
two-dimensional spectra of proton energy versus the arrival
time difference between the proton and triton detection signals.

C. Calibration data

In the off-line analysis, the 12C(α, t) data were analyzed for
consistency checks [41]. Figure 2 displays the kinetic energy of
protons emitted from the excited nuclei versus the excitation
energy in 13N. The decay to the g.s. of 12C and to its first
excited state at Ex = 4.44 MeV can be seen as the two loci
with constant values for Ex − Ep. In addition, a locus from
the 16O(α, tp0) can be seen in this plot. This locus stems from
a contamination of the carbon target with oxygen. Using the
level schemes for 13N [42] and 17F [43], strong peaks in these
nuclei could be identified and were used as calibration points
for the analysis of the 90Zr(α, t) data. The levels concerned are
those at Ex = 3.55, 6.36, and 10.36 MeV in 13N and the one
at Ex = 5.82 MeV in 17F.

FIG. 2. Two-dimensional scatter plot of the energy of detected
protons Ep vs the excitation energy Ex in 13N for the 12C(α, t) reaction
used as a calibration during the experiment. Labeled loci correspond
to different final states (g.s. and 2+ state at Ex = 4.4 MeV) in 12C or
to the g.s. of 16O from contaminants.

D. Singles (α, t) data

Figure 3 shows the measured singles 90Zr(α, t) spectrum.
This spectrum was made by combining two independent
singles spectra measured at two different settings of the
magnetic fields of the spectrometer, one covering the lower
excitation energy, the other one the region that was used
during the decay study. The difference in statistics for the
two different settings explains the strong fluctuations seen in
the lower excitation-energy region. In this region, the g.s. and
low-lying states in 91Nb are observed as narrow peaks. For
instance, it is easy to identify the peaks at Ex = 3.43 and
4.82 MeV [44] in 91Nb, which are also strongly excited in the
90Zr(3He, d) reaction [36]. Above 6 MeV excitation energy,
broader structures are observed on top of a continuum which
is rising with energy. The dominant narrow peak at ∼12 MeV
was identified as an IAS (see Refs. [13,45,46]). Two peaks
caused by contamination of the target are labeled 13N(3.55) and
17F(5.82); they are due to the 12C(α, t) and 16O(α, t) reactions
leading to final states at Ex = 3.55 and 5.82 MeV in 13N and
17F, respectively.

FIG. 3. Singles spectrum for the 90Zr(α, t) reaction measured at
θ = 0.3◦. Two magnetic-field settings of the spectrometer were used.
Region below 7.5 MeV was normalized to the high-energy region. In
addition, an IAS of 91Nb and known states due to the contaminants
12C and 16O are indicated.
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FIG. 4. Comparison between the singles spectrum (a) and the
spectrum for which a coincidence with a proton emitted at backward
angles is required (b). See also the caption of Fig. 3.

E. Coincidence (α, t p) data

In Fig. 4, the inclusive excitation-energy spectrum is
compared with the spectrum from the coincidence data, i.e.,
tritons detected in the focal plane simultaneously with a proton
detected in a SSD. The coincidence spectrum rises from 6 to
12 MeV because of the opening of the proton channel
(Sp = 5.15 MeV). Above the neutron-emission threshold,
Sn = 12.05 MeV, neutron decay is possible, and the decay
by protons is reduced. A striking observation is the strong
reduction of the continuum background in the coincidence
spectrum compared to that in the singles spectrum. Most
likely, this continuum background is caused by breakup of
α particles into a triton and a proton. In this process, these two
particles are emitted mainly in the forward direction. Thus,
requiring a coincidence with a proton emitted at backward
angles strongly reduces the contribution of this process. In
the two-dimensional spectrum of the proton energy versus the
excitation energy in 91Nb (see Fig. 5), some final states in
90Zr can be clearly identified as loci with a constant value for
Ex − Ep. Also indicated are the loci for the decay of 13N and
17F to the g.s.’s of 12C and 16O, respectively.

In Fig. 6, the excitation-energy spectra are shown for
three different gates on the final-state energy. In Fig. 6(a),
this spectrum is shown for coincidence events leading to the
population of the g.s. of 90Zr. In this case, events caused by
target contaminants of either 16O or 12C are not present because
kinematically their loci are well separated from the locus for
decay to the g.s. of 90Zr. In Fig. 6(b), the excitation-energy
spectrum for the decay to the 2+

1 /5−
1 doublet is shown.

The energy resolution in the present experiment was not
good enough to separate these two peaks in the final-state
spectrum, which are located at Ex = 2.19 and 2.32 MeV in
90Zr, respectively. Figure 6(c) displays the excitation-energy
spectrum using a coincidence gate for the population of the

FIG. 5. Two-dimensional scatter plot of the energy of detected
protons Ep vs the excitation energy Ex in 91Nb. Labeled loci
correspond to different final states in 90Zr or to the g.s.’s of 12C
and 16O. Solid lines are the calculated loci for the (α, tp) reaction on
the oxygen and carbon contaminants.

3−
1 state in 90Zr, which is located at an excitation energy of

2.75 MeV. Because of the opening of the neutron-decay
channel at an excitation energy of 12.05 MeV in 91Nb, the
data for the 6–12 MeV excitation-energy range and for the
range beyond 12 MeV will be discussed separately.

FIG. 6. Spectra for tritons in coincidence with protons leading to
the population of different states in 90Zr: to the g.s. (a), to the 2+

1 /5−
1

doublet (b), and to the 3−
1 state (c). See also the caption of Fig. 3.
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1. Decay from levels below the neutron-emission threshold

In the excitation-energy region below 12.05 MeV, decay
of excited states is only possible through proton or γ -ray
emission. As can be seen from Fig. 6, below 10.0 MeV in
excitation energy in 91Nb, almost no proton decay occurs
to states other than the g.s. of 90Zr. Although energetically
allowed, the decay from states in the region just above the
threshold for proton emission is suppressed because of the
Coulomb and centrifugal barriers. This is also the reason that
decay to the low-lying phonon states in 90Zr is only observed
for excitation energies above 9 MeV in 91Nb. In the region
between the two IAS’s [see Fig. 6(a)], decay is observed to the
g.s., the 2+

1 /5−
1 doublet, and the 3−

1 state.

2. Decay from levels above the neutron-emission threshold

The final-state spectra for different excitation-energy re-
gions in 91Nb are shown in Fig. 7. Decay is observed to the
g.s. of 90Zr, low-lying phonon states, and higher-lying states
which are not resolved. The rather large amount of decay to
the g.s. is striking, especially from high excitation energies.
Furthermore, the decay to the g.s. of the contaminants 12C and
16O and to the first excited state of 12C is seen. In Figs. 7(b)
and 7(c), the final-state spectrum from the 12C(α, tp) reaction,
using the kinematics of the 90Zr(α, tp) reaction, is also shown
as a dotted histogram.

IV. DISCUSSION

A. Calculated single-particle strength

The strength functions for the different {l, j} values were
calculated using the approach described in Secs. II A1 and
II B1. The results of these calculations are shown in Fig. 8.
From the measured differential cross sections and the DWBA
calculations made with the code DWUCK [20], we determined
the overall normalization factor N needed in Eq. (1). The
results of the DWBA calculations for the transitions to the g.s.
and to the IAS at Ex = 12.07 MeV are compared with the data
in Fig. 1. The factors f that normalize the DWBA calculations
to the data, σ DW, are given in the figure. The g9/2 spectroscopic
factor for the 91Nb g.s. is known to be C2S = 0.87 [36,37].
Making use of Eq. (2), this yields a normalization factor
N = 14.4. Considering the large systematic uncertainty of
20% in the absolute cross sections, the deduced normalization
factor of N = 14.4 agrees with the value of 18.2 published by
Das et al. [47], based on the systematics for the (α, t) reaction.
With this normalization factor, the spectroscopic factor for the
11/2− IAS at 12.07 MeV is deduced to be 0.038 assuming an
unbound wave function derived at the exact resonance energy
and employing the Vincent-Fortune procedure. On the other
hand, a spectroscopic factor of 0.052 was derived assuming
a wave function that is slightly bound by about 150 keV.
These values are in good agreement with the experimental
spectroscopic factor of the 11/2− parent state in 91Zr of
Sν(1h11/2) = 0.37 [48] and Sν(1h11/2) = 0.45 [49]. Note that
these values should be multiplied by the isospin Clebsch-
Gordan coefficient, C2 = 1/11, yielding 0.034 and 0.041,

FIG. 7. Final-state spectra for decay from the excitation-energy
regions in 91Nb of 12.2–14.0 MeV (a), 14.0–16.0 MeV (b), and 16.0–
20.0 MeV (c). Also shown are the measured final-state spectrum from
the 12C(α, tp) reaction (Ref. [41]; dots) and the normalized statistical-
model calculations (dashed histograms). Extra strength observed in
(c) could likely be due to contributions from the 16O(α, tp) reaction.

respectively, before comparing them with the spectroscopic
factors of the IAS.

The strength functions shown in Fig. 8, calculated following
the procedure described in Sec. II A1, were folded with the
DWBA cross sections σ DW

lj for the different values of {l, j};
see Fig. 9. These do not include the factor NC2S = 14.4×10/11
necessary to compare with experimental cross sections. It is
seen in Fig. 9 that although we only cover the tail of the
strength function of the i13/2 state, this state accounts for a
large fraction of the cross section at higher excitation energy.
This is a result of the selectivity for the population of high-spin
states in this reaction. Because the uncertainty (up to 50%)
in the strength functions is rather large in the tails of these
functions [50], the resulting calculated cross sections have
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FIG. 8. Calculated s.p. strength functions as a function of the
excitation energy in 91Nb for different s.p. states.

also a similar uncertainty. Also shown in Fig. 9 is the sum
of all calculated contributions. The spectrum is dominated by
two broad structures at about 6 and 9 MeV related to g7/2

and h11/2 states, respectively. In an experiment performed
with the one-proton stripping reaction 90Zr(7Li,6He), similar
broad states were observed at the same excitation energies [9].
The presence of a large background and contaminant states
makes a more quantitative comparison between the present
data and those of the (7Li,6He) reaction impossible. At higher
excitation energies, more overlapping broad states contribute
to the yield where the main contributions are from the high-spin
i13/2, h11/2, and h9/2 states.

B. Decay cross sections

The angular correlation of the decay from the excitation
energies below the neutron-emission threshold in 91Nb (see
Sec. III E1) to the g.s. can be described very well by assuming
h11/2 strength for this region; see Fig. 10. Also from Fig. 6, it
can be seen that the proton is emitted from a high-spin state.
This is because as soon as it is energetically allowed, decay to
the 5−

1 state and to a lesser extent to the 3−
1 state become the

dominant decay channels. Decay to the g.s. is hindered by the
angular-momentum barrier. The cross section in this region
for decays to the different final states in 90Zr is calculated
by integrating the theoretical cross sections. These have been
fitted over all proton angles to the measured angular correlation
functions. This is done using excitation-energy intervals with
a width of 0.5 MeV. The results are shown in Fig. 11. The
theoretical strength distribution shown in Fig. 9 is dominated

FIG. 9. Double-differential cross sections of 90Zr(α, t) reaction at
Eα = 180 MeV, obtained by folding calculated s.p. strength functions
with σ DW (i.e., not including the factor NC2S) at θt = 0◦ as a function
of the excitation energy in 91Nb, are shown in the upper and middle
parts of the figure. In the lower part, the summed yield (d3/2 to i13/2)
is shown.

FIG. 10. Experimental angular correlations (dots) compared to a
calculation assuming h11/2 for the decay from the 10.0–11.5 MeV
excitation-energy region in 91Nb leading to the g.s. in 90Zr [see
Fig. 6(a)].
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FIG. 11. Double-differential cross sections obtained after inte-
gration over the proton angle for decay from the excitation-energy
bin between 10.0 and 11.5 MeV in 91Nb to the g.s. (a), to the 2+

1 /5−
1

doublet (b), and to the 3−
1 state (c) in 90Zr.

by the h11/2 state in this energy range, which explains the
dominance of the (l = 0) transition to the 5− state. The high
spin of the states excited in this region is confirmed by the
observed angular correlation of the emitted proton for decay
to the g.s. of 90Zr.

Also for the region in 91Nb above the neutron-emission
threshold (see Sec. III E2), cross sections related to the decay
to different final states were obtained by an integration over
the proton angle. For this procedure, theoretical angular
correlations were fitted to the experimental correlations; see
Sec. II A4. For the region Ex(91Nb) = 12–15 MeV, the main
contribution is the h11/2 state with small contributions from
several other states. The relative contributions are dependent
on Ex(91Nb). The calculated angular correlation does not
reproduce the experimental correlation if one assumes a small
contribution from the i13/2 state. In Fig. 6(a), a small sharp peak
is seen at 13 MeV. This peak corresponds possibly to another
IAS. This peak is excluded by using only the excitation-energy
range 13.5–15.0 MeV in 91Nb. A satisfactory description of
the experimental correlation is obtained if we assume that
the excitation strength in this region is due to an h11/2 state
with a small contribution of an i13/2 state [see Fig. 12(a)].
The obtained cross sections, integrated over the proton solid
angle, for decay to the g.s. and to low-lying states are shown in
Fig. 13. For the decay to the g.s. from the region Ex(91Nb) =
15–20 MeV, the angular correlation was calculated using an
i13/2 state with admixture of an h11/2 state where the (average)
ratio of the calculated cross sections for the two states was

FIG. 12. Calculated (solid lines) and experimental (dots) angular
correlations for the decay from states in 91Nb to the g.s. of 90Zr
from the regions Ex(91Nb) = 13.5–15.0 MeV (a) and 15.0–20.0 MeV
(b); see text for more details.

FIG. 13. Double-differential cross sections obtained after integra-
tion over the proton angle, for decay to the g.s. (a), to the 2+/5− states
(b), and to the 3− state (c) as a function of Ex(91Nb). Also shown are
the calculated cross sections for direct and semidirect decay (solid
lines) and statistical decay (dashed lines).
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used; see Fig. 9. The obtained correlation function describes
the experimental data very well as is shown in Fig. 12(b).

1. Statistical decay

The statistical-decay cross sections are calculated as de-
scribed in Sec. II B2 and normalized to the experimental decay
cross sections, assuming that the decay to higher-lying states is
completely statistical. This decay is observed as broad peaks
in the final-state spectrum. This is shown in Fig. 7, where
broad peaks can be seen between 4 and 6 MeV [Fig. 7(b)] and
between 4 and 10 MeV [Fig. 7(c)]. It is seen in Fig. 7(c) that
above 8 MeV the measured strength cannot be explained by
statistical-model calculations and the 12C spectrum. It is likely
that the extra strength is due to the 16O(α, tp) reaction, where
excited states in 16O are populated.

2. Direct decay

The direct decay from a state {l, j} in 91Nb to the different
final states in 90Zr through a transition Lπ is calculated
by folding the calculated excitation cross section shown in
Fig. 9 with the branching ratio b

D,SD
lj,Lπ described in Sec. II and

multiplying by the factor NC2S. Double-differential cross
sections obtained from the present experiment are shown in
Fig. 13. In addition, the cross sections calculated for direct
and semidirect decays to the different final states are displayed,
summed over all relevant states {l, j} in 91Nb. Furthermore,
the cross sections calculated for statistical decay are also
shown. At excitation energies just above the neutron-emission
threshold, the spectra are dominated by statistical decay and
at higher energies by direct decay. Up to the highest excitation
energy in 91Nb, a considerable amount of decay to the g.s. is
observed. Because no significant statistical decay to the g.s.
is predicted by the statistical-model calculations, the decay
to the g.s. can be attributed to direct decay. Fast processes
like breakup of the α particle in a triton and a proton cannot
explain the observed population of the g.s. of 90Zr. Protons in
this process are emitted predominantly in forward directions,
whereas the observed angular correlation for the decay to
the g.s. clearly shows an increase at far backward angles;
see Fig. 12. The experimentally observed cross sections can
be described well with the calculated direct and semidirect
decay. For the decay to the 2+

1 /5−
1 doublet, statistical decay

plays an important role. In the region below 16 MeV, the total
experimental cross section can be described with the calculated
statistical-decay cross section. For the 3−

1 state, more decay is
experimentally observed than is calculated in the statistical
model. For excitation energies Ex > 15 MeV in 91Nb, the
direct and semidirect decays dominate the decay to the g.s. and
to the low-lying phonon states, respectively. This difference

between the experimentally observed cross sections and the
statistical-decay calculations can be explained reasonably well
by the calculations. A significantly stronger decay to the 3−

1
state compared with the 2+

1 /5−
1 doublet is seen both in the

calculations and the experimental spectra, reflecting the strong
coupling to the 3− phonon state which was also observed in
neutron-decay experiments [11].

V. SUMMARY AND CONCLUSION

The excitation and decay by proton emission of high-lying
high-spin states in 91Nb have been studied. Broad states
have been observed at Ex ∼ 6 and 9 MeV, consistent with
results from calculations which predict the g7/2 and h11/2

states at these energies. At higher excitation energies, several
overlapping high-spin states contribute to the cross section.
Decay from these states by proton emission was seen to the
low-lying phonon states, especially to the 3− phonon state.
This confirms the conclusions from other experiments that
these states play an important role in the first steps of the
damping mechanism of high-lying high-spin s.p. states. Even
at high excitation energies, proton decay to the g.s. has been
clearly observed. The angular correlations corresponding to
this decay show that a significant part of this decay must
be attributed to direct decay. The measured decay cross
sections to the g.s. and low-lying phonon states are very well
described by calculations using an optical-model coupled-
channel approach.

In conclusion, the study of proton decay of high-lying s.p.
states has shown to be a powerful tool in the investigation of the
damping mechanisms of such states. One can benefit from the
good energy resolution and high efficiency for the detection
of the protons, even at high proton energies. Furthermore,
the results are much less dependent on the statistical-model
calculations than are the results of neutron-decay experiments
because of the strong reduction of the statistical decay by
protons once the neutron channel opens.
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[3] F. Pühlhofer, Nucl. Phys. A280, 267 (1977).
[4] M. N. Harakeh, A. van der Woude, J. van Popta, S. Y. van

der Werf, and R. H. Siemssen, KVI Annual Report, 1975
(unpublished), p. 22.

014311-12



DAMPING MECHANISMS OF HIGH-LYING SINGLE- . . . PHYSICAL REVIEW C 75, 014311 (2007)

[5] S. Galès, C. P. Massolo, S. Fortier, J. P. Schapira, P. Martin, and
V. Comparat, Phys. Rev. C 31, 94 (1985).

[6] C. P. Massolo, F. Azaiez, S. Galès, S. Fortier, E. Gerlic, J. Guillot,
E. Hourani, and J. M. Maison, Phys. Rev. C 34, 1256 (1986);
C. P. Massolo, S. Fortier, S. Galès, F. Azaiez, E. Gerlic, J. Guillot,
E. Hourani, H. Langevin-Joliot, J. M. Maison, J. P. Schapira, and
G. M. Crawley, Phys. Rev. C 43, 1687 (1991).

[7] S. Fortier, S. Galès, S. M. Austin, W. Benenson, G.M. Crawley,
C. Djalali, J. S. Winfield, and G. Yoo, Phys. Rev. C 41, 2689
(1990).

[8] G. H. Yoo, G. M. Crawley, N. A. Orr, J. S. Winfield, J. E. Finck,
S. Galès, Ph. Chomaz, I. Lhenry, and T. Suomijärvi, Phys. Rev.
C 47, 1200 (1993).

[9] S. Galès, Nucl. Phys. A569, 393c (1994).
[10] D. Beaumel, S. Fortier, S. Galès, J. Guillot, H. Langevin-

Joliot, H. Laurent, J. M. Maison, J. Vernotte, J. A. Bordewijk,
S. Brandenburg, A. Krasznahorkay, G. M. Crawley, C. P.
Massolo, and M. Renterı́a, Phys. Rev. C 49, 2444 (1994).

[11] S. Fortier, D. Beaumel, S. Galès, J. Guillot, H. Langevin-Joliot,
H. Laurent, J. M. Maison, J. Bordewijk, S. Brandenburg,
A. Krasznahorkay, G. M. Crawley, C. P. Massolo, M. Renterı́a,
and A. Khendriche, Phys. Rev. C 52, 2401 (1995).

[12] H. K. T. van der Molen, Ph.D. thesis, University of Groningen,
1999.

[13] H. K. T. van der Molen, H. Akimune, A. M. van den Berg,
I. Daito, H. Fujimura, Y. Fujita, M. Fujiwara, M. N. Harakeh,
F. Ihara, T. Inomata, K. Ishibashi, J. Jänecke, N. Kalantar-
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K. Ishibashi, J. Jänecke, N. Kalantar-Nayestanaki, H. Kohri,
H. Laurent, I. Lhenry, T. O’Donnell, H. K. T. van der Molen,
A. Tamii, H. Toyokawa, H. Yoshida, and M. Yosoi, KVI Annual
Report, 1997 (unpublished), p. 2.

[42] F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991).
[43] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A564,

1 (1993).
[44] C. M. Baglin, Nucl. Data Sheets 86, 1 (1999).
[45] G. Finkel, D. Ashery, A. I. Yavin, G. Bruge, and A. Chaumeaux,

Nucl. Phys. A217, 197 (1973).
[46] G. Finkel, D. Ashery, A. I. Yavin, A. Boudard, G. Bruge,

A. Chaumeaux, and M. Rouger, Phys. Rev. C 19, 1782
(1979).

[47] S. K. Das, A. K. Basak, A. S. Mondal, A. S. B. Tariq, A. F. M. M.
Rahman, D. R. Sarker, and H. M. Sen Gupta, Nuovo Cimento
A112, 661 (1999)

[48] A. Graue, L. H. Herland, K. J. Lervik, J. T. Nesse, and E. R.
Cosman, Nucl. Phys. A187, 141 (1972).

[49] W. Booth, S. M. Dalgliesh, K. C. Mclean, R. N. Glover, and
F. R. Hudson, Phys. Lett. B30, 335 (1969).

[50] M. H. Urin and V. A. Rodin( private communication).

014311-13


