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The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic
density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the
usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully
describe the construction of the leading corrections for a system of fermions in one dimension with a spin-
degeneracy equal to the number of particles N . Despite the fact that the corrections are complicated and nonlocal,
we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact
functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state
intrinsic density, to next-to-leading order in 1/N . We briefly discuss implications for real Skyrme functionals.
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I. INTRODUCTION

The Hohenberg-Kohn theorem [1] and the associated Kohn-
Sham procedure [2] have helped to shift the interpretation of
Skyrme-mean-field theory in heavy nuclei. Nowadays, instead
of focusing on a Skyrme nucleon-nucleon interaction, theorists
start with a Skyrme (or relativistic) mean-field-like density
functional, modifying its parameters to fit nuclear properties
in ways that are not obviously consistent with the existence of
an underlying effective two-body interaction. The Hohenberg-
Kohn theorem is often used to justify this step, the idea being
that Skyrme functionals are an approximation to a universal
Kohn-Sham density functional—written in terms of single-
particle orbits and leading to Hartree-like equations—that is
guaranteed to include all correlations.

Because the nucleus is a self-bound system, however, the
usual Hohenberg-Kohn theorem is not really a justification.
It states that there exists a universal functional of a system’s
laboratory density that has a minimum at the ground state
density, and that the value of the functional at the minimum is
the ground-state energy. The adjective “universal” means that
the functional can be written as a sum of a part that is inde-
pendent of whatever external one-body potential the system
is in—the universal part—and a simple term

∫
V (r)ρ(r)d r ,

where V is the one-body potential and ρ is the usual laboratory
density. The density of interest in nuclear physics, however,
is the intrinsic density, i.e., the density relative to the nuclear
center of mass, not relative to a fixed point in the lab. It is this
intrinsic density that is localized and measured in scattering
experiments. By contrast, the laboratory nuclear density of an
isolated nucleus is spread out evenly over all space because
the nuclear center of mass is free to move anywhere [3]. Thus,
the universal Hohenberg-Kohn functional has a minimum at a
constant spread-out density that contains no information about
the localized intrinsic density. The guaranteed existence of
this functional is irrelevant to nuclear physics. The same is
true of the usual Kohn-Sham procedure, which represents the
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density as a sum of squares of single-particle wave functions,
leading to a Hartree-like equations for the ground-state density
and energy. The single-particle orbitals for the ground-state
laboratory density are plane waves.

Because the ground state wave function of the nucleus
factors into center-of-mass and intrinsic parts, it is possible—
by removing the center-of-mass kinetic energy from the
Hamiltonian and adding a potential such as Vc.m. ≡ (

∑
i r i)2

that is minimized when the center of mass is at the origin—to
construct a related Hamiltonian for which the ground-state
laboratory density is the same as the intrinsic density. One
could try to produce an ordinary density functional for this
new Hamiltonian, assured by the Hohenberg-Kohn theorem
that its minimum would yield the true intrinsic density. By
making the potential very weak, one could even make the
functional yield the true ground-state energy when minimized.
This procedure, however, would single out one point in
space and would therefore look very different from Skyrme
mean-field theory, in which the functional is minimized
by a family of Slater determinants, related to one another
by translation. Furthermore, the local-density approximation
(LDA) and extensions, through which Skyrme functionals
might be derived [4], could easily destroy the conditions that
force the intrinsic density to be the same as the laboratory
density. The whole Skyrme enterprise would make much more
sense if we knew that we could construct an exact Kohn-Sham
functional of the intrinsic density rather than the laboratory
density, without modifying the Hamiltonian.

These considerations, and related ones connected with
deformation and rotation, lead us to ask whether analogs of
the Hohenberg-Kohn theorem and Kohn-Sham procedure exist
for the intrinsic density. Rotation is more complicated than
translation because it does not decouple from internal motion
and because the intrinsic rotational density is not directly
observable, so for now we worry only about translation and
define the intrinsic density simply as the density with respect to
the center of mass. The operator corresponding to that quantity
is

ρ̂I (r) ≡ ρ̂(r + r̂c.m.), (1)
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where ρ̂ is the usual laboratory density operator, the center-of-
mass position operator r̂c.m. is defined by

r̂c.m. ≡ 1

N

N∑
i=1

r̂ i , (2)

and the hats over ρI , ρ, r i , and rc.m. are to emphasize that
the quantities are operators, unlike the variable r in Eq. (1).
The intrinsic density, unlike its lab-frame counterpart, is an
N -body operator, complicating density-functional theory for
self-bound systems.

In the next section we address the question of whether there
is an analog of the Hohenberg-Kohn theorem guaranteeing
the existence of a “universal” intrinsic-density functional with
a minimum at the exact ground-state intrinsic density and
energy. Section III argues that a Kohn-Sham-like procedure
can be used to find the exact intrinsic density, and outlines the
construction of the corresponding Kohn-Sham equations. We
will work with a specific one-dimensional model to simplify
the formalism, but will carry the construction as far as possible;
as a result this section is the longest and most technical. In
Sec. IV we produce a phenomenological Skyrme-like func-
tional that, while not exact away from the minimum, does yield
the model’s exact intrinsic density and energy at its minimum
to good accuracy. We then briefly discuss the implications of
these results for real three-dimensional nuclear physics.

II. HOHENBERG-KOHN THEOREM FOR
INTRINSIC DENSITY

There is indeed a Hohenberg-Kohn theorem for the
intrinsic density. In fact, Valiev and Fernando [5] have
shown—assuming a nonrelativistic Hamiltonian, and using
an effective-action formalism invented in Ref. [6]—that given
any Hermitian operator Q̂(r), one can construct an energy
functional E[Q] that is universal in a sense to be discussed and
has a unique (and correct) minimum at Q(r) = 〈Q̂(r)〉g.s., the
ground-state expectation value of Q̂(r). Introducing a “source”
J (r) that couples to Q(r) and alters the ground-state energy:

E[J ] ≡
〈
Ĥ +

∫
J (r)Q̂(r)d r

〉J

g.s.

, (3)

one can define the functional E[Q] as the functional Legendre
transform with respect to J . In other words

E[Q] = E[J [Q]] − J [Q] ◦ Q, (4)

where J [Q](r) is the particular source function that makes
〈Q̂(r)〉Jg.s. = Q(r), and we have used the convention A ◦ B ≡∫

A(r)B(r)d r . It is not hard to show [7] (and this is an alterna-
tive and perhaps clearer definition) that E[Q] is the minimum
of 〈Ĥ 〉 over all normalized N -particle wave functions that have
〈Q̂(r)〉 = Q(r). Since 〈Ĥ 〉 is smallest in the ground state, the
functional is minimized when Q ≡ 〈Q̂〉g.s.. It is universal in
that the addition of an arbitrary term V ◦ Q̂ to the Hamiltonian
merely adds V ◦ Q to E[Q].

All this means, in particular, that for nuclei there is a
universal “intrinsic-density functional” E[ρI ] with a minimum
at the ground-state intrinsic density, and that we know in

principal how to construct it. It is worth noting that the
functional is not universal under the addition of an ordinary
one-body potential

∑
i V (r̂ i) to the Hamiltonian, but rather the

addition of a generically N -body potential
∑

i V (r̂ i − r̂c.m.)
that affects only intrinsic structure.

The important question, though, is how to incorporate
orbitals into this framework in a way that leads to a constructive
procedure for the energy functional. In other words, can
one derive a Kohn-Sham-like (e.g., Skyrme-like) functional
for the intrinsic density, even in principle? In the next section
we show that one can.

III. ORBITALS AND KOHN-SHAM-LIKE EQUATIONS

A. Framework

References [5,8] introduce Kohn-Sham orbitals in func-
tionals of the ordinary density (in systems that are not self-
bound) through the perturbative “inversion method” [9]. In
this approach one divides J̃ [ρ], where the tilde here and below
distinguishes the quantity from the related one to be used here
for the intrinsic density ρI , into a piece J̃0[ρ], the Kohn-Sham
potential that forces a noninteracting system to have the
density ρ, and the rest. The entire functional can be constructed
from J̃0 and expressed in terms of the noninteracting orbitals
φk and energies εk that J̃0 determines. In our notation, under the
assumption that Ẽ[J̃ ] can be divided into successively smaller
contributions Ẽ[J̃ ] = Ẽ0[J̃ ] + Ẽ1[J̃ ] + · · ·, the energy-density
functional Ẽ[ρ], has the form [5,8]

Ẽ[ρ] = Ẽ0[ρ] + Ẽint[ρ], (5)

where

Ẽ0[ρ] = Ẽ0[J̃0] − J̃0 ◦ ρ, Ẽint[ρ] = Ẽ1[J̃0] + · · · , (6)

and we have truncated Ẽint[ρ] at lowest order. To find the
ground-state density and energy one rewrites the minimization
condition δẼ[ρ]/δρ = 0 as an implicit Kohn-Sham equation
of the form

δẼint[ρ]

δρ
= J̃0[ρ], (7)

where we have used Eq. (5) and the fact that δẼ0/δ[ρ] = −J̃0,
which follows from the definition of Ẽ0 as a Legendre trans-
form. The Kohn-Sham procedure then consists of choosing
a trial potential J̃0, solving the single-particle Schrödinger
equation to obtain the corresponding φk and εk , computing
Ẽint and δẼint/δρ in terms of these quantities, and iterating
until the energy and density converge. The procedure amounts
to solving Hartree equations with the mean-field potential
V [ρ] = δẼint/δρ.

We can apply this procedure to our intrinsic functional
E[ρI ], even though ρI is an N -body operator, provided we
start at a slightly different point: mean-field theory. To make
the discussion less abstract, we refer explicitly to a simple one-
dimensional system. Before constructing an energy functional,
we describe the system, its exact ground-state energy and
intrinsic density, and the mean-field approximations to these
quantities.
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B. Model in one dimension

We consider N fermions with spin-degeneracy N interact-
ing via an attractive two-body delta function (h̄ = 1):

H = − 1

2m

N∑
i=1

d2

dx2
i

− g
∑
i<j

δ(xi − xj ). (8)

This model has the nice feature of being exactly solvable.
The ground state is bound and the corresponding energy and
intrinsic density are known [10,11]:

Eg.s. = 1
24mg2(N3 − N ), (9)

ρ
g.s.
I (x) = mg

N−1∑
n=1

(−)n+1 n(N !)2e−nNmg|x|

(N + n − 1)!(N − n − 1)!

= mgN2

4 cosh2
(

Nmgx

2

)
(

1 − 1

N

[
1 − 3

2 cosh2
(
Nmgx

2

)
]

+O
(

1

N2

))
,

mg|x| >∼
3lnN

N2
. (10)

The ground state differs from that of a nucleus, however, in that
the system shrinks to a point as N increases and the binding
energy goes like N3; there is nothing resembling saturation. A
local-density approximation for such a system, which has no
uniform limit, is hard to imagine.

Reference [11] analyzed the Hartree-Fock approximation,
to which we refer as the mean-field approximation, for the
ground state. The approximation is improved when the center-
of-mass kinetic energy is subtracted from the Hamiltonian,
as, e.g., in the no-core shell model [12]. Subtraction makes a
localized ground-state possible, since the center-of-mass is no
longer required to be in a plane-wave state. Because the spin
degeneracy is equal to the number of particles, whether or not
one subtracts, the spatial mean-field orbital φ(x) is the same for
every particle. The mean-field equation for φ, with no external
source and the center-of-mass kinetic energy subtracted, is

−N − 1

2 mN
φ′′(x) − (N − 1)g|φ(x)|2φ(x) = εφ(x). (11)

Because of translational invariance, the solutions make up a
degenerate set with each member centered at a different point
x = a in space:

φ(x) =
√

Nmg

2 cosh[Nmg(x − a)/2]
, ε = −mg2

8
N (N − 1).

(12)

The average position x̄, given by

x̄ =
∫

x|φ(x)|2dx, (13)

is just x̄ = a for the mean-field solutions. The mean-field

energy is then

Em.f. = N (N − 1)
∫

dx

[
1

2mN
|φ′(x)|2 − g

2
|φ(x)|4

]

= Nε + N (N − 1)g

2

∫
|φ(x)|4dx

= −mg2

24
N2(N − 1). (14)

Interestingly, the mean-field energy is correct at leading
order in the small quantity 1/N—that is, the O(N3) term is
right. AtO(N2) there is an error; the exact energy in Eq. (9) has
no term of that order. The mean-field O(N2) energy is reduced
by the subtraction of the center-of-mass kinetic energy, but, as
Ref. [13] shows, one needs to include ring diagrams1 (i.e., the
RPA correlation energy) to cancel it completely.

The mean-field laboratory density Nφ2(x) is also correct in
some sense in leading order; because center-of-mass motion
becomes irrelevant at large N , the mean-field laboratory
density reproduces the exact intrinsic density there, assuming
the center of mass is at the origin [11]. The mean-field intrinsic
density can be computed by expanding the operator ρ̂I (x) ≡
ρ̂(x + x̄ + x̂c.m. − x̄) around x + x̄ in powers of x̂c.m. − x̄,
leading, after some algebra, to

〈ρ̂I (x)〉m.f. =

cNN

[
|φ(cNx + x̄)|2 + µ

2N

d2

dx2
|φ(cNx + x̄)|2 +O

(
1

N2

)]

= N

[
|φ(x + x̄)|2 + 1

N

(
|φ(x + x̄)|2 + x

d

dx
|φ(x + x̄)|2

+ µ

2

d2

dx2
|φ(x + x̄)|2

)
+O

(
1

N2

)]
,

(15)

with

µ =
∫

(x − x̄)2|φ(x)|2dx, cN = N

N − 1
. (16)

Beyond leading order, this expression gives a better approxi-
mation to the exact intrinsic density than does the mean-field
laboratory density N |φ(x)|2, as can be seen, for example, by
using it to compute the mean-square distance from the center
of mass, 〈x2〉intr. The result, 〈x2〉intr = µ(1 − 1

N
), is the same

as the exact one.
With these results in hand, we can move to the construction

of a Kohn-Sham-like intrinsic-density functional for the
model.

1One might mistakenly infer from Ref. [13] that ring diagrams
with more than two rings contribute very little to the O(N2)
correlation energy. That can appear to be so, but only if one modifies
the Hamiltonian (by subtracting the center-of-mass energy) in the
Hartree-Fock calculation but neglects to do so in the RPA.
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C. Intrinsic density functional at mean-field level

The problem with applying the Kohn-Sham procedure
directly to the intrinsic density is that the source term, J0 ◦ ρ̂I ,
is an N -body operator. We cannot treat the source exactly and
still have a noninteracting system, the starting point for the
inversion method discussed above. Instead, we start with the
mean-field approximation, not just for the true ground-state,
but also for the ground state with the addition of the term
J0 ◦ ρ̂I . In other words, J0[ρI ] is now the source function that
forces the intrinsic density to be ρI when the system is treated
in mean-field approximation. The resulting mean-field single-
particle orbitals will play the same role in obtaining the exact
intrinsic functional as Kohn-Sham orbitals for a noninteracting
system do in the usual approach, and the inversion method
will go through without any other modifications. Of course,
to apply it we must assume that corrections to mean-field
theory are perturbative. For the model just described that is
certainly the case, as we shall see. For real Skyrme functionals,
it is not unreasonable to assume the existence of an effective
Hamiltonian for which Hartree-Fock is a good starting point,
at least in spherical nuclei.

Constructing the mean-field intrinsic-density functional as
the first term E0[ρI ] in the intrinsic version of Eq. (5) can be
done without solving any equations. We are supposed to start
with

E0[J0] = N (N − 1)
∫

dx

[
1

2mN
|φ′(x)|2 − g

2
|φ(x)|4

]

+ J0 ◦ 〈ρ̂I 〉m.f., (17)

where 〈ρ̂I 〉m.f. is given by Eq. (15) and we have taken the useful
but not essential step of subtracting the center-of-mass kinetic
energy (though without explicitly writing a more complicated
two-body center-of-mass term that has no effect on bound
states) to improve the mean-field approximation. But since J0

is supposed to be fixed so that 〈ρ̂I 〉m.f. = ρI and then J0 ◦ ρI

subtracted from E0[J0], the mean-field functional looks just
like the first line of Eq. (14):

E0[ρI ] = N (N − 1)
∫

dx

[
1

2mN
|φ′(x)|2 − g

2
|φ(x)|4

]
.

(18)

This simple Skyrme-like object, when written in terms of the
orbital φ, is the same as the mean-field functional one would
get for the ordinary one-body density, but now φ is a functional
of ρI (up to the location of the center of mass x̄, which
must also be specified) rather than ρ. The relation between
the two functionals is not surprising because at mean-field
level the Slater determinant constructed from orbital φ is the
system’s wave function, and the energy functional—the energy
corresponding to that wave function—is just the expectation
value of the Hamiltonian, no matter what observable we
write the functional (and φ) in terms of. (When we go
beyond mean-field theory, center-of-mass motion makes the
functionals of the lab and intrinsic density quite different.)

In more detail, φ is a functional of ρI in the following
sense: ρI determines J0 through the solution to δE0/δJ0 = ρI

(Ref. [5] shows that the solution exists and is unique) and

J0 determines φ, again up to its overall location, through the
solution to the mean-field equations, which we haven’t yet
written, that come from varying E0[J0] with respect to φ (with
a constraint on its norm). With φ and E0 functionals of ρI , one
can reproduce the mean-field ground-state energy and intrinsic
density by solving the equation δE0/δρI = 0. Because this
equation says that J0 = 0, finding the minimum corresponds
to solving the source-free mean-field equation, i.e., the Hartree
equation Eq. (11), and then computing ρI from Eq. (15). This
Hartree equation is the leading approximation to the Kohn-
Sham-like equation we seek.

All this may seem pedantic, but it contains an important
point about the relation of φ to ρI : the condition δE0/δJ0 = ρI

simply states that ρI will be given in terms of φ by Eq. (15),
with ρI replacing 〈ρ̂I 〉m.f.. Thus, though ρI (x) is just N |φ(x +
x̄)|2 to leading order in 1/N , it has higher-order corrections.
This fact is apparently important for real Skyrme functionals,
which fit data best when a prescription [14] for ρI that
approximates the real-world analog of the Eq. (15) is used
to calculate observables such as the rms radius [15]. Using
the uncorrected expression ρI (x) ≡ ∑

k |φk(x + x̄)|2 for this
purpose produces noticeably poorer results.

It actually is possible to formulate an intrinsic-density
functional theory in which ρI ≡ ∑

k |φk(x + x̄)|2 without
corrections. In the simple model we can do so by neglecting
the O(1/N ) terms in Eq. (15) when defining E0[J0], and taking
their effects into account at the next level of approximation.
Such a step would in fact simplify much of the formalism to
come, e.g., the mean-field equation for the orbital φ in the
presence of the many-body source J0. And when expressing
the leading-order intrinsic-density functional in terms of φ we
would still end up with Eq. (18). That object, however, would
be a different functional of ρI than before and would produce
poorer results for the ground-state intrinsic density. We will
not elaborate the corrections to the functional necessary to
restore the lost accuracy, lest this paper get even longer than
it is. Instead, using the relation between ρI and φ given by
Eq. (15), we proceed to take up corrections that are genuinely
beyond mean-field theory. Though the lack of something like
the LDA prevents us from actually calculating the corrections,
either analytically or numerically, we describe how to do the
latter in some detail.

D. Beyond mean-field theory

To go beyond the relatively straightforward mean-field ap-
proximation to E[ρI ], one would need to calculate Eint[ρI ] =
E1[ρI ] + · · · = E1[J0] + . . . . (We content ourselves with E1

here, though we could go further.) Then, provided one could
calculate δE1/δρI (x), one could follow the procedure Kohn-
Sham procedure outlined above, rewriting the minimization
condition δE[ρI ]/δρI = 0 in the form

J0(x) = δE1[J0]

δρI (x)
(19)

and solving by iteration, starting with a guess for J0. We will
call Eq. (19) the Kohn-Sham equation, even though strictly
speaking it does not involve Kohn-Sham orbitals.
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Given a J0, one could find E1 in the following way: The
first step would be to find the associated mean-field orbital φ

by solving the mean-field equation, which we finally have to
write down, for the system in the source J0 ◦ ρ̂I . We obtain
the equation by varying φ in Eq. (17) and using Eq. (15).
Since x̄ in the latter is itself a functional of φ, the result is
complicated:

−φ′′(x)

2mcN

−
[

(N − 1)g|φ(x)|2 − J x̄
0 (x)

+ (x − x̄)

cN

∫
J x̄

0
′(y)|φ(y)|2dy

]
φ(x)

+ µ

2N

[
J x̄

0
′′(x) − (x − x̄)

∫
J x̄

0
′′′(y)|φ(y)|2dy

+ (x − x̄)2

µ

∫
J x̄

0
′′(y)|φ(y)|2dy

]
φ(x)

= εφ(x), (20)

where J x̄
0 (x) ≡ J0( x−x̄

cN
) and we have been (and will continue

to be) cavalier about factors of cN in terms of O(1/N), since
they make a difference only in terms of O(1/N2), which
we have dropped. Those terms could be included in a more
accurate functional. We have also added x̄’s in the fourth
and sixth terms to keep translational invariance manifest; they
would otherwise be absorbed into ε.

Next, one would need an approximation in which to eval-
uate/define E1. As mentioned above, Ref. [13] demonstrates
that in the absence of a source the largest corrections to the
mean-field approximation in a 1/N expansion come from
summing ring diagrams. The same statement does not apply
to the intrinsic density functional at all possible densities, but
the ring sum, which is the leading correction to the mean-field
in a “loop-expansion” [16] of E[J ], should yield the 1/N

corrections near the ground-state intrinsic density and makes
a natural choice for E1.

To obtain an expression for the ring sum, we work with the
one-body density matrix ρab [17]. We can use it, for starters,
to represent the contents of Eq. (20). The left-hand side of
that equation, with a delta function δ(x − x ′) replacing φ(x),
gives the coordinate-space representation of the mean field
h(x, x ′)[J0]. We can write this h (with spin now included) in
an arbitrary space+spin basis in terms of ρab:

hab[J0] = ∂E0[J0]

∂ρba

= . . . + (
J x̄

0

)
ab

− 1

cNN
Tr

[(
J x̄

0

)′
ρ
]

(x − x̄)ab

+ 1

2N2

(
µN

(
J x̄

0

)′′
ab

− µTr
[(

J x̄
0

)′′′
ρ
]
(x − x̄)ab

+ Tr
[(

J x̄
0

)′′
ρ
]
[(x − x̄)2]ab

)
, (21)

where Tr represents a trace over matrix elements, and we have
only omitted the terms that do not depend on J0 in the second
and third lines. Hartree-Fock theory corresponds to finding the
basis that make h diagonal. Again, we have inserted two x̄’s
to manifest translational invariance; they just add a constant to
all eigenvalues, without altering the Hartree-Fock basis.

The ring sum, in these terms, is just the RPA correlation
energy calculated with the effective two-body interaction [17]

Vab,cd = ∂hac[J0]

∂ρdb

= ∂2E[J0]

∂ρca∂ρdb

. (22)

In coordinate space, this interaction takes the form

V (x1, x2) = − g

cN

δ(x1 − x2) + 1

2mN
p̂1p̂2

− 1

N

[
(x1 − x̄)J ′

0(x2 − x̄) + (x2 − x̄)J ′
0(x1 − x̄)

− (x1 − x̄)(x2 − x̄)

(∫
J ′′

0 (y − x̄)|φ2(y)|dy

)]

+ 1

N2
[· · ·], (23)

where the term with p̂i ≡ −id/dxi is the two-body center-
of-mass Hamiltonian, matrix elements of that term alone are
to be antisymmetrized, and we have replaced some more
complicated terms with an ellipsis. The extra x̄’s we added
to h [and to Eq. (23)] have no effect because the particle-hole
RPA involves only terms hac with a �= c in Eq. (22) and x̄ is
just a number, with no off-diagonal matrix elements.

The sum of all the ring diagrams can be expressed as [18,19]

E1[ρI ] = E1[J0]

= 1

2π

∫ ∞

0
Re(Tr[ln(1 − R̂(iω)V̂ ) + R̂(iω)V̂ ])dω,

(24)

where the coordinate-space matrix elements of R̂(ω) make
up the “unperturbed” response function R(x1, x2; x ′

1, x
′
2; ω)

for the system in the J0-dependent mean field. [The spin
indices, which we have omitted, just contribute factors of N in
Eq. (24).] For zero-range interactions and our source we need
these matrix elements only at x1 = x2 ≡ x, x ′

1 = x ′
2 ≡ x ′, and

there the response can be written (for φ real) as

R(x, x ′; ω) = φ(x)φ(x ′)
[
〈x| 1

ω + ε + iη − ĥ[J0]
|x ′〉

+ 〈x ′| 1

−ω + ε + iη − ĥ[J0]
|x〉

]
. (25)

The matrix elements are just single-particle Green’s functions
for particles in the mean field. Equation (24) is then the RPA
correction to the intrinsic density functional.

One advantage of our definition of intrinsic density (for
others, see, e.g., Refs. [11,20]) is that E[J ] is translationally
invariant; moving φ(x) does not change it because it does not
change ρI , the quantity to which J couples. As a result, the
RPA equations have a zero mode. With the center-of-mass
kinetic energy subtracted subtracted from the Hamiltonian,
the zero mode contributes nothing to E1, but that convenience
is not an essential part of the treatment. We could actually
start with the full Hamiltonian, with no center-of-mass-energy
subtraction, and recover the same result for E0 + E1. The
mean-field energy E0[ρI ] would be different, but the difference
would be made up [17] by the contribution of the RPA zero
mode to E1, the ring sum in Eq. (24). Further corrections
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might require mixing of mean-fields with different values of
x̄ to account for center-of-mass motion, but at RPA order a
single-mean field with a proper treatment of the zero mode is
sufficient, even without the trick of removing the center-of-
mass energy from the Hamiltonian.

Despite this nice feature, Eq. (24) is still a complicated
implicit representation of E1[ρI ]. To solve the Kohn-Sham
equation, Eq. (19), we need the derivative of this functional.
Taking the derivative is the most numerically involved step in
the entire process.2 References [5,8] suggest using the relation

δE1[ρI ]

δρI (x)
= δE1

δJ0
◦ δJ0

δρI (x)
. (26)

In our model the two terms on the right-hand side can
be manageably combined, particularly if we are willing to
sacrifice the quality of the functional away from the minimum,
a step that, as we shall see, has no effect on the Kohn-Sham
solution.

To get δJ0/δρI , one can start by writing φ in terms of ρI

and x̄ through the perturbative inversion of Eq. (15) (assuming
φ real):

φ(x) = (cNN )−1/2

×
√

ρI

(
x − x̄

cN

)
− µ

2N
ρ ′′

I

(
x − x̄

cN

)
+ O

(
1

N2

)
.

(27)

Then one could solve Eq. (20) in reverse to obtain J0 − ε

in terms of φ. (J0 is needed only up to a constant to
evaluate higher-order corrections.) Though Eq. (20) for J0

is a complicated differo-integral equation, we can simplify it
without harm. Near the ground-state value of ρI , the source
J0, which is close to δE1/δρI there, is smaller by O(1/N )
than (N − 1)g|φ|2, the J0-independent part of the mean-field
equation. E1 is already smaller than E0 by O(1/N ) near the
ground state, and the contributions to E1 of terms in which J0 is
multiplied by 1/N are therefore down from E0 by O(1/N2).
At that order we are already missing terms because of the
restriction of the relation between ρI and φ in Eq. (15) to
O(1/N ). Thus, in treating E1 or its derivative we can neglect
the third and fourth lines of Eq. (20), (and even the term
preceding the right bracket on the second line, because the
φ corresponding to the ground state is symmetric) without
changing the Kohn-Sham solution at O(1/N). This converts
the differo-integral equation for J0 into a simple algebraic one,
yielding

J x̄
0 (x) − ε ≈ 1

2m

φ′′(x)

φ(x)
+ Ng|φ(x)|2. (28)

With this result and Eq. (27) it is easy to get δJ0(y)/δρI (x)
through the chain rule; it would vanish for x �= y with
the approximations just mentioned. One could then extract
δE1[ρI ]/δJ0(y) by making local variations in in J0(y) and
calculating the changes in E1[ρI ] = E1[J0] through Eq. (24).
One could simplify that equation as well by neglecting all but

2Reference [21] discusses some of the difficulties in “orbital-
dependent functionals” for atomic and condensed-matter physics.

the analogs of the first term after the ellipsis in Eq. (21) and the
first three lines of the effective interaction, Eq. (23), without
affecting the functional near its minimum at next-to-leading
order.

That leaves, finally, the Kohn-Sham equation itself. As
mentioned already, one can solve it iteratively. For our
intrinsic-density functional that means starting with a guess
for J0, solving the mean-field Eq. (20) to obtain φ and
ε, evaluating E1 via Eq. (24) and then δE1/δρI (x) as just
discussed, resetting J0 to equal δE1/δρI , and repeating until
J0, E1, and φ (and therefore ρI ) converge. This is equivalent
to solving the mean-field equation (20) with J0 replaced by
δE1/δρI . And again, because even the leading-order terms in
E1 are down by O(1/N ) from E0 near the minimum, we can
throw away the higher-order terms in that equation without
affecting the relevant part of E1. We can even neglect them
in constructing E0[J0[ρI ]] near the ground state, because in
that functional corrections to the mean-field energy, Eq. (14),
are second order in the small source J0. One can get the
entire density functional correct at next-to-leading order near
the minimum with a Kohn-Sham equation that takes simple
Hartree form.

For real nuclei, in which there is more than one spatial orbit,
there are no analogs of Eqs. (27) and (28) and our procedure for
evaluating δJ0/δρI will not work. That quantity is the inverse
of a generalized linear response function for ρI at ω = 0, and
will not usually vanish at y �= x, as it did in our machina-
tions above. It can be evaluated numerically, but at a high
computational cost. Subleading terms can still be neglected
in this inverse response function, however, if the only goal is
to include the leading corrections to the mean-field functional
near the minimum. That would mean ignoring the difference
between δJ0/δρI (x) in Eq. (26) and the ordinary RPA inverse
response function, which for a given J0 can be calculated in
a relatively straightforward way [22]. Though δE1/δJ0, the
other quantity in Eq. (26), might still not easy, it could be
evaluated as already described or (particularly for real and
more complicated functionals) via the relations in Ref. [21].

If one wanted to avoid even that difficulty, one could make
still more approximations without changing the solution. One
could even go so far as to evaluate δE1/δJ0 and δJ0/δρI at J0 =
0, i.e., at ρI = 〈ρ̂I (x)〉m.f. = (mgN2/4) cosh−2(Nmgx/2) (the
mean-field approximation to the exact value). That would
actually remove J0 from the right hand side of Eq. (26), thus
changing the self-consistent procedure represented by Eq. (19)
into a one-step formula:

J0(x) =
∫

δJ0(y)

δρI (x))

∣∣∣∣
J0=0

× δE1

δJ0(y)

∣∣∣∣
J0=0

dy, (29)

which, after multiplying both sides by the response function
δρI (z)/δJ0(x) (which equals δρI (x)/δJ0(z)), and integrating
over x, implies

ρI (x) = 〈ρ̂I (x)〉m.f.

∣∣∣∣
J0=0

+
∫

δρI (x)

δJ0(y)

∣∣∣∣
J0=0

J0(y)dy + · · ·

=
[
〈ρ̂I (x)〉m.f. + δE1

δJ0(x)

]∣∣∣∣
J0=0

+ · · · . (30)
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(The manipulations serve to obtain the second line from the
first, which is just a Taylor expansion.) Evaluating Eq. (30)
would just be equivalent to calculating the correction to the
mean-field ground-state intrinsic density by summing rings
generated by the attractive delta function and the first-order
insertion of an effective one-body potential [the third term in
Eq. (20)] or two-body interaction [the second and third lines
of Eq. (23)], with J (y) replaced by δ(x − y) in both cases
because of the functional derivative. That is eminently doable
and would reproduce the second line of Eq. (10), the expression
for the exact ground-state intrinsic density.

In our model, however, no matter where in this chain
of approximations we decided to stop, the intrinsic-density
functional would not be local, i.e., it would not look like a
Skyrme functional. For that, one would seem to need some
form of LDA. The answer to the question at the end of the
introduction, then, is that we can write the intrinsic density
functional in terms of orbitals, but it is tough, in this model
anyway, to make it Skyrme-like. Nonetheless, the successive
approximations do bring an important point to light: what
we really care about is not so much the density functional
for arbitrarily stressed nuclei as it is the ground-state energy
and intrinsic density themselves. In fact, since the nucleus
is never subject to a deforming potential, except in nuclear
matter where wave functions are translationally invariant,
one might argue that that is all we care about. It actually
seems a bit strange to apply density-functional theory, the
main feature of which is “universality,” to a problem in
which there are no external influences to treat universally
(though density functionals do arise naturally without the
accompanying potentials in the density-matrix expansion [4]).
In any event, a functional that does not exactly match the
definition, Eq. (4) but does give the correct energy and intrinsic
density when minimized, and has the additional benefit of
being simple, is all we really want for the study of finite
nuclei. In the next section we show that in our model, a simple
Skyrme-like functional satisfies these requirements.

IV. PHENOMENOLOGICAL FUNCTIONAL AND
SKYRME INTERACTIONS

We want a Skyrme-like intrinsic-density functional with a
minimum at the correct value to next-to-leading order in 1/N ,
that is, a functional that at its minimum reproduces the O(N3)
and O(N2) terms (the latter of which is zero) in Eq. (9), and
the second line of Eq. (10) when ρI is calculated via Eq. (15).
We will reproduce the intrinsic density if the φ that solves the
Kohn-Sham equation is

φ(x) ≡ φ0(x) + 1

N
φ1(x)

φ0(x) =
√

(N − 1)mg

2

[
cosh−1

(
Nmgx

2cN

)]
(31)

φ1(x) = s

√
(N − 1)mg

4

×
[

3

2
cosh−3

(
Nmgx

2cN

)
− cosh−1

(
Nmgx

2cN

)]
,

where s ≡ 1 + m2g2N2µgs/2 = 1 + π2/6, and the cN ’s ap-
pear because of their presence in Eq. (15).

To express such a functional through the formalism detailed
above, we need to keep the center-of-mass kinetic energy in
the Hamiltonian and use an effective nucleon mass

m∗ = m

1 + α/N
, (32)

where α is a constant to be determined later.3 We denote by
E∗

0 [ρI ] the mean-field functional obtained by changing E0[ρI ]
in Eq. (18) in that way (both changes affect the kinetic term),
and write the functional through first order in 1/N as

E[ρI ] = E∗
0 [ρI ] + E1[ρI ],

E1[ρI ] = −
∫

dx

(
βg

2N
ρ2

I (x) + γ

6m∗N3
ρ3

I (x)

)
, (33)

where β and γ are also constants to be determined later.
Equation (19), with the omission of all but the first three
terms in Eq. (20) (which we argued could be neglected without
changing the minimum of the functional), leads to the explicit
Kohn-Sham-like equation

− φ′′

2m∗ − (N − 1 + β)g|φ|2φ − γ

2m∗N
|φ|4φ = εφ. (34)

Inserting φ = φ0 + φ1/N into this equation, writing ε ≡ ε0 +
ε1/N , and expanding in inverse powers of (N − 1) rather than
N [because of the cN ’s in Eq. (31)], we find at leading order
in (N − 1)−1 the self-consistent equation

− 1

2m
φ′′

0 − (N − 1)g|φ0|2φ0 = ε0φ0. (35)

At O(1/[N − 1]) ≡ O(1/N ), assuming φ real, we have

− 1

2m
φ′′

1 − 3(N − 1)gφ2
0φ1 − α

2m
φ′′

0 − (N − 1)gβφ3
0

− γ

2m
φ5

0 = ε0φ1 + ε1φ0. (36)

Now, the solution to Eq. (35) is the φ0 of Eq. (31), with
ε0 = −mg2(N − 1)2/8. The solution to Eq. (36), with the
appropriate φ0 and ε0 plugged in, is the φ1 of Eq. (31), provided
β = α − 2s, γ = 18s, and ε1 = αε0. The requirement that the
energy E[ρI ] in Eq. (33) have no O(N2) term at the minimum
is satisfied as well if and only if

α = 2

(
1 + 4s

5

)
, β = 2

(
1 − s

5

)
, γ = 18s. (37)

Thus, minimizing our functional in Eq. (33) with these values
of the parameters yields the correct energy and intrinsic density
to O(1/N).

The functional can be extended to reproduce ρI and E at
higher orders in (1/N ) with the addition of higher powers
of ρI /N

2, though finding the corresponding coefficients gets
harder. These functionals, as discussed, do not converge to the
“exact one” for all ρI , but they do around the ground-state

3Though an effective mass can be included through the use of an
intrinsic kinetic-energy density [23], we will simply alter the nucleon
mass here.
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ρI . The result suggests that real Skyrme functionals, which
may be viewed as depending on intrinsic semilocal kinetic,
spin-orbit, and current densities in addition to the ordinary
intrinsic density, behave the same way; we have no reason to
think them correct away from the minimum.

It is worth noting that the construction above is even more
straightforward if we take ρI (x) ≡ N |φ(x + x̄)|2 rather than
define it as the expectation value of ρ̂I in the Slater determinant
constructed from φ, i.e., as in Eq. (15). We do the latter only
because the mean-field approximation and, more importantly,
real Skyrme functionals work better with that definition [15].
The success of the wave-function-based assignment ρI ≡
〈ρ̂I 〉m.f. raises the hope that Skyrme functionals can be derived
and improved through mean-field theory with some effective
low-momentum interaction, with the addition of relatively
small corrections. The density-matrix expansion works along
those lines, and deserves more attention. It remains to be seen
whether the formalism presented here—the inversion method
modified for self-bound systems—can be happily married to
such an approach.

We have said nothing here about “symmetry restoration,”
a technique that, particularly in its rotational form, is viewed
as a step beyond the local or semilocal Skyrme-mean-field
equations. The projected-mean-field equations, while more
complicated than their unprojected counterparts, are still
equations for single-particle orbitals, however. Symmetry-
restored mean-field theory is simply a more accurate starting

point for the inversion method than plain mean-field theory.
Presumably, additional corrections can be absorbed into those
equations, as they were here. This statement, of course,
says nothing about what the corrected functionals will look
like.

To summarize, we have shown that a version of the
Hohenberg-Kohn theorem holds for the intrinsic density in
self-bound system and that, to the extent that a convergent
expansion around mean-field solutions exists for such systems,
a Kohn-Sham-like procedure can be applied to obtain func-
tionals of the intrinsic density that include all correlations.
Skyrme functionals seem to be approximations to the exact
intrinsic-density functionals but it is quite possible that, like
our phenomenological functional, they work poorly away from
the ground-state density and energy. On the other hand, we do
not always need them to do more than that, and a concerted
effort to improve even this limited kind of functional is
worthwhile. The density-matrix expansion, which can clearly
be applied more accurately than it was 35 years ago, may offer
improvements and should be further explored.
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