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Two-pion exchange contributions to the relativistic N N kernel: Peripheral scattering
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The relativistic one-boson-exchange model for NN scattering is extended by including two-pion exchange
(TPE) contributions in the kernel. We develop the formalism for the evaluation of the TPE diagrams within the
relativistic quasipotential approach. The peripheral partial waves in elastic NN scattering are studied within
this model. The TPE interactions contain a strongly attractive isoscalar-scalar component which requires a low
value of the cutoff parameter: � = 650–800 MeV. With this prescription, the peripheral waves can be reasonably
described.
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I. INTRODUCTION

The one-boson-exchange (OBE) potential model has for
many years provided a rather successful and economical
description of the nucleon-nucleon (NN ) interaction. Next
to the well-established long-range one-pion-exchange (OPE)
force, the model includes the exchanges of heavier mesons,
most commonly the η, ρ, ω, δ (a0), and σ (f0, or ε). The OBE
model naturally leads to a medium-range attraction, a strong
spin-orbit force, and short-range repulsion. With a limited
number of free parameters, it can provide a very reasonable
fit to the NN scattering data [1,2]. A Lorentz covariant OBE
model was developed in Ref. [3] by solving the Bethe-Salpeter
equation for the NN system in the equal-time approximation.
This relativistic model has been applied to pion production in
NN scattering [4], to electron scattering on the deuteron [5],
and to proton-proton bremsstrahlung [6,7].

One of the reasons why OBE models became popular in the
1960s was the failure, dating back to the 1950s, to formulate
consistently and successfully the two-pion exchange (TPE)
interaction in field theory. It was not known how to properly
regularize and renormalize the TPE diagrams or, in fact, which
TPE interactions to include. Therefore, the ambitions to derive
at least the long- and medium-range NN interaction from field
theory were mostly dropped in the 1960s. (The connection of
the OBE model to QCD, on the other hand, is tenuous at
best [8].) It is now understood that the key to the solution is
chiral symmetry within the concept of an effective field theory
(EFT). During the last 15 years or so, the ambitions of the
1950s have been picked up and attempts have been made to
formulate a (nonrelativistic) EFT, in terms of nucleon and pion
degrees of freedom, that obeys the constraints of spontaneously
broken chiral symmetry as it is present in QCD [9–13]. This
has proven to be far from straightforward, and, at present,
there are still open questions about the power counting that

ranks the various short- and long-range terms in the hierarchy
of interactions in the EFT [14]. Nevertheless, a rather good
description of the NN phase shifts has been obtained in this
approach [11,15,16]. Also, the TPE interaction derived from
this chiral EFT [10,17–19], when added to OPE, provides a
high-quality long-range NN interaction [19,20].

In this paper, we want to extend the kernel of the relativistic
OBE model of Ref. [3] by including one-loop TPE diagrams.
Our choice for the TPE interaction is motivated by the effective
chiral Lagrangian used in nonrelativistic EFT; however, we
lack the power counting that makes the nonrelativistic EFT
approach, in principle, systematically improvable. Our goal is
to investigate whether with the addition of such TPE diagrams
to the relativistic kernel, a good description of the phase shifts
is possible and to study the effect of relativistic corrections and
recoil terms that are naturally included in a Lorentz covariant
framework. Such an NN model with TPE would find many
applications in the relativistic few-body problem. To this aim,
we will first develop the necessary formalism for a relativistic
treatment of TPE, and then we will apply this formalism to
elastic NN scattering. We will restrict ourselves in this paper
to D and higher waves, which we will attempt to describe by
OPE and TPE only, leaving out the short-range heavy-boson
exchange interactions.

Our paper is organized as follows. In Sec. II we de-
scribe briefly the relativistic quasipotential approximation to
elastic NN scattering, in particular the BSLT equation. In
Sec. III we discuss the TPE additions to the OBE kernel. The
evaluation of the one-loop diagrams is discussed in detail.
Section IV is dedicated to the presentation of our main results,
the predictions for the values of the phase shifts for the
peripheral waves up to 300 MeV laboratory energy, obtained
in perturbation theory and by iteration of the quasipotential.
The numerical accuracy of our results is also addressed. We
end with a summary and final conclusions in Sec. V.
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II. QUASIPOTENTIAL APPROACH TO N N SCATTERING

In relativistic field theories, the T matrix for scattering
of two nucleons is a solution of the inhomogeneous Bethe-
Salpeter (BS) equation

T (p, p ′; P ) = V (p, p ′)

− i

∫
d4k

(2π )4
V (p, k)G2(k, P )T (k, p ′; P ), (1)

where G2(p, P ) is the two-body propagator given by the direct
product of two one-particle free-fermion propagators with
relative momentum p and total momentum P . In principle,
the kernel V has to be taken as the sum of all irreducible
diagrams. This is clearly an impossible task, and therefore one
usually resorts to a quasipotential approximation. The full BS
equation, written now in symbolic form,

T = V + V S T , (2)

is replaced by a set of two coupled equations,

T = W + W g T, (3)

W = V + V (G − g) W, (4)

which are equivalent with the original BS equation, as
depicted graphically in Fig. 1. The new propagator g is
chosen by restricting the relative energy in some way, while
preserving properties such as two-particle unitarity and rela-
tivistic covariance. Of several possibilities [21], we will adopt
the so-called Blankenbecler-Sugar-Logunov-Tavkhelidze [22]
(BSLT) approximation. The BSLT equation has been applied
successfully to the coupled NN -N	 scattering problem [4],
to electron-deuteron scattering [5], and to proton-proton
bremstrahlung [6,7]. It consists of replacing the scalar part
of the two-nucleon propagator

G0 = 1(
1
2P + p

)2 − M2 + iε

1(
1
2P − p

)2 − M2 + iε
(5)

by

GBSLT
2 = iπ

1

Ep − E

1

(Ep + E)2
δ(p0), (6)

where M is the nucleon mass. The two-particle propagator
becomes

GBSLT
2 (p, P ) = 1

2 (Ep − E)δ(p0)S(1)(p, P )S(2)(−p, P ), (7)

= +

= +

= +

−

T

T

W

W W

T

T

V

V

V

V

W

W

V

FIG. 1. Graphical representation of the BS equation (first line),
BSLT equation (second line), and integral equation satisfied by the
quasipotential (third line). Quasipotential propagator g is denoted by
a crossed line.

where E = 1
2P0 and Ep =

√
p2 + M2; S(1)(p, P ) and

S(2)(−p, P ) denote the Dirac propagators of the nucleon
labeled by 1 and 2, respectively. By using this form of the
propagator, the integration over the relative energy can be
performed in the BS equation. One is then left with the BSLT
equation, which can be handled more easily from a practical
point of view,

T (p̂, p̂ ′; P ) = W (p̂, p̂ ′)

− i

∫
d4k

(2π )4
W (p̂, k̂)GBSLT

2 (k̂, P )T (k̂, p̂ ′; P ), (8)

where the four-momentum k̂ is restricted by the δ function in
S2 such that in the center-of-mass frame of the two nucleons
its time component is zero, i.e., k̂0 = 0.

The kernel W of the BSLT equation, the so-called quasipo-
tential, can be determined from Eq. (4), which is represented
graphically in the third line of Fig. 1. In previous works, the
potential V was taken as the sum of tree-level OBE diagrams.
Our goal in this paper is to extend the kernel by also including
next to the OBE diagrams the one-loop irreducible diagrams,
i.e., the TPE interaction, in the potential V .

III. TWO-PION EXCHANGE INTERACTION

A. The chiral Lagrangian and two-pion exchange

The derivation of the TPE interaction proceeds from the
chiral Lagrangian density constructed in terms of covariant
derivatives for the pion and the nucleon field [23]:

�Dµ = D−1∂µ �π/Fπ = 1

1 + �π2
/
F 2

π

∂µ �π/Fπ, (9)

Dµψ = (∂µ + �τ · �Eµ)ψ =
(

∂µ + i

Fπ

c0 �τ · �π × �Dµ

)
ψ,

(10)

where Fπ = 185 MeV is the pion decay constant, and gA =
1.26 is the Gamow-Teller coupling in neutron β decay;
τi are the Pauli isospin matrices. For convenience later on,
we have added the coupling constant c0 in front of the
Weinberg-Tomozawa (WT) NN2π seagull interaction; chiral
symmetry requires that c0 ≡ 1. With these chiral-covariant
derivatives as building blocks, the chiral Lagrangian can be
constructed as a sum of terms with an increasing number of
such derivatives. The presence of the nucleon as a heavy degree
of freedom in this Lorentz covariant chiral Lagrangian spoils
the one-to-one correspondence between loop and momentum
expansion as it exists in chiral perturbation theory in the meson
sector [24]. A consistent chiral power counting scheme can be
obtained, however, with the heavy-baryon formalism, which
implies that the nonrelativistic limit has to be taken for the
nucleon [9,25,26].

The Lagrangian densities relevant for OPE and TPE are
given by

L(0) = ψ̄

(
iγµ∂µ − M − c0

F 2
π

γµ�τ · �π

× ∂µ �π + gA

Fπ

γµγ5 �τ · ∂µ �π
)

ψ, (11)
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Tree-level and one-loop diagrams contributing to the OPE
and TPE potentials. The NN2π WT vertex is represented by a full
circle.

L(1) = −8c1

F 2
π

m2
π ψ̄ψ �π2− 2c2

M2F 2
π

(ψ̄∂µ∂νψ ∂µ �π · ∂ν �π + h.c.)

+ 4c3

F 2
π

ψ̄ψ ∂µ �π · ∂µ �π − 2c4

F 2
π

(ψ̄σµν �τψ) · ∂µ �π × ∂ν �π.

(12)

The dimensionful coupling constants (also called “low-energy
constants”) c1, c2, c3, and c4 of the NN2π seagull terms in the
Lagrangian density are defined according to the convention
used in chiral perturbation theory. Their values have been
extracted from fits to pion-nucleon amplitudes [27,28] and
NN scattering data [19,20]. For our numerical results, we
will adopt the values c1 = −0.81, c2 = 3.28, c3 = −4.70, and
c4 = +3.40 GeV−1. The sensitivity of the phase shifts to
variations in the coupling constants is discussed below.

A systematic expansion of the Lagrangian densities in
Eqs. (11) and (12) to order 1/M gives the chiral Lagrangian
density used in chiral EFT of NN scattering [9,10]. The
relevant diagrams are given in Figs. 2 and 3. Tree-level OPE
is depicted in Fig. 2(a). Figures 2(b)–2(h) show the leading
TPE diagrams. The direct-box diagram, Fig. 2(b), is reducible,
and part of it is generated by iterating the BSLT equation
with OPE. The diagrams in Figs. 2(d) and 2(h) represent
vertex corrections to the OPE potential [29]. Subleading
TPE contributions are given in Fig. 3. They are triangle
graphs with one NN2π vertex with the coupling constant
c1...4, and “football” graphs with one WT vertex and one
subleading NN2π interaction. We include here the relativistic
counterparts of all these TPE diagrams. As pointed out above,
we lack the systematic framework of nonrelativistic EFT. Our

(a) (b)

(d) (e)(c)

FIG. 3. One-loop diagrams contributing to TPE potential. WT
interaction is represented by a full circle, and NN2π vertices with
coupling constants c1, c3, or c4 by a full square.

main goal is to see if within the quasipotential approach a good
description of NN scattering can be obtained with a long-range
interaction of OPE and TPE. For convenience, we will still
refer to the diagrams as belonging to next-to-leading order
(NLO, leading) and next-to-next-to-leading order (NNLO,
subleading) TPE in the following, keeping in mind that
this terminology belongs to the corresponding diagrams in
nonrelativistic EFT.

The diagrams in Figs. 2(d), 2(h), and 3(e) represent vertex
corrections to OPE. In chiral EFT, the vertex corrections to
OPE and self-energies contribute to this order only to mass
and coupling constant renormalization [17]. In a relativistic
calculation with pseudoscalar pion-nucleon interaction, such
contributions were found by Wortman [30] to be of the order of
10% of the direct- and crossed-box contributions, with similar
expectations for the pseudovector case. We do not evaluate
any of the vertex and self-energy diagrams explicitly in this
paper, their contributions being effectively taken into account
by using the physical values for masses and coupling constants.

The resulting TPE potentials contain isospin-dependent
central, spin-spin, tensor, and spin-orbit terms. In Fig. 4, we
plot as an example the isospin-independent scalar potential and
the isospin-dependent tensor potential in comparison with the
corresponding OBE potentials [5]. The former contains a very
strong attractive contribution from the triangle diagram with a
c3 vertex, and the latter a strong contribution from the triangle
diagram with a c4 vertex. The TPE potentials displayed in
Fig. 4 were obtained by Kaiser [17,31] in chiral perturbation
theory up to N3LO using dimensional regularization to render
the loop integrals finite. The apparent difference between the
chiral TPE and OBE potentials at short range can be “cured”
by using a different regularization procedure for the TPE loop
integrals, i.e., by introducing a cutoff that ensures that high
momentum contributions are left out [32]. The nonrelativistic
TPE potentials are discussed in more detail in Refs. [17–19].

B. Irreducible TPE diagrams

The quasipotential W is determined as the sum of all irre-
ducible two-particle diagrams plus the sum of their iteration,
as symbolically presented in Eq. (4). In this section, we will
present the explicit expressions of the one-loop contributions
to W : the one-loop TPE contributions and the iterated OPE
diagram. They represent, as discussed already in the previous
section, the truncation of the full W kernel. The labeling
convention used for the momenta associated with a generic
one-loop diagram is exemplified in Fig. 5 for the direct-box
diagram. To make our normalization convention clear and to
facilitate comparison with other similar works, we begin by
listing the amplitude for the OPE diagram [the connection with
the partial-wave T matrix in Eq. (38) is an extra factor, iπ ],
that is,

I (OPE) = α(OPE) [ū(q1) /k γ5 u(p1)](1) × [ū(q2) /k γ5 u(p2)](2)

k2 − m2
π

,

(13)

α(OPE) = − i

π

g2
A

4πF 2
π

[2I (I + 1) − 3].
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FIG. 4. Isospin-independent central poten-
tial VC(r) (a) and the isospin-dependent tensor
potential WT (r) (b) generated by the TPE dia-
grams compared with the corresponding OBE
potentials.

The direct- and crossed-box diagrams are given, respec-
tively, by

I (DB) = α(DB)
∫

d4k
[ū(q1) (/k + /p1 − /q1) γ5(/k + /p1 + M) /k γ5 u(p1)]

(k + p1)2 − M2

(1)

× [ū(q2) (/k + /q2 − /p2) γ5(/p2 − /k + M) /k γ5 u(p2)]

(k − p2)2 − M2

(2)

Dπ1π2 , (14)

and

I (CB) = α(CB)
∫

d4k
[ū(q1) (/k + /p1 − /q1) γ5(/k + /p1 + M) /k γ5 u(p1)]

(k + p1)2 − M2

(1)

× [ū(q2) /k γ5 (/k + /q2 + M) (/k + /p1 − /q1) γ5 u(p2)]

(k + q2)2 − M2

(2)

Dπ1π2 . (15)

The coefficients α(DB) and α(CB) contain coupling constants and
normalization and isospin factors. For the direct- and crossed-
box diagrams, they read

α(DB) = 1

4π4

(
g2

A

4πF 2
π

)2

[9 − 4I (I + 1)],

(16)

α(CB) = 1

4π4

(
g2

A

4πF 2
π

)2

[4I (I + 1) − 3],

where I is the total isospin of the two-nucleon system. The
pion-nucleon coupling constant is here gA/Fπ , which can be

related to the physical coupling constant by the Goldberger-
Treiman relation gA/Fπ = √

4πf/mπ , where f 2 � 0.075 and
mπ is used as scaling mass to make f dimensionless [33].
The pion propagators are included in the factor Dπ1π2 given
by

Dπ1π2 = 1

k2 − m2
π

1

(k + p1 − q1)2 − m2
π

. (17)

The expression for the triangle diagram with the WT vertex
in Fig. 2(e) is given by

I (TRc0) = α(TRc0)
∫

d4k
[ū(q1) (/k + /p1 − /q1) γ5(/k + /p1 + M) /k γ5 u(p1)]

(k + p1)2 − M2

(1)

× [ū(q2) (2/k + /p1 − /q1) u(p2)](2)Dπ1π2 . (18)

The expression for the other triangle diagram can be ob-
tained by replacing p1 and q1 with p2 and q2, respec-
tively, and changing the sign of the integration variable
k. The expression for the football diagram with two WT

vertices is
I (FTc0) = α(FTc0)

∫
d4k[ū(q1) (2/k + /p1 − /q1) u(p1)](1)

× [ū(q2) (2/k − /p2 + /q2) u(p2)](2)Dπ1π2 . (19)
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For these diagrams, the coefficients α are given, respectively,
by

α(TRc0) = − 1

16π5

c0

F 2
π

g2
A

4πF 2
π

[4I (I + 1) − 6],

(20)

α(FTc0) = 1

2

1

(2π )6

(
c0

F 2
π

)2

[4I (I + 1) − 6].

The triangle diagrams of Fig. 3(a) are given by

p

p

q

q

k

2

1

2

1

FIG. 5. Labeling momenta for the direct-box diagram. Integration
momentum k is always assigned to the meson line attached to the
incoming nucleon 1.

I (TRci ) = α(TRci )
∫

d4k
[ū(q1) (/k + /p1 − /q1) γ5(/k + /p1 + M) /k γ5 u(p1)]

(k + p1)2 − M2

(1)

× [ū(q2) Oi u(p2)](2)Dπ1π2 , (21)

with i = 1, 3, 4. The corresponding operators Oi are

O1 = 1,

O2 = 2 [(k · p2)(k + q2 − p2) · p2

+ (k · q2)(k + q2 − p2) · q2], (22)

O3 = k · (k − p2 + q2),

O4 = (/p2 − /q2) /k − /k (/p2 − /q2),

and the coefficients are given by

α(TRc1) = 3

π5

g2
A

4πF 2
π

c1 m2
π

F 2
π

,

α(TRc2) = − 3

8π5

g2
A

4πF 2
π

c2

M2F 2
π

,

(23)

α(TRc3) = − 3

2π5

g2
A

4πF 2
π

c3

F 2
π

,

α(TRc4) = − 1

8π5

g2
A

4πF 2
π

c4

F 2
π

[4I (I + 1) − 6].

The expression of the triangle diagrams of Fig. 3(b) can be
obtained from these formulas by a permutation of the variables
referring to nucleons 1 and 2.

Of the football diagrams with one WT vertex and one ci(i =
1, 3, 4) vertex, only the c0c4 football diagram will give a finite
contribution, viz.,

I (FTc0c4) = α(FTc0c4)
∫

d4k[ū(q1) (2/k + /p1 − /q1) u(p1)](1)

× [ū(q2)((/p2 − /q2)/k − /k (/p2 − /q2)) u(p2)](2)Dπ1π2 ,

(24)

with

α(FTc0c4) = − 1

(2π )6

c0 c4

F 4
π

[4I (I + 1) − 6]. (25)

In the above expressions, all the meson-nucleon vertices
were considered to be pointlike. In the actual calculations,
pointlike (dimensional regularization calculation) and dipole
form factor (cutoff regularization calculation) type vertices

were used alternatively. In the latter case, a dipole form
factor that depended on the momentum of the exchanged
meson was taken into account at each vertex. To arrive at
the corresponding expressions for the loop integrals, one has
to make the following substitution for the pion propagator:

1

k2 − m2
π

−→ 1

k2 − m2
π

(
�2

k2 − �2

)2

. (26)

C. The quasipotential direct box

The quasipotential direct box can be obtained by substi-
tuting in the expression of the full direct box, Eq. (14), the
scalar part of the intermediate two-fermion propagator with
its BSLT version as given in Eq. (6). The k0 integral can
then be trivially performed. In principle, at this stage a simple
three-dimensional numerical integration will provide the final
answer (after properly taking care of the principal-value
singularities), but a decomposition of the remaining integral
in small pieces will allow us to implement a numerical
dimensional regularization besides the cutoff one. We use
here a different labeling convention, more appropriate for the
direct-box diagram, for the integration four-momentum k, cf.
Fig. 6. The first step is the decomposition of the operators

1

2

1

2

1

2

1

2

1

2

1

2

P+p P+q

P−qP−p

P+k

P−k

1

2

FIG. 6. Labeling convention used for computation of quasipoten-
tial direct box. P = (2E, �0) is the total momentum in the c.m. frame,
and p, q, k are relative momenta. Quasipotential approximation
implies k0 = 0, while for the other two momenta similar relations
hold only on-shell.

014006-5



COZMA, SCHOLTEN, TIMMERMANS, AND TJON PHYSICAL REVIEW C 75, 014006 (2007)

belonging to each of the two fermion lines into monomials
of k = |�k|, the length of the integration three-momentum �k.
(We will limit ourselves to the on-shell case here. A gener-
alization to the half-off-shell case needed for the iteration of
the BSLT equation is straightforward.) For fermion line 1, see
Fig. 6, one has

O1 =
∑
i=0,3

Oi
1 ki,

O0
1 = (E3 + 3ME)γ0 − (M3 + 3ME2),

O1
1 = −(E2 + 3M2) �γ · k̂, (27)

O2
1 = −Eγ0 + 3M,

O3
1 = �γ · k̂.

Fermion line 2 is identical to fermion line 1 except for a minus
sign in front of each appearance of �k, i.e.,

O2 =
∑
i=0,3

Oi
2k

i,

(28)
Oi

2 = (−1)i Oi
1.

The expression of the quasipotential direct box can then be
written as

I (QDB) = α(DB)
3∑

i,j=0

∫
d��k

[
ū

(
1

2
P + q

)
Oi

1u

(
1

2
P + p

)]

×
[
ū

(
1

2
P − q

)
O

j

2 u

(
1

2
P − p

)]
· I (d, i + j ),

(29)

I (d, l) = −1

2

∫ ∞

0
dk

kd+l−1

(E + E�k)2(E − E�k)

1

(�k − �q)2 + m2
π

1

(�k − �p)2 + m2
π

, (30)

where the symbol d represents the number of spatial dimen-
sions. Divergences can only occur from the one-dimensional
integral I (d, l). It can be regulated with a form factor of dipole
type, or via dimensional regularization. In the latter case, the
divergent integrals have to be decomposed further, in order to
isolate the ultraviolet divergence from the principal-value pole.
With specific techniques, the integrals can then be evaluated
and the infinities removed analytically. A simpler method is
to subtract from the divergent integrands their asymptotic
form (with sufficient terms in the asymptotic expansion) to
render finite integrals that can be evaluated numerically. The
asymptotic integrands are of a Laurent series type, and the
respective integrals can easily be evaluated and dimensionally
regularized. This second method has been used in the actual
calculations.

D. Evaluation of one-loop integrals

The evaluation of the relativistic TPE diagrams in this
work is based on the general method for evaluating one-loop
integrals invented by Passarino and Veltman [34,35]. The
method has already been applied to the case of relativistic
NN scattering by Zuilhof and Tjon [36] to evaluate the
direct- and crossed-box TPE diagrams with both pseudoscalar
and pseudovector coupling. We follow closely the procedure
described in Ref. [36]; for completeness, the relevant steps
are reproduced here. (Similar techniques have been applied
by Celenza et al. [37].) We define the scalar and tensor two-,
three-, and four-point functions by [34]

B0; Bµ; Bµν =
∫

d4k
1; kµ; kµkν[

k2 − m2
1

] [
(k + p)2 − m2

2

] ,

C0; Cµ; Cµν ; Cµνρ =
∫

d4k
1; kµ; kµkν ; kµkνkρ[

k2 − m2
1

][
(k + p)2 − m2

2

][
(k + p + q)2 − m2

3

] ,

D0; Dµ; Dµν ; Dµνρ =
∫

d4k
1; kµ; kµkν ; kµkνkρ[

k2 − m2
1

][
(k + p)2 − m2

2

]
× 1[

(k + p + q)2 − m2
3

][
(k + p + q + r)2 − m2

4

] . (31)

The scalar n-point functions B0, C0, and D0 have to be
evaluated explicitly, either numerically or, where possible, by
using the analytic expressions. The tensor n-point functions
can be written in terms of scalar moments, which in turn can be

evaluated in terms of lower rank moments and/or scalar point
functions. Some details about this reduction and nomenclature
are given in the Appendix. The complete set of formulas
can be found in Ref. [34]. The convention for labeling the
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FIG. 7. Conventions used for labeling the four momenta for the
four-, three-, and two-scalar functions, respectively, from left to right.

external momenta and internal masses is shown in Fig. 7 and
agrees with the convention used in Ref. [34]. For our purposes,
tensor n-point functions up to Dµν and Cµνρ were needed.
They were computed by using the ff package developed
by van Oldenborgh and Vermaseren [38,39] in terms of the
scalar moments for the two-, three-, and four-point functions
(introduced in the Appendix).

A one-loop diagram with at most four external legs can be
written as

L =
NB∑
r=0

O
µ1···µr

B [r] Bµ1···µr
+

NC∑
r=0

O
µ1···µr

C [r] Cµ1···µr

+
ND∑
r=0

O
µ1···µr

D [r] Dµ1···µr
, (32)

by separating the kµ1 · · · kµr
term from the spinor part of

the numerator and then, together with the scalar parts of
the internal propagators, identifying them with the scalar and
tensor loop integrals in Eq. (31). Here NB,NC , and ND are the
highest ranks appearing for the given diagram for the tensor
two-, three-, and four-point functions, respectively. By making
use of the expression of the tensor loop integrals in terms
of scalar moments (see the Appendix), the expression of the
one-loop diagram reads

L =
NB∑
r=0

nB
r∑

i=1

OB[r, i] Bri +
NC∑
r=0

nC
r∑

i=1

OC[r, i] Cri

+
ND∑
r=0

nD
r∑

i=1

OD[r, i] Dri. (33)

The coefficients nB
r , nC

r , and nD
r represent for a given r the

number of moments Br,Cr , and Dr . For example, nC
1 = 2 and

nC
2 = 4, as can be seen from Eq. (A2). The operators OB,OC ,

and OD contain the complete spin structure of the diagram in
question, and for the case of two-fermion scattering can be put
in the form

OM [r, i] = O
(1)
M [r, i] × O

(2)
M [r, i], M = B,C,D, (34)

with the superscripts denoting the fermion line number. Their
matrix elements between the two-particle helicity states are
then evaluated in the center-of-mass frame of the two nucleons.
The two-particle states are the direct product of one-particle

helicity spinors which satisfy the Dirac equation

/p u±
�( �p) = [M + γ 0 (p0 ∓ Ep)]u±

�( �p),
(35)

p = ( p0, �p ), Ep =
√

M2 + �p 2,

where the upper index ± labels the positive- or negative-energy
solutions. In the two-fermion spin space, the following 16
operators form a basis [36]:

O1 = 1(1) 1(2), O2 = γ
(1)
0 1(2), O3 = 1(1) γ

(2)
0 ,

O4 = γ
(1)
0 γ

(2)
0 , O5 = γ (1)

µ γ µ (2), O6 = γ
(1)
0 O5,

O7 = O5 γ
(2)
0 , O8 = γ

(1)
0 O5 γ

(2)
0 , O9 = γ

(1)
5 γ

(2)
5 ,

O10 = γ
(1)
0 O9, O11 = O9 γ

(2)
0 , O12 = γ

(1)
0 O9 γ

(2)
0 ,

O13 = γ
(1)
5 O5 γ

(2)
5 , O14 = σ (1)

µν σµν (2), O15 = γ
(1)
0 O14,

O16 = O14 γ (2).

By applying the off-shell Dirac equation (35), the spin structure
can be readily reduced to a linear combination of these
operators, that is, one can write

OM [r, i] =
16∑

j=1

bM
j [r, j ] Oj, M = B,C,D, (36)

which leads to the final expression for a specific diagram:

L =
16∑

j=1

cj Oj ,

cj =
NB∑
r=0

nB
r∑

i=1

bB
j [r, i] Bri +

NC∑
r=0

nC
r∑

i=1

bC
j [r, i] Cri (37)

+
ND∑
r=0

nD
r∑

i=1

bD
j [r, i] Dri.

The evaluation of the cj coefficients involves cumbersome
algebraic operations, and because of the large number of terms,
an automated evaluation of these coefficients was desirable.
For this purpose, the computer algebra program FORM [40] was
used to write a code that determines the analytical expression
for each of the cj for a particular diagram in terms of the scalar
moments and of the kinematic variables of the process. Next,
the values of the scalar moments were computed using the ff

package, which in turn allowed the numerical evaluation of
the coefficients cj . Then the matrix elements of the sixteen Oj

operators in the two-particle helicity basis were computed, and
by using Eq. (37) the numerical value of the one-loop diagram
was obtained. For the chosen Lagrangian density, only the
coefficients c1, . . . , c8 are nonzero. An example of the scheme
outlined in this section can be found in Ref. [36], where the
expression of the coefficients cj is determined step-by-step for
the crossed-box TPE diagram with pseudoscalar pion-nucleon
interaction.

Finally, the BSLT equation was solved in a partial-wave
basis. This implies that one has to determine from the general
helicity amplitudes, the determination of which was outlined
in this section, the values of the partial-wave amplitudes

014006-7



COZMA, SCHOLTEN, TIMMERMANS, AND TJON PHYSICAL REVIEW C 75, 014006 (2007)

T J
J (singlet or uncoupled triplet), T J

J±1 (diagonal coupled-
triplet amplitudes), and T J

J,J±1 (off-diagonal coupled-triplet
amplitudes). This was achieved by employing the partial-wave
projection formalism of Kubis [41].

IV. RESULTS AND DISCUSSION

A. Peripheral waves

In this paper, we will apply the formalism developed in
the previous sections to the “peripheral” partial waves in
NN scattering, more specifically, to D,F , and G waves.
In nonrelativistic chiral EFT with Weinberg power counting,
there are no zero-range counterterms present in these waves
in NNLO, only OPE and leading and subleading TPE. We
will investigate here to what extent we can describe these
waves with only OPE and TPE in a relativistic framework, by
comparing our results with the phase shifts and mixing angles
from the energy-dependent partial-wave analysis PWA93 [42].
In a followup work, we will then investigate the lower partial
waves.

At NNLO in chiral EFT, using dimensional regularization
to extract the finite part of the one-loop TPE integrals, the
peripheral waves for NN scattering are reasonably reproduced
up to about 50 MeV for the D waves and up to about 150 MeV
for the higher partial waves [17]. The convergence of the chiral
expansion suffers from the short-range behavior of the NNLO
TPE diagrams, in particular because of the very strong central
attraction resulting from the triangle diagrams with one c3

vertex. This is mainly visible in the D and F waves, while the
G waves and higher are dominated by OPE. By using a sharp
cutoff procedure with � = 500–800 MeV, the problematic
short-range attraction can be reduced [32], leaving a central
potential that is comparable to the one in OBE models. We
want to study here if the relativistic amplitudes also result in a
short-range central attraction that is weaker.

We present the results for D and higher waves for the
models described in the previous sections. The finite part of
the loop integrals has been extracted via both dimensional
(using the minimal subtraction scheme in which only the
divergent part is removed) and cutoff regularization. For the
latter case, a dipole form factor has been chosen and the value
of the cutoff � has been varied between 663 and 785 MeV,
corresponding to �2 = 0.5–0.7 M2. With such values for the
cutoff, contributions of ranges shorter than about 0.5 fm
are effectively cut out. A drawback of a dipole form factor
compared with a sharp cutoff is that if a low value for the
cutoff � is chosen the long-range parts of the potential are
distorted to some extent. The choice for a dipole form factor
was, however, necessary because of the particular way in
which the relativistic diagrams are evaluated and because of
the necessary compatibility with the OBE, to which the TPE
interaction will be added to determine the lower partial waves.

To extract phase shifts, the OPE contribution has to be
added to the one-loop TPE diagrams. For the results presented
in this section, the pointlike form of OPE has been used, since
multiplying OPE with a form factor would modify even its
long-range part by 5–10% when the value of the cutoff is

chosen as low as for the TPE contributions. To determine the
phase shifts, the matrix elements of the pseudopotential W

have been used, rather than the iterated T matrix. In the Born
approximation, the scattering amplitude is real. The phase
shifts were extracted from the unitary representation of the
partial-wave amplitudes,

T J
J = 1

2ik
[exp(2iδJ ) − 1],

T J
J±1 = 1

2ik
[cos(2εJ ) exp(2iδJ±1) − 1], (38)

T J
J,J±1 = 1

2k
sin(2εJ ) exp(iδJ−1 + iδJ+1),

by first computing tanδ in order to avoid problems with inverse
trigonometric functions. The difference with simply using
T J

J = δJ /k to extract the phase shifts [17] is at most 0.5◦
for the cases presented in this section.

We start with the D waves, plotted in Fig. 8. OPE gives a
reasonable result only for the 3D1 wave, and to some extent
to the 3D2 wave. For the other waves, the agreement is only
qualitative. For 1D2 and ε2, the sign is correctly reproduced,
but OPE is too weak and too strong, respectively. In the case
of the 3D3 partial wave, even the sign is incorrect. Adding the
leading TPE contributions changes the OPE result by at most
a few degrees at Tlab = 300 MeV, both for the cutoff (CR)
and dimensional regularization (DR) methods. The largest
contributions are made by the direct (3D2,

3D1, and 3D3) and
crossed (1D2 and ε2) boxes. The contributions of the diagrams
with the WT vertex are in general small, except in the 3D1

channel, where their repulsion decreases the phase shift with
about 2◦ at 300 MeV. For the 3D2 and 3D3 partial waves, these
contributions are even in the wrong direction, most notably for
the latter wave.

At NNLO a clear distinction has to be made between the
CR and DR results. The former gives a notable improvement
in all the partial waves, except 3D1 and perhaps 3D2 for which
the change is not large enough. The empirical values for the
1D2 phase shift fall now within the band obtained by varying
� between 663 and 785 MeV, while the 3D3 phase shifts have
greatly improved. It is noteworthy that an improvement of 3D2

and 3D3 would require a higher cutoff. The diagram with the c1

vertex gives a rather weak isoscalar central attraction, which
has only a marginal impact on the D waves. Similarly, the
c2 term which contributes to the isoscalar central part of the
interaction is rather small. Much more important contributions
to these waves arise from the diagrams with the c3 and c4

vertices, which contribute especially to the isoscalar central
and isovector tensor potentials, respectively. The c4 attractive
tensor force is responsible for most of the discrepancy in the
3D1 channel; while for ε2, the c3 and c4 contributions have
opposite signs and largely compensate each other, leading to
an insufficient change toward the experimental values of the
phase shifts. The improvements in the 1D2 and 3D3 partial
waves are due to the attraction resulting from the c3 term.
These statements about the various partial waves are illustrated
in Table I, which presents a quantitative comparison of the
contributions of the individual diagrams. The phase shifts have
been extracted from the amplitude containing contributions
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FIG. 8. D-wave phase shifts and the mixing
angle ε2 as a function of the nucleon kinetic en-
ergy in the laboratory frame. Dotted curves rep-
resent the pointlike OPE result; dashed and full
curves are the dimensional regularization results
at NLO and NNLO, respectively. Grey and dark-
grey bands correspond to a cutoff regularization
calculation at NLO and NNLO, respectively,
with the cutoff value varied between 663 and
785 MeV, for a dipole form factor. Phase shifts
from energy-dependent partial-wave analysis
PWA93 [42] are shown for comparison as
bullets.

of the diagram labeling the respective column plus all the
diagrams of the columns to the left. By comparing the values
in two neighboring columns, one can deduce the relative
importance of each of the diagrams at Tlab = 200 MeV, for
a value of the cutoff parameter � = 785 MeV.

Turning to the DR results, the first observation to be made
is that the various contributions are far more attractive at
higher energies than their CR counterparts. This statement
holds for all the D waves. In the case of 3D2 and ε2, this larger
attraction leads to a better agreement with the experimental
phase shifts at high energies. Our DR results are qualitatively
similar to previous results [17,32], but in detail the differences
are significant. In Refs. [17,32] the attraction is so strong that
the phase shifts reach 40◦ already at 200 MeV for most of the
D waves. Our CR result is rather similar to that in Ref. [32],
the differences originating in the extra terms that we include

(relativistic and recoil corrections) and to the different cutoff
scheme.

Next, we discuss the F waves, cf. Fig. 9. The DR case
does not show the strong attraction at the higher energies as
was seen for the D waves. The results of Refs. [17,32] show
at these energies an attraction for the 3F2,

3F3, and 3F4 that
overshoots our results by 2◦−3◦. The DR result for the 1F3

wave is close to OPE because of an almost perfect cancellation
between the NLO and NNLO TPE diagrams. OPE is a good
approximation for all F waves up to an energy of, at least,
100 MeV. The NLO TPE diagrams are insignificant up to
200 MeV, and they contribute at most half a degree at 300 MeV.
The diagram with the c3 vertex generates a strong attraction in
all F waves, which is compensated to some extent in the 1F3

and 3F4 channels by the isovector tensor repulsion originating
in the c4 diagrams. The mixing angle ε3 decreases with respect

014006-9



COZMA, SCHOLTEN, TIMMERMANS, AND TJON PHYSICAL REVIEW C 75, 014006 (2007)

TABLE I. Contributions of the individual TPE diagrams at Tlab = 200 MeV with the cut-off � = 785 MeV and
pointlike OPE. The result in each column is obtained by adding the tabulated contribution to the one in the left-
neighboring column. These additions were done at the level of the scattering amplitudes and only then phase shifts were
extracted. DB stands for the irreducible part of the direct box, c0c4 for the football diagram with one WT and one c4

vertex, etc.

OPE +DB +CB +c0 +c1 +c2 +c3 +c4 +c0c4

3D1 −17.03 −19.33 −19.26 −18.32 −18.17 −17.50 −14.99 −9.99 −9.17
1D2 2.13 2.11 3.27 3.15 3.41 3.78 7.87 8.72 8.76
3D2 19.76 19.10 18.79 19.21 19.36 19.76 21.98 21.47 21.57
3F2 1.87 1.78 1.75 1.66 1.71 1.85 2.52 2.17 2.13
ε2 −4.87 −4.78 −4.44 −4.38 −4.40 −4.37 −4.85 −4.09 −4.04
1F3 −3.52 −3.56 −3.71 −3.64 −3.58 −3.52 −2.74 −3.26 −3.27
3F3 −3.21 −3.24 −3.07 −3.11 −3.05 −2.96 −2.21 −2.17 −2.18
3D3 3.98 −5.52 −5.82 −5.54 −5.26 −5.45 −0.70 0.30 0.21
3G3 −2.12 −2.29 −2.28 −2.23 −2.22 −2.19 −2.05 −1.86 −1.84
ε3 6.44 6.63 6.59 6.56 6.56 6.56 6.51 6.19 6.17
1G4 0.67 0.67 0.73 0.73 0.74 0.76 0.92 0.95 0.95
3G4 4.54 4.47 4.45 4.48 4.49 4.51 4.66 4.64 4.65
3F4 0.55 0.51 0.64 0.62 0.69 0.66 1.55 1.50 1.50
3H4 0.31 0.30 0.30 0.30 0.30 0.30 0.34 0.33 0.33
ε4 −1.09 −1.09 −1.07 −1.07 −1.07 −1.07 −1.07 −1.05 −1.04
3G5 −0.75 −0.84 −0.86 −0.85 −0.83 −0.83 −0.65 −0.62 −0.62

to its NLO value by about 1◦ at 300 MeV because of the c4

repulsion. The cutoff dependence of the F waves at the higher
energies is much less than for the D waves and especially
small for the 1F3 and 3F2 waves. Except for 3F2, all the F

phase shifts and ε3 are in rather good agreement with PWA93.
The phase shifts of the G waves and the mixing angle ε4

are plotted in Fig. 10. The difference between the DR and
CR has reduced even further, compared to the F waves. As
expected, OPE is the major contributor, while the effect of
the NLO diagrams is small, about 0.2◦ at 300 MeV. NNLO
diagrams that have a significant impact on the G waves are once
more the triangle ones with the c3 and c4 coupling constants.
The value of the ε4 mixing angle is well reproduced by OPE.
When comparing with the empirical phase shifts, significant
differences are observed in the 3G3 and 3G5 waves. We will
come back to this below. The H and I waves, finally, are to a
high degree determined by OPE. There is only one exception,
the 3H6 wave, which receives an attractive contribution from
the c3 triangle diagram that increases the value of its phase
shift by some 60%.

In the plots, we have compared calculations with dimen-
sional and cutoff regularization. To study the effect of a low
cutoff on the short range of the potential, one should really
compare such a calculation with the one obtained by letting
the cutoff � grow to infinity. We have performed such a
calculation and present the cutoff sensitivity of the various
waves in Table II. To demonstrate the sensitivity, the results
for the phase shifts at Tlab = 200 MeV are shown for three
values of the cutoff: �2 = 1.67, 1.01, and 0.62 GeV2. The
last value corresponds to the lower limits of the cutoff bands
in the plots, while the first value is rather high such that it
approaches a pointlike (� → ∞) interaction. Two features
are readily seen: sensitivity is higher toward lower values of
the cutoff (according to expectations), and the main part of

the cutoff sensitivity originates in the NNLO diagrams. The
� → ∞ and the DR calculations are, without renormalization,
not identical, but they will differ by a polynomial term, that is,

WDR = W
(non-pol.)
DR + W

(pol.)
DR ,

WCR = W
(non-pol.)
CR + W

(pol.)
CR , (39)

W
(non-pol.)
CR

�→∞−→ W
(non-pol.)
DR .

The two polynomials have a similar structure, with the cutoff
mass � and the renormalization scale µ interchanged and
with different coefficients for the monomials. The difference
between the two results from short-range contact potentials.
The difference between the �2 = 1.67 GeV2 and the DR
calculations is sizable for the D waves, which are sensitive
to contact potentials with four derivatives or more. It amounts
up to half of the observed difference between the DR and low
cutoff calculations (3D1 and 3D3). The difference is small for
the F waves, with the exception of the 3F2 wave.

B. Iteration of the potential

In the previous section, the phase shifts were computed
in a Born approximation. For a number of partial waves
(3D1,

3D2,
3D3,

3F2, and 3G5) significant differences with
respect to PWA93 were observed, some of the phase shifts
being numerically small. We have, therefore, iterated the BSLT
equation and extracted the resulting phase shifts in order to see
if this helps to improve the situation. Some of the phase shifts
are plotted in Fig. 11. In contrast with the procedure of the
previous section, now also OPE is regularized by a dipole
form factor, with the value of the cutoff parameter chosen
to be the same as the one used in computing the one-loop
TPE diagrams. Adding such a form factor for OPE changes
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TABLE II. Cut-off dependence of the peripheral phase-shifts at Tlab = 200 MeV. For
comparison also the pointlike OPE result for each of the considered partial waves is shown.
Three values were chosen for the cutoff parameter that regularize the one-loop TPE contributions:
the largest, � = 1.293 GeV, corresponds to an almost pointlike interaction, while the lowest,
� = 0.785 GeV, was one of the “low values” used to produce the results of this section; cf.
Fig. 8. Separate results at NLO and NNLO are presented.

�(GeV) OPE NLO NNLO
D.R.

1.293 1.006 0.785 1.293 1.006 0.785

3D1 −17.03 −18.70 −18.57 −18.32 −2.15 −5.72 −9.17
1D2 2.13 3.42 3.32 3.15 11.64 10.42 8.76
3D2 19.76 19.04 19.11 19.21 22.43 22.09 21.57
3F2 1.87 1.63 1.64 1.66 2.02 2.08 2.13
ε2 −4.87 −4.25 −4.30 −4.38 −3.86 −3.95 −4.04
1F3 −3.52 −3.65 −3.65 −3.64 −3.27 −3.27 −3.27
3F3 −3.21 −3.12 −3.12 −3.11 −2.11 −2.12 −2.18
3D3 −3.98 −6.09 −5.86 −5.54 3.14 1.75 0.21
3G3 −2.12 −2.23 −2.23 −2.23 −1.84 −1.84 −1.84
ε3 6.44 6.58 6.57 6.56 6.12 6.14 6.17
1G4 0.67 0.72 0.73 0.73 0.95 0.95 0.95
3G4 4.54 4.48 4.48 4.48 4.65 4.65 4.65
3F4 0.55 0.62 0.62 0.62 1.65 1.60 1.50
3H4 0.31 0.30 0.30 0.30 0.32 0.32 0.33
ε4 −1.09 −1.07 −1.07 −1.07 −1.05 −1.04 −1.04
3G5 −0.75 −0.85 −0.85 −0.85 −0.62 −0.62 −0.62

somewhat the phase shifts compared to the Born result, most
notably for the 3D2 and 3F3 waves. To see this, one should
compare the light-grey bands in Fig. 11 with the NNLO results
plotted in the previous section (Figs. 8–10).

Besides the effect of the iteration, the effect of adding
only the once-iterated OPE term to the quasipotential has also
been plotted. We find that this can have an important impact
on the value of the phase shifts of certain waves. It results
in an improvement of all phase shifts for which the Born
approximation showed a significant difference compared with
PWA93. Three such examples are plotted in Fig. 11, where one
should compare the light-grey and the grey bands. Not shown
is the 3D1 partial wave for which the iteration of OPE leads to
a dramatic change in the value of the phase shift, decreasing it
by 20◦ at 300 MeV. Iterating the potential increases its value
to −13◦ at 300 MeV, which is only marginally better than the
result of Fig. 8. Other waves for which the result improves
by solving the quasipotential equation are 3D3,

3G3,
3G5, and

3D2.
In general, for these waves, one observes that adding the

once-iterated OPE potential already produces an significant
shift toward PWA93, subsequent iterations of OPE and TPE
having only a small effect. The 3F3 partial wave is not affected
noticeably by the iteration. For 3F2, another problematic wave,
the change is in the good direction, but it is only marginal.
This is the only wave (together with the ε2 mixing angle) that
still shows a sizable disagreement from the data. This is likely
because it is coupled to the 3P2 wave, for which the short-range
interaction is important.

Up to now, we have used fixed values for the chiral
coupling constants: c1 = −0.81, c2 = 3.28, c3 = −4.70, and

c4 = 3.40, expressed in GeV−1, which are consistent with the
range of values found from πN amplitudes [27,28] and in fits
to NN scattering data [19,20]. It is interesting to investigate
how sensitive the description of the peripheral phase shifts is to
variations in these coupling constants. Since the contribution of
the diagrams proportional to the c1 and c2 coupling constants
is small, we will keep their values fixed to c1 = −0.81 and
c2 = 3.28, respectively. We vary the values of c3 and c4 by
hand within the range c3 = −2.0 to −6.0 and c4 = 3.0 to 6.5,
and we study the resulting description of the D,F , and G

waves. The value of the cutoff will be varied as before in the
range �2 = 0.5–0.7 M2.

In Fig. 12, we present the results for selected periph-
eral partial waves for three sets of values of the coupling
constants: (I) c1 = −0.81, c2 = 3.28, c3 = −4.70, c4 = 3.40;
(II) c1 = −0.81, c2 = 3.28, c3 = −3.90, c4 = 4.50; and (III)
c1 = −0.81, c2 = 3.28, c3 = −3.30, c4 = 5.30. The results
are depicted by the light-grey, grey, and dark-grey bands,
respectively. The last two sets give a better description of
the D,F , and G waves at laboratory energies higher than
200 MeV than does the original set (I). The only exception
is the 3D1 partial wave, while for 3F2 and ε2 the description
is still deficient. For these channels, short-range contributions
should be important. This procedure leads us to estimate that
for the best description of the peripheral waves, the following
ranges for the coupling constants are favored by our model:
c3 = −4.0 ± 1.0 and c4 = +4.5 ± 1.0.

A comparison between the description of the peripheral
phase shifts of our model and the description of them in
Refs. [16,43] reveals differences mainly in the D waves. This
is understandable, since chiral models include contact terms
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FIG. 9. Same as in Fig. 8, but for F waves
and ε3 mixing angle.

that can be fitted for each of these partial waves individually.
We expect that the shortcomings in our description of the 3D1

phase shift and ε2 mixing angle can be cured when short-range
contributions are included. Our model describes well the 3D3

partial wave, while the quality of the description of the F

and G phase shifts in our model and those in Refs. [16,43]
are similar. Some of these partial waves show deviations from
the experimental data above 200 MeV: 3F2,

3F3, and 3G5, the
deviations being of comparable magnitude.

C. Numerical accuracy of the results

In our calculation, numerical inaccuracies can originate
from two sources: First, the finite accuracy with which the
scalar loop integrals are computed by using the ff libraries,
and second, the method for treating the cutoff integrals. Of

course, in the case of DR, only the first source is relevant. The
ff libraries [38] have been developed for the evaluation of
scalar loop integrals that are encountered in particle physics.
They are based on more developed numerical algorithms than
the predecessor FORMF [34] written by Veltman to perform
the same task. The ff comes with built-in error evaluation
routines. Unfortunately, these routines proved unreliable in
our case, and in order to determine the numerical accuracy we
have resorted to an explicit comparison between the outputs of
ff and FORMF. This has been done for a few relevant kinematic
cases characteristic of our particular model. In all cases, the
outputs of the two programs were identical up to eight digits
or more.

The second source of inaccuracy has proved to be the more
serious one. Each meson propagator is multiplied with a dipole
form factor. Since the ff program can only handle four-point
functions or lower, the following reduction has to be applied:
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FIG. 10. The G waves and the ε4 mixing
angle. The curves have the same meaning as in
Fig. 8.
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The approximation in the first line becomes an identity when
ε approaches zero. As can be seen from the second line,
this limit result in severe cancellations which can lead to a
significant loss of accuracy. Very small values of ε are thus
counterproductive, but so are larger values, since in that case
the approximation in the first line becomes poor. By varying

ε from very small to larger for a specific range of values, a
plateau can be reached where the accuracy is maximal. In the
actual calculations, the value ε = 0.044 GeV2 has been used.
This value is toward the right edge of the maximum accuracy
plateau and leads to a reasonable accuracy for all the cases
of interest here. To show the sensitivity of our results with
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FIG. 11. Selected waves for which the effect
of the iteration of the quasipotential W is shown
(dark-grey band). Born result is represented by
the light-grey band. Effect of adding the once-
iterated OPE term to W is also shown (grey
band).

respect to this parameter, we varied it in the range from 0.022
to 0.066 GeV2. In Fig. 13, the difference between these two
extreme cases and the case with ε = 0.044 GeV2 is plotted
for two representative phase shifts, for both the NLO and
the full results. The difference grows with energy (similar to
the cutoff sensitivity) and is greatest for the D waves (up to
0.1◦). It is much smaller for F and is practically zero for
higher waves. Changing the range variation for ε to 0.009−
0.088 GeV2, the difference shows an important increase,
indicating that the maximum accuracy plateau has been left.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered the extension of the kernel
of the relativistic OBE model for elastic NN scattering by
adding the counterparts of the one-loop TPE diagrams that
contribute at NLO and NNLO in nonrelativistic chiral EFT.
This means that in addition we include relativistic and recoil
correction terms. The method that we use to evaluate the
one-loop diagrams has allowed an easy implementation of
both dimensional and dipole cutoff regularization. The BSLT
equation could only be solved in the CR scheme because of
the need for a second cutoff in the quasipotential equation,
which, for consistency, had to be of the same type as the
one regularizing the potential. We have studied in this paper
only the “peripheral” (D,F,G) waves, since in this way the
model dependence introduced by short-range physics, which
would mean exchanges of heavy mesons in our case, could be

avoided. Thus, the validity of using only OPE and chiral TPE
for these waves was tested.

The contributions from the diagrams with a c3 and c4

vertex are strong. They incorporate physics attributed to the
	 isobar. The c3 diagram is the origin of a strong medium-
range isoscalar-scalar attraction. This is clearly visible in the
D waves computed via DR. Compared to the corresponding
nonrelativistic results [17,32], the scalar attraction that we
observe is less pronounced, but still too strong to allow a
reproduction of the D-wave phase shifts above 100 MeV.
The relatively smaller central attraction in our case is due
to the relativistic and recoil corrections that are included in
our framework. The DR results for most F and higher partial
waves are reasonably close to the experimental values.

In order to suppress the strong isoscalar-central attraction
for the DR results for the D waves, we have alternatively
made use of a CR scheme with a dipole form factor to
regularize the one-loop TPE diagrams. The cutoff value �

has been varied in order to reproduce the D waves as closely
as possible. Values of � in the band 663–785 MeV give good
qualitative results. Within the same range for the cutoff, an
improvement for some of the F waves with respect to the
DR result is also observed. Compared with the nonrelativistic
case [32], we obtain a similar good description of the peripheral
waves with a somewhat higher value for the cutoff parameter
regularizing the one-loop diagrams: one should compare � =
650–800 MeV within our model with � = 500–800 MeV in
the nonrelativistic treatment. The results for the phase shifts
are very sensitive to the cutoff value at energies close to the
pion-production threshold, most of the sensitivity originating
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FIG. 12. Sensitivity of selected phase shifts
with respect to variation of the coupling constants
c3 and c4. Light-grey, grey and dark-grey bands
correspond to the sets of values for the LECs de-
noted in the text by (I), (II), and (III) respectively.

from the NNLO contributions. Solving the BSLT equation
for the peripheral waves results in an improvement of the
problematic 3D3,

3D2, and 3G5 partial waves. For other waves,
such as 3D1 and 3F2, the improvement is only marginal because

of their sensitivity to the short-range interaction. We varied the
values of the c3 and c4 couplings and extracted a range for their
values that is favored by our model: c3 = −4.0 ± 1.0 GeV−1

and c4 = +4.5 ± 1.0 GeV−1.
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As a final conclusion, an OPE model that includes chiral
TPE allows a reasonable description to be made of the periph-
eral waves in NN scattering within a relativistic framework,
once the short-range isoscalar-scalar attraction is dampened
by a low-value cutoff. In a future publication, we will take the
next step to address the low partial waves, taking into account
also the short-range interactions.

APPENDIX: SCALAR MOMENTS

In this Appendix, we will summarize the strategy used
to express the tensor integrals in Eq. (31) in terms of scalar
moments. The procedure is simple: one has to meet in the final
answer all tensor quantities of the same rank as the starting
tensor integral. We start with the two-point functions, for which
one has

Bµ(p,m1,m2) = pµB11,
(A1)

Bµν(p,m1,m2) = pµpν B21 + gµν B22.

For the two-point functions, analytical expressions can be
obtained [34,35]. The calculations in this work require C

moments up to the third rank, viz.,

Cµ = pµ C11 + qµ C12,

Cµν = pµpν C21 + qµqν C22 + {p, q}µν C23 + gµν C24,

Cµνρ = pµpνpρ C31 + qµqνqρ C32 + {ppq}µνρ C33

+{pqq}µνρC34 + {pg}µνρ C35 + {qg}µνρ C36,

{pq}µν = pµqν + pνqµ,

{ppq}µνρ = pµpνqρ + pµpρqν + pρpνqµ,

{pg}µνρ = pµgνρ + pνgµρ + pρgµν. (A2)

For the D tensor integrals, one writes the following decompo-
sition (again only up to the third rank):

Dµ = pµ D11 + qµ D12 + rµ D13,

Dµν = pµpν D21 + qµqν D22 + rµrν D23 + {pq}µνD24

+{pr}µνD25 + {qr}µνD26 + gµνD27,

Dµνρ = pµpνpρ D31 + qµqνqρ D32 + rµrνrρ D33

+{ppq}µνρD34 + {ppr}µνρD35 + {pqq}µνρD36

+{prr}µνρ D37 + {qqr}µνρ D38 + {qrr}µνρ D39

+{pqr}µνρ D310 + {pg}µνρ D311 + {qg}µνρ D312

+{rg}µνρ D313,

{pqr}µνρ = pµ{qr}νρ + pν{qr}µρ + pρ{qr}µν. (A3)

The kinematic conventions for the two-, three-, and four-point
functions are the ones displayed in Fig. 7. The three- and
four-point scalar moments cannot be expressed in a closed
form. For the C0 and D0 moments, formulas in terms of Spence
functions can be derived for certain kinematic situations [35].
The values of the higher scalar moments can be found once
the values of the zero-order moments are known. A simple
method to achieve this is presented in Ref. [34]. To avoid
kinematic singularities, the calculation of scalar moments in
the ff package is implemented using different, more refined
algorithms [38,39].
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