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Four-nucleon scattering: Ab initio calculations in momentum space
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The four-body equations of Alt, Grassberger, and Sandhas are solved for n-3H scattering at energies below three-
body breakup threshold using various realistic interactions including one derived from chiral perturbation theory.
After partial wave decomposition the equations are three-variable integral equations that are solved numerically
without any approximations beyond the usual discretization of continuum variables on a finite momentum mesh.
Large number of two-, three-, and four-nucleon partial waves are considered until the convergence of the results
is obtained. The total n-3H cross section data in the resonance region is not described by the calculations which
confirms previous findings by other groups. Nevertheless the numbers we get are slightly higher and closer to
the data than previously found and depend on the choice of the two-nucleon potential. Correlations between the
Ay deficiency in n-d elastic scattering and the total n-3H cross section are studied.
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I. INTRODUCTION

The four-nucleon (4N ) scattering problem gives rise to
the simplest set of nuclear reactions that shows the com-
plexity of heavier systems. The neutron-3H(n-3H) and proton-
3He(p-3He) scattering is dominated by the total isospin T =
1 states while deuteron-deuteron (d-d) scattering by the T =
0 states; the reactions n-3He and p-3H involve both T = 0
and T = 1 and are coupled to d-d in T = 0. Due to the charge
dependence of the hadronic and electromagnetic interaction
a small admixture of T = 2 states is also present. In 4N

scattering the Coulomb interaction is paramount not only to
treat p-3He but also to separate the n-3He threshold from
p-3H and at the same time avoid a second excited state of the
α particle a few keV below the lowest scattering threshold.
All these complex features make the 4N scattering problem
not only a natural theoretical laboratory to test different force
models of the nuclear interaction, but also the next step in
the pursuit of very accurate ab initio calculations of the
N -body scattering problem after the extensive work on the
three-nucleon (3N ) system that has taken place in the past
20 years by several groups [1–3].

In Refs. [4,5] all the reactions mentioned above were stud-
ied in the framework of Alt, Grassberger, and Sandhas (AGS)
equations [6] using the rank one representation of realistic
two-nucleon (2N ) force models together with a high rank
representation of all 3N subsystem amplitudes; the Coulomb
interaction was neglected. This led to one-variable integral
equations whose predictive power was limited to the quality
of the involved approximations. The calculations showed large
discrepancies with data, namely nucleon analyzing power Ay

in n-3He scattering, tensor observables in 2H( �d, n)3He and
2H( �d, d)2H and the differential cross section for 2H(d, n)3He,
but one surprising success in describing the total cross section
σt for n-3H scattering in the resonance region where at neutron
lab energy En � 3.5 MeV σt rises to about 2.45 b [7].
Calculations by the Grenoble group [8] using coordinate-space
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solutions of the Faddeev-Yakubovsky equations [9] showed,
on the contrary, that realistic interactions missed the total cross
section peak by at least 0.2 b. Although these calculations
carried out no approximation on the treatment of the 2N

interaction, they were limited vis á vis Ref. [4] on the number
of 3N and 4N partial waves.

Although the issue was recently clarified [10,11] by
comparing it to an independent calculation by the Pisa
group that uses the Kohn variational method, together with
hyperspherical harmonics, further studies based on the AGS
equations are needed to settle this important problem because
some of the results by the Grenoble and Pisa groups may
be still of limited accuracy given the number of included
2N, 3N , and 4N partial waves. Further investigations are also
needed for the understanding of other 4N reactions such as
p-3He, n-3He, and d-d where large discrepancies with data
were previously found. One fundamental issue underlying
four-nucleon physics is the existence of correlations between
3N and 4N observables. One of the best known is the Tjon
line [12] which correlates the binding energies of 3H with
4He; another one involves the triton binding energy and the
singlet (triplet) n-3H scattering length [13]. Nevertheless, other
correlations may exist: one could ask if the persistent Ay

problem in n-d scattering is in any way related to the failure to
reproduce σt in n-3H scattering in the resonance region, or to
the Ay problem in p-3He [14]; does resolving the former also
solve the latter?

Therefore we present here a new numerical approach to the
solution of the AGS equations that is both numerically exact
and extremely fast in terms of CPU-time demand. Since the
2N transition matrix (t-matrix) is treated exactly, the equations
we solve are, after partial wave decomposition, three-variable
integral equations. The three Jacobi momentum variables in
1 + 3 and 2 + 2 configurations are discretized on a finite mesh
and the number of 2N, 3N , and 4N partial waves increased up
to what is needed for the full convergence of the observables.
The present approach also allows for the inclusion of charge-
dependent interactions as well as � degrees of freedom that
lead to an effective 3N force. Furthermore, using the method
recently proposed to treat the Coulomb force in p-d elastic
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scattering and breakup [15–17], we have already obtained
preliminary results for p-3He elastic scattering observables
[18] with the Coulomb potential between the three protons
included.

In Sec. II we discuss the integral equations we solve for
n-3H scattering and in Sec. III we show the results of our
most complete calculations, leaving tests of benchmark to the
Appendix. Finally conclusions come in Sec. IV.

II. EQUATIONS

As initially proposed by Alt, Grassberger, and Sandhas [6]
and later reviewed for the purpose of practical applications in
Ref. [19], the four-particle scattering equations may be written
in a matrix form

U = V + VG0U , (1a)

U
∣∣�ρ0

〉 = V
∣∣�ρ0

〉
, (1b)∣∣�ρ0

〉 = ∣∣�ρ0

〉 + G0V
∣∣�ρ0

〉
, (1c)

where |�ρ0〉 is the initial channel state, |�ρ0〉 the full scattering
state, and ρ0 defines the two-body entrance channel. Both of
them have 18 components, and the transition operatorU as well
as V and G0 are 18 × 18 matrix operators with components

[V]σρ

ij = (G0tiG0)−1δ̄σρδij , (2a)

[G0]σρ

ij = G0tiG0U
σ
ijG0tjG0δσρ. (2b)

As usual, σ (ρ) denotes two-cluster partitions of 1 + 3 or 2 + 2
type and i(j ) the pair interactions. G0 is the four free particle
Green’s function, ti is the two-particle t-matrix embedded in
four-particle space, δ̄σρ = 1 − δσρ , and Uσ

ij are the subsystem
transition operators

Uσ
ij = G−1

0 δ̄ij +
∑

k

δ̄ki tkG0U
σ
kj (3)

of 1 + 3 or 2 + 2 type, depending on σ . If σ is a 1 + 3
partition, Uσ

ij corresponds to the usual AGS transition matrix
for the three interacting particles that are internal to σ . For
σ of 2 + 2 type Uσ

ij does not correspond to any physical
process. The components of the initial/final two-cluster states
[|�ρ0〉]ρi = |φρ0

i 〉δρρ0 are the Faddeev components of the cluster
bound state wave function times a plane wave of momentum
pρ0

between clusters whose dependence is suppressed in our
notation,

∣∣φρ0
i

〉 = G0ti
∑

k

δ̄ki

∣∣φρ0
k

〉
. (4)

The great advantage of AGS equations over the Yakubovsky
equations is that on-shell matrix elements of U between initial
|�ρ0〉 and final |�σ0〉 states with relative two-cluster momenta
pρ0 and p′

σ0
lead automatically to the corresponding scattering

amplitudes
〈
p′

σ0

∣∣T σ0ρ0
∣∣pρ0

〉 = 〈
�σ0

∣∣U ∣∣�ρ0

〉
(5a)

=
∑
ij

〈
φ

σ0
j

∣∣Uσ0ρ0
ji

∣∣φρ0
i

〉
. (5b)

For four identical particles the AGS equations reduce to 2 ×
2 matrix equations since there are only two distinct partitions,
one of 1 + 3 type and one of 2 + 2 type, which we choose to
be (12,3)4 and (12)(34); in the following we denote them by
α = 1 and α = 2, respectively. In this case the equations may
be conveniently written using the permutation operators Pab

of particles a and b as it was done first in Refs. [20,21] for
the four-nucleon bound state. After the symmetrization of the
four-nucleon scattering equations (1) we obtain equations of
the same form but with new definitions for the symmetrized
operators

Vαβ = (G0tG0)−1(δ̄αβ − δβ1P34), (6a)

Gαβ

0 = G0tG0U
αG0tG0δαβ. (6b)

Here t is the pair (12) t-matrix, Uα the symmetrized 1 + 3 or
2 + 2 subsystem transition operators

Uα = PαG−1
0 + PαtG0U

α, (7)

and Pα the permutation operators given by

P1 = P = P12P23 + P13P23, (8a)

P2 = P̃ = P13P24. (8b)

The basis states are antisymmetric under exchange of two
particles in subsystem (12) for 1 + 3 partition and in (12) and
(34) for 2 + 2 partition. The symmetrized initial/final two-
cluster state components are

|φβ〉 = G0tPβ |φβ〉. (9)

The scattering amplitudes are obtained as

〈p′
α|T αβ |pβ〉 = Sαβ〈φα|Uαβ |φβ〉, (10)

where Sαβ is a symmetrization factor; Sαα = Sα is equal to the
number of pairs internal to the partition α, i.e., S1 = 3 and
S2 = 2, and S12 = 2S21 = 2

√
3.

Since the present paper is confined to n-3H scattering, we
write down explicitly only the equations for the 1 + 3 → 1 + 3
and 1 + 3 → 2 + 2 transition operators

U11 = −(G0tG0)−1P34 − P34U
1G0tG0U11 + U 2G0tG0U21,

(11a)

U21 = (G0tG0)−1(1 − P34) + (1 − P34)U 1G0tG0U11. (11b)

The equations coupling U12 and U22 share an identical kernel
but different inhomogeneous terms.
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FIG. 1. (Color online) Angular momentum quantum numbers for
1 + 3 and 2 + 2 basis states.

After the partial wave expansion Eqs. (11) form a set of
coupled integral equations with three variables corresponding
to the Jacobi momenta kx , ky , and kz; the associated orbital
angular momenta are denoted by lx, ly , and lz, respectively.
They are depicted in Fig. 1 for 1 + 3 and 2 + 2 configurations
together with the pair total angular momentum I and the
the three-particle subsystem total angular momentum J .
The states of total angular momentum J are defined as
|kxkykz[lz({ly[(lxSx)Isy]Sy}J sz)Sz]JM〉 for the 1 + 3 config-
uration and |kxkykz(lz{(lxSx)I [ly(sysz)Sy]I ′}Sz)JM〉 for the
2 + 2, where sy and sz are the spins of nucleons 3 and 4,
and Sx, Sy , and Sz are channel spins of two-, three-, and
four-particle system. In all calculations I and I ′ run over the
same set of quantum numbers.

By the discretization of the momentum variables the
integral equations may be turned into a system of linear
equations but the direct solution is not possible because
of the huge dimension. Therefore, in close analogy with
three-nucleon scattering, we calculate the Neumann series
for the on-shell matrix elements of the transition operators
(11) and sum by the Padé method [22]. The Padé summation
algorithm we use is described in Ref. [23]. We work with the
half-shell transition operators in the form

|Xαβ〉 = G0Uαβ |φβ〉 (12)

such that the on-shell elements are 〈φα|Uαβ |φβ〉 = 〈ξα|Xαβ〉
with the auxiliary states |ξα〉 = G−1

0 |φα〉 = tPα|φα〉. Defining
Qα = G0U

αG0t and using Eq. (9) for the inhomogeneous
terms in order to eliminate (G0tG0)−1, Eqs. (11) become

|X11〉 = −P34P1G0|ξ1〉 − P34Q1|X11〉 + Q2|X21〉, (13a)

|X21〉 = (1 − P34)P1G0|ξ1〉 + (1 − P34)Q1|X11〉. (13b)

In practical calculations, in order to accelerate the convergence
of the Padé summation, it is advantageous to substitute
Eq. (13b) into Eq. (13a) yielding the Neumann series

|Xαβ〉 =
∞∑

n=0

∣∣X(n)
αβ

〉
, (14a)

∣∣X(0)
21

〉 = (1 − P34)P1G0|ξ1〉, (14b)
∣∣X(0)

11

〉 = −P34P1G0|ξ1〉 + Q2

∣∣X(0)
21

〉
, (14c)

∣∣X(n)
21

〉 = (1 − P34)Q1

∣∣X(n−1)
11

〉
, (14d)

∣∣X(n)
11

〉 = −P34Q1

∣∣X(n−1)
11

〉 + Q2

∣∣X(n)
21

〉
, (14e)

which requires 1 + 3 and 2 + 2 subsystem transition operators
Uα , contained in Qα , fully off-shell at different energies.
Explicit calculation of Uα is not only very time consuming
but also requires large storage devices. Therefore, except at
the bound state poles, we do not calculate the full off-shell
transition matrices Uα explicitly. Instead, we rewrite Eq. (7)
as a Neumann series

Uα =
∞∑

r=0

(PαtG0)rPαG−1
0 (15)

resulting in a corresponding Neumann series for the solution
vectors in Eqs. (14), i.e.,

Qα

∣∣X(n)
αβ

〉 =
∞∑

r=1

∣∣X(n,r)
αβ

〉
, (16a)

∣∣X(n,0)
αβ

〉 = ∣∣X(n)
αβ

〉
, (16b)

∣∣X(n,r)
αβ

〉 = PαG0t
∣∣X(n,r−1)

αβ

〉
, (16c)

where the summation again has to be performed using the Padé
method. Usually, six to 18 Padé iteration steps are required for
the convergence in Eqs. (14)–(16). At the bound state poles
the subsystem transition operators are

Uα = Pα|ξα〉 Sα

E + i0 − hz
0 − EB

〈ξα|Pα, (17)

where E is the available four-nucleon energy, EB the binding
energy, and hz

0 the kinetic energy operator for the relative
motion of the two clusters.

Thus, compared to the calculation of full off-shell Uα ,
the method we are using avoids storage problems and also
significantly reduces the number of required floating point
operations, since it is essentially a calculation of half-shell
matrix elements for a number of driving terms that are
considerably fewer than the linear dimension of the discretized
Uα . A further advantage is that the matrices corresponding to
the operators Pα,G0, and t in Eq. (16c) have block-diagonal
structure whereas Uα is a full matrix.

The calculation of the Neumann series (16) for α = 1 is
what we are doing in three-nucleon scattering and is described
in great detail in Refs. [24,25]. The specific representation of
the permutation operator P1 where the initial and final state
momenta ky are chosen as independent variables requires the
interpolation in the momentum kx for the quantities on both
sides of P1G0, i.e., for t or 〈ξα|. Two interpolation methods
using Chebyshev polynomials and spline functions were used
in Ref. [24]; in the context of four-nucleon equations where
one has to work with 1 + 3 and 2 + 2 basis states the spline
interpolation is more convenient.

The calculation of the Neumann series (16) for α = 2
is straightforward because of the very simple form of the
permutation operator P2.

Finally, the application of the permutation operator P34 as
well as the transformation of |X(n)

αβ 〉 from 1 + 3 basis to 2 + 2
or vice versa has a structure similar to that of P1, resulting in
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a similar treatment. The specific representation of P34, i.e.,

〈kxkykz|P34|k′
xk

′
yk

′
z〉 = δ(kx − k′

x)

k2
x

∫ 1

−1
dy P34(kz, k

′
z, y)

× δ(ky − k̄y(kz, k
′
z, y))

k2
y

× δ(k′
y − k̄′

y(kz, k
′
z, y))

k′
y

2 , (18)

where the initial and final state momenta kz are chosen
as independent variables, requires the interpolation in the
momentum ky for the quantities on both sides of P34 that
are calculated on the mesh {kiy }. The dependence on the
discrete quantum numbers is suppressed since it is irrelevant
for the consideration as well as the explicit form of function
P34(kz, k

′
z, y). k̄′

y(kz, k
′
z, y) and k̄y(kz, k

′
z, y) are the initial

and final state Jacobi momenta ky expressed via k′
z, kz,

and the angle between them y = k̂′
z · k̂z. We use the spline

interpolation again with the spline functions Siy (k) [26–28]
such that for the function f (k), given on the mesh {kiy }, the
values at any k may be obtained by

f (k) ≈
∑
iy

f (kiy )Siy (k). (19)

For P34 acting on the vector |Y 〉 we obtain the following result
(as a distribution):

〈kxkykz|P34|Y 〉 =
∑
iy

δ
(
ky − kiy

)
k2
y

∫ ∞

0
k′
z

2
dk′

z

∫ 1

−1
dy

× Siy (k̄y(kz, k
′
z, y))P34(kz, k

′
z, y)

×
∑
jy

Sjy
(k̄′

y(kz, k
′
z, y))

〈
kxkjy

k′
z

∣∣Y 〉

=
∑
iy

δ(ky − kiy )

k2
y

Ỹiy (kx, kz), (20)

such that in the next step of the calculation, where the
〈kxkykz|P34|Y 〉 has to be multiplied by a smooth function f (ky)
and integrated over ky , the result simply is the sum over the
mesh points {kiy } for the involved quantities,∫ ∞

0
k2
ydkyf (ky)〈kxkykz|P34|Y 〉 =

∑
iy

f (kiy )Ỹiy (kx, kz). (21)

The integrations in Eq. (20) are performed using Gaussian
integration rules [28]. The bound state pole (17) is treated
by the subtraction technique much like the deuteron pole
in the n-d scattering [24]. Note that the representation of
the operators P1 and P34 is different from the one used in
Refs. [20,29] where final state momenta ky and kz were chosen
as independent variables.

III. RESULTS

In order to calibrate our work we start by reproducing
results of previous calculations, in particular the binding

energy of 4He obtained with different realistic 2N interactions
by different groups [10,29–31] as well as the n-3H phase
shifts obtained with Mafliet-Tjon potential by the Grenoble
group [32]. Furthermore, we check the numerical stability of
our calculations. These results are presented in the Appendix
and show that the present algorithm is numerically highly
reliable and capable of reproducing previous published results.

Next we study the convergence of our calculations in
terms of number of 2N, 3N , and 4N partial waves using the
AV18 potential [33] for the 2N interaction. In the calculations
presented here for the n-3H scattering we include only the
total isospin T = 1 states, but, within T = 1, we take into
account all couplings resulting from the charge dependence of
the interaction. Including T = 2 states would yield an effect
that is of second order in the charge dependence and, therefore,
is expected to be extremely small much like the effect of
the total 3N isospin T = 3

2 states in elastic n-d scattering.
Coupling to T = 2 states is neglected also in all previous
calculations, but in configuration-space treatments the isospin
averaging within T = 1 states is performed for the potential,
whereas we perform it for the t-matrix.

In Table I we show n-3H phase shifts, 1− mixing parameter
ε, and total cross section σt at En = 4 MeV neutron lab energy
for increasing number of 2N partial waves. In all calculations
we keep ly, lz � 4, and J � 9

2 . We apply additional restrictions
that are different for 1 + 3 and 2 + 2 states. We include all
1 + 3 states with lx + ly � 8 plus the states coupled to them
by the tensor force; the above restriction is not applied if
I � 2. We include all 2 + 2 states with lx + ly + lz � 10 plus
states coupled to them by the tensor force. One finds that at
least I � 3 + 3F4 is needed for a well converged calculation.
Likewise in Table II we show similar results for increasing
ly, lz keeping I � 4 + 3G5 and J � 9

2 . At least ly, lz � 3 is
needed to get quite satisfactorily converged results for the
P -wave phase shifts, particularly 3P2. Finally in Table III we
show results for increasing J , keeping ly, lz � 4 and I � 4 +
3G5. We find that the inclusion of at least J = 5

2 3N states is
necessary without which Ay has the wrong sign. Compared
with previous calculations the present work exceeds in the
number of 2N, 3N , and 4N partial waves included, providing
very accurate results for all observables.

In Table IV we show the results of the other calculations
for AV18 at En = 3.5 MeV which were compiled in Ref. [11].
The present calculation confirms the work of the Grenoble and
Pisa groups (second and third lines, respectively) and clearly
shows in the fourth line the shortcomings of the rank one
representation of realistic interactions calculated again using
the present numerical algorithm. As in the work of Ref. [4] the
total cross section gets to be σt = 2.49 b which even slightly
overestimates the experimental value. Calculations with other
potentials, i.e., charge-dependent (CD) Bonn [34], Nijmegen
I and II [35], inside-nonlocal outside-Yukawa (INOY04)
potential by Doleschall [10,36], and the one derived from
chiral perturbation theory at next-to-next-to-next-to-leading
order (N3LO) [37], show similar results for all phases although
N3LO gives the largest P -wave phases leading to σt = 2.38 b,
the closest to the experimental value at the resonance peak
using two-body interactions alone.
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FIG. 2. (Color online) Total cross section for n-3H scattering
as function of neutron lab energy calculated with CD Bonn
(solid curve), AV18 (dashed curve), INOY04 (dash-dotted curve),
and N3LO (dotted curve) potentials. Experimental data are from
Ref. [7].
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FIG. 3. Correlation between 3H binding energy εt and n-3H
scattering lengths a0 and a1. The predictions for AV18 (diamonds),
N3LO (triangles), CD Bonn (circles), and INOY04 (squares) are
shown. The experimental data are from Refs. [38] (open circles), [39]
(open triangles), and [40] (open squares).
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FIG. 4. (Color online) Differential cross section and neutron analyzing power for n-3H scattering at En = 1, 2, 3.5, and 6 MeV neutron lab
energies as functions of c.m. scattering angle. Curves as in Fig. 2. Experimental data are from Ref. [41].
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TABLE I. n-3H phase shifts, 1− mixing parameter ε (in degrees) and the total cross section σt (in barns) at
En = 4 MeV neutron lab energy for increasing number of 2N partial waves and fixed ly, lz � 4, J � 9

2 . The 2N

potential is AV18.

0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

I � 1+ −69.54 20.97 −62.31 46.47 26.46 −37.74 36.19 2.106
I � 1 + 3P2 −70.60 22.82 −62.70 40.30 21.25 −44.00 43.53 2.151
I � 2 + 3D3 −70.02 24.43 −62.05 43.62 22.65 −44.46 47.06 2.301
I � 3 + 3F4 −69.68 23.52 −61.74 43.37 22.35 −44.71 46.71 2.277
I � 4 + 3G5 −69.63 23.62 −61.69 43.54 22.38 −44.69 47.03 2.288
I � 5 + 3H6 −69.61 23.56 −61.68 43.53 22.37 −44.73 47.00 2.286

TABLE II. Same as in Table I for increasing ly, lz and fixed I � 4 + 3G5 and J � 9
2 . The restriction on ly

is not applied to 3N partial waves with total angular momentum and parity J π = 1
2

+
.

0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

ly, lz � 0 −69.70 −63.50 0.950
ly, lz � 1 −69.59 22.62 −61.94 41.33 22.65 −44.49 43.35 2.163
ly, lz � 2 −69.67 23.19 −61.75 42.65 22.05 −44.88 44.10 2.196
ly, lz � 3 −69.62 23.65 −61.72 43.35 22.34 −44.84 46.82 2.279
ly, lz � 4 −69.63 23.62 −61.69 43.54 22.38 −44.69 47.03 2.288

TABLE III. Same as in Table I for increasing J and fixed I � 4 + 3G5 and ly, lz � 4.

0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

J � 1
2 −69.84 23.95 −53.98 27.53 17.55 −9.48 17.56 1.268

J � 3
2 −69.61 23.26 −62.41 43.05 22.34 −44.85 21.97 1.715

J � 5
2 −69.63 23.61 −61.69 43.49 22.37 −44.63 46.97 2.285

J � 7
2 −69.63 23.61 −61.69 43.53 22.38 −44.68 46.99 2.287

J � 9
2 −69.63 23.62 −61.69 43.54 22.38 −44.69 47.03 2.288

TABLE IV. n-3H phase shifts, mixing parameter ε, and total cross section σt for AV18, CD-Bonn, Nijmegen I,
Nijmegen II, INOY04, and N3LO potentials at En = 3.5 MeV together with results from other calculations for AV18.
We include I � 4 + 3G5, ly, lz � 4, and J � 9

2 .

0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

AV18 −66.12 20.75 −58.48 40.09 20.73 −44.50 42.51 2.331
Ref. [11] −66.5 20.9 −58.5 37.3 20.7 −43.5 41.0 2.24
Ref. [11] −66.3 20.6 −58.7 38.6 20.5 −45.5 40.1 2.24
rank 1 −66.06 26.99 −58.55 42.36 22.15 −44.81 45.06 2.488

CD Bonn −64.63 18.97 −57.40 39.44 20.20 −44.94 42.47 2.283
Nijmegen I −65.61 19.64 −58.16 39.62 20.40 −44.91 42.13 2.297
Nijmegen II −65.98 20.02 −58.42 39.69 20.44 −44.71 42.22 2.308
INOY04 −62.91 16.73 −56.00 38.75 19.47 −44.55 42.13 2.216
N3LO −65.54 20.31 −57.99 40.94 20.74 −44.71 43.98 2.377
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TABLE V. 3H and 4He binding energies εt and εα (in MeV), n-3H scattering
lengths a0 and a1 (in fm), and n-3H total cross section σt (in barns) at En = 0 and
3.5 MeV neutron lab energy for different 2N potentials.

εt εα a0 a1 σt (0) σt (3.5)

AV18 7.621 24.24 4.28 3.71 1.88 2.33
Nijmegen II 7.653 24.50 4.27 3.71 1.87 2.31
Nijmegen I 7.734 24.94 4.25 3.69 1.85 2.30
N3LO 7.854 25.38 4.23 3.67 1.83 2.38
CD Bonn 7.998 26.11 4.17 3.63 1.79 2.28
INOY04 8.493 29.11 4.02 3.51 1.67 2.22

TABLE VI. n-3H phase shifts, 1− mixing parameter ε, and total cross section σt at En = 3.5 MeV for
original AV18 and INOY04 potentials and their versions AV18’ and INOY04’ with modified P -waves.

0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

AV18 −66.12 20.75 −58.48 40.09 20.73 −44.50 42.51 2.331
AV18’ −66.06 20.46 −58.39 40.50 20.86 −44.70 43.82 2.375
INOY04 −62.91 16.73 −56.00 38.75 19.47 −44.55 42.13 2.216
INOY04’ −63.04 15.67 −56.16 37.41 19.06 −43.06 42.21 2.191

TABLE VII. 4He binding energy (MeV) for increasing number of 2N partial waves
characterized by maximal total angular momentum I .

I� 1 I� 2 I� 3 I� 4 I� 5 I� 6 Other work:
Refs. [10,29–31]

AV8’ 23.08 25.16 25.69 25.85 25.90 25.91 25.90–25.94
AV18 22.30 23.75 24.15 24.20 24.23 24.24 24.22–24.25
CD Bonn 25.03 25.95 26.07 26.10 26.11 26.11 26.13–26.16
INOY04 28.68 29.09 29.10 29.11 29.11 29.11 29.11

TABLE VIII. n-3H phase shifts at different neutron lab energies for the Mafliet-Tjon potential.

L = 0, S = 0 L = 1, S = 0 L = 2, S = 0 L = 0, S = 1 L = 1, S = 1 L = 2, S = 1

En = 2.0 MeV 50.93 17.19 −0.37 −45.65 22.56 −0.57
Ref. [32] 51.1 17.2 −0.37 −45.8 22.6 −0.58

En = 3.5 MeV −64.53 28.00 −1.39 −58.17 40.51 −0.94
Ref. [32] −64.6 28.0 −1.40 −58.2 40.5 −0.89

En = 5.0 MeV −74.33 34.06 −2.17 −67.30 50.56 −1.53
Ref. [32] −74.4 34.0 −2.24 −67.4 50.5 −1.59
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In Fig. 2 we show the total cross section for n-3H scattering
as a function of the neutron lab energy; for clarity we skip
the Nijmegen I and II predictions since they are between
AV18 and CD Bonn. In the resonance region all potentials
fail to reproduce the experimental data though some do better
than others. As pointed out in Ref. [10] the nonlocal potential
INOY04 that, by itself alone, leads to the correct triton binding
energy and slightly overbinds the α particle, shows the lowest
total cross section at the peak. On the contrary CD Bonn and
AV18 show higher total cross sections but also lower triton
and α particle binding energies.

In Table V we give the values for the triton and α particle
binding energies, singlet and triplet scattering lengths a0 and
a1, and total cross section at En = 0 and 3.5 MeV. The
results we get for a0 and a1 agree with previous work for
AV18 [10,11], and as shown in Fig. 3 correlate with the triton
binding energy. Therefore interactions that lead to lower triton
binding show the highest values for a0 and a1 and consequently
the higher total cross sections at threshold. Nevertheless at
En = 3.5 MeV this correlation gets destroyed as the behavior
of N3LO shows. Further studies are needed to understand
the features of N3LO that give rise to this breaking of the
correlation near the peak of the resonance.

In Fig. 4 we show the differential cross section dσ/d� and
the neutron analyzing power Ay for n-3H scattering at neutron
lab energies of 1, 2, 3.5, and 6 MeV. In order to get fully
converged results we take into account all n-3H channel states
with orbital angular momentum L � 3. The predictions of the
four potentials differ mostly at forward and backward angles
for the differential cross section and around the peak for the
analyzing power. It is not obvious to us that the disagreement
with the total cross section data shown in Fig. 2 is compatible
with the discrepancies we observe relative to the differential
cross section data. Therefore it would be recommended that
some of the experiments be repeated at specific energies and
Ay measured in order to further understand the implications
of the 2N force models.

One important observation that comes out of these calcula-
tions is the increased sensitivity of 4N observables to changes
in the 2N interaction. The variations due to the 2N potential
at the maximum of n-3H Ay lead to about 16% fluctuations
which are larger than the 10% fluctuations observed at the
peak of Ay in low energy n-d scattering. This indicates that
the 4N system is more sensitive to off-shell differences of the
2N force than the 3N system.

Finally, in Table VI we investigate the possible correlations
between the Ay-puzzle in low energy n-d scattering and the
underestimation of σt in n-3H scattering in the resonance
region. The experimental data for Ay in n-d scattering can
be accounted for by a calculation with modified interactions
in 2N 3PI waves [36,42]. We use two models. The first
one, AV18,’ is taken from Ref. [42]; it corresponds to the
AV18 potential that in 3PI waves is multiplied by strength
factors 0.96, 0.98, and 1.06 for I = 0, 1, and 2, respectively.
The second one, INOY04,’ is taken from Ref. [36] and
differs from INOY04 by 3PI wave parameters. Although both
modified potentials provide quite satisfactory description of
vector analyzing powers in low energy n-d scattering, they
are incompatible with present day 2N data basis, e.g., the

χ2/datum values with respect to the pp data, estimated using
the Nijmegen error matrix [43], i.e., by comparing to the
Nijmegen phase shifts rather than to data directly, are 3.5
for INOY04’ and 4.4 for AV18’ potentials. However, those
modifications of the potentials are unable to resolve the σt

discrepancy in n-3H scattering. The σt is slightly increased
for AV18’ but it gets even lower for INOY04,’ indicating that
σt depends on the 2N 3PI wave interaction in a different way
than the Ay in the n-d scattering.

IV. CONCLUSIONS

In the present paper we developed a new numeri-
cal approach to solve four-nucleon scattering equations in
momentum-space. The method uses no uncontrolled approxi-
mations, is numerically very efficient and therefore can include
very large number of partial waves, thereby yielding well
converged and very precise results. The developed approach
is applied to n-3H scattering below three-body breakup
threshold. The calculations with various realistic 2N potentials
underestimate the total n-3H cross section data in the resonance
region as already found by other groups. However, probably
due to the inclusion of more partial waves, the numbers we
get are slightly higher and closer to the data; they also depend
on the choice of the 2N potential. The new results also show
that 4N observables are more sensitive than 3N observables
to the off-shell nature of the 2N interaction. Furthermore,
the modifications that are required to introduce at the level
of the 3PI 2N partial waves to remove the discrepancies
in n-dAy at low energy, do not remove the disagreement
observed in the total n-3H cross section around En = 3.5 MeV.
Finally, to understand the compatibility between existing
n-3H total and differential cross section data it would be
advisable to repeat some of those experiments at specific
energies.

ACKNOWLEDGMENTS

The authors thank R. Lazauskas for valuable discussions
and for providing benchmark results. A.D. is supported by
the Fundação para a Ciência e a Tecnologia (FCT) grant
SFRH/BPD/14801/2003 and A.C.F. in part by the FCT grant
POCTI/ISFL/2/275.

APPENDIX

As mentioned in Sec. III we present here our results for the
binding energy of 4He and n-3H phase shifts obtained with
Mafliet-Tjon potential as well as the numerical stability check
of our results. In Table VII we show the α particle binding
energy for increasing number of 2N partial waves and compare
with previous works. Results with AV8’ are calculated without
the Coulomb interaction in order to compare with Ref. [30].
On the other hand calculations from Refs. [29,31] with CD
Bonn include coupling between total isospin T = 0, 1, and
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TABLE IX. n-3H phase shifts, 1− mixing parameter ε, and the total cross section σt at En = 4 MeV
for increasing number of meshpoints Nk for the momenta kx, ky , and kz. The 2N potential is AV18.

Nk 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (3P1) 1− (1P1) 1− (ε) 2− (3P2) σt

14 −70.03 23.78 −62.01 43.49 22.35 −44.58 46.93 2.290
15 −69.57 23.57 −61.61 43.64 22.40 −44.72 47.18 2.292
16 −69.43 23.51 −61.51 43.63 22.38 −44.75 47.19 2.290
18 −69.72 23.66 −61.76 43.55 22.39 −44.67 47.03 2.289
20 −69.63 23.62 −61.69 43.54 22.38 −44.69 47.03 2.288
22 −69.68 23.64 −61.73 43.53 22.39 −44.68 47.01 2.288
24 −69.66 23.64 −61.73 43.53 22.39 −44.68 47.00 2.288
25 −69.67 23.64 −61.73 43.53 22.39 −44.68 47.00 2.288

2 states while we consider only T = 0. In contrast to our
scattering calculations, here we perform the isospin averaging
not for the t-matrix but for the potential like it has been done
in calculations of Ref. [10]. Overall these results indicate that
our algorithm is accurate and reliable.

For n-3H scattering we compare in Table VIII the results of
our calculations with those of the Grenoble group [32]. Again
our phase shifts agree within a few tenths of a degree or better

leading to identical total cross sections over a wide range of
energies.

In Table IX we demonstrate the stability of our results
increasing the number Nk of momentum mesh points. All
calculations use AV18 potential with 2N partial waves I � 4 +
3G5, ly, lz � 4 and J � 9

2 . The results with Nk = 20 which is
the choice for calculations of Tables I–III are converged to
better than 0.05◦ for all phase shifts.
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