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Deuteron tensor polarization component T20( Q2) as a crucial test for deuteron wave functions
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The deuteron tensor polarization component T20(Q2) is calculated by the relativistic Hamiltonian dynamics
approach. It is shown that in the range of momentum transfers available with current experiments, relativistic
effects, meson exchange currents, and the choice of nucleon electromagnetic form factors almost do not influence
the value of T20(Q2). However, this value depends strongly on the actual form of the deuteron wave function,
that is, on the model of the NN interaction in the deuteron. So the existing data for T20(Q2) provide a crucial test
for deuteron wave functions.
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I. INTRODUCTION

For a long time within the framework of nonrelativistic
approaches, deuteron tensor polarization has been considered
as an important tool for probing the nucleon-nucleon (NN )
interaction at short distances (see, e.g., Refs. [1,2]), making
it possible to choose among different model deuteron wave
functions, that is, among different models of NN interaction.
During the past few years great success has been achieved in
polarization experiments on elastic electron-deuteron scatter-
ing [3–9]. Now accessible values of Q2 are so large that the
relativistic theory is needed. Unfortunately, further progress
in these measurements is questionable because no reasonable
technique exists to extend polarization measurements to higher
Q2 [10,11]. So, in the immediate future one does not expect
any new experimental information on the subject in question.

In the present work we analyze the existing data on
polarization ed scattering in connection with different NN

interaction models on the basis of an essentially relativistic
approach. We show that the existing data provide the crucial
test of the deuteron wave function even in the relativistic
theory. This possibility is based on the following results
obtained in the paper:

(i) The relativistic corrections to T20(Q2) are small up to
Q2 � 3 (GeV/c)2.

(ii) The quantity T20(Q2) is almost independent of the
actual nucleon electromagnetic form factors [although
the deuteron structure functions A(Q2) and B(Q2)
depend on them strongly].

(iii) The contribution of meson exchange currents (MEC)
to T20(Q2) are small.

(iv) The quantity T20(Q2) depends strongly on the choice
of the deuteron wave function, that is, on the model of
NN interaction.

*Electronic address: krutov@ssu.samara.ru
†Electronic address: troitsky@theory.sinp.msu.ru

We consider the most popular model deuteron wave
functions to obtain the best description of polarization
data.

The analysis is performed in the framework of the variant
of the instant form of the relativistic Hamiltonian dynamics
developed by the authors [12–15]. (Relativistic Hamiltonian
dynamics is sometimes called Poincaré invariant quantum
mechanics (see, e.g., Ref. [16]).) The main features of our
approach to deuteron are the following. First, the form
of the dynamics is close to the nonrelativistic case. Sec-
ond, our method of construction of the matrix element of
the electroweak current operator makes it possible to formulate
relativistic impulse approximation in such a way that the
Lorentz covariance of the current is ensured. In our approach
it is possible to use the Siegert theorem [17,18] to estimate the
contribution of MEC to the deuteron electromagnetic structure.
Our estimation of the role of different contributions—nucleon
dynamics, relativistic effects, MEC, and nucleon internal
structure—demonstrates that one can use the function T20(Q2)
to discriminate different model deuteron wave functions and
to choose the most adequate models of nucleon-nucleon
interaction. Our calculation shows that the most popular model
wave functions [19–21] do not give adequate description of
T20(Q2) and should be rejected in favor of those obtained
in the dispersion potential-less inverse scattering approach
with no adjustable parameters [22,23] and giving the best
description.

The paper is organized as follows. In Sec. II we formulate
the problem of obtaining the best deuteron wave function
using the data on T20(Q2). Section III contains a brief review
of the instant form of relativistic Hamiltonian dynamics. In
Sec. IV the electromagnetic deuteron form factors are calcu-
lated. The deuteron tensor polarization T20(Q2) is given in
terms of these form factors; the relativistic effects and the
effect of MEC are estimated in Sec. V. Section VI presents the
conclusions. In Appendix A and B the equations for relativistic
and nonrelativistic free form factors, respectively, for two
nucleons in the 3S1-3D1 channel are given. These form factors
enter into Eqs. (12) and (13) of the main text.
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II. WAVE FUNCTIONS FROM DEUTERON EXPERIMENTS

The problem of obtaining the most adequate wave func-
tion from deuteron experimental data, in general, can be
correctly formulated only in the conventional nonrelativistic
nuclear model. In the framework of this model all existing
nucleon-nucleon interaction potentials have the correctly
fixed long-distance part defined by the one-pion exchange
and the intermediate and the short-distance part of strongly
pronounced model character, which is different in different
models. That is why the deuteron wave functions in coordinate
representation for different approaches usually coincide at
r � 1.5 fm and differ essentially at r � 0.5 fm. This quite
obvious formulation of the problem in the conventional
nonrelativistic nuclear model, however, is not valid beyond of
the framework of the approach. This takes place, for example,
when taking into account relativistic effects, MEC (interaction
currents), or different effects in the deuteron electromagnetic
structure caused by quark degrees of freedom. These effects
are usually strongly model dependent and contain a kind of
arbitrariness, so that they “mask” effectively the dependence
of observables on the choice of the dynamics of the NN

interaction. For example, the experimental data on T20(Q2) in
ed scattering were described well by the relativistic approach of
Ref. [24] because of functional arbitrariness in the definition
of the nucleon electromagnetic current. Another example is
represented by the calculation of the contribution of MEC
to deuteron electromagnetic from factors, where in fact an
arbitrariness is contained in the ρπγ form factor [25].

Now one understands clearly that it is impossible to neglect
relativistic effects in the deuteron so that one needs a consistent
relativistic formulation of the deuteron problem, particu-
larly at large momentum transfer [11,26]. As was noted in
Ref. [11], today there are two main classes of relativistic
schemas of the description of deuteron. The first class is based
on field-theoretical concepts (following Ref. [11]—propagator
dynamics). This class contains the Bethe-Salpeter equation and
quasipotential approaches (and the approach of Ref. [24] as
well). The second class—relativistic Hamiltonian dynamics
(RHD)—is based on the realization of the Poincaré algebra
on the set of dynamical observables of a system with a finite
number of degrees of freedom. One can find the description
of the RHD method in the reviews of Ref. [27] (see also
Ref. [28]) and especially the case of the deuteron in the reviews
of Refs. [11,29]. As is noted in Ref. [11], the connection
between the propagator dynamics and RHD is ambiguous.
Each of the approaches has its own advantages as well as
difficulties. One should mention in addition the dispersion
methods of describing composite systems; these methods deal
with, in fact, finite numbers of degrees of freedom, as RHD
does [30–33].

In all these relativistic approaches the process of construct-
ing the operator of the Lorentz covariant conserved elec-
tromagnetic current is connected to the relativistic nucleon-
nucleon dynamics used in the approach. That is why the
problem of obtaining the information about the dynamics
itself from the deuteron data is not, in general, correctly
formulated.

Is it possible in principle to formulate correctly the problem
of obtaining the most adequate deuteron wave functions from

the deuteron experiments? Our opinion is that it is possible if
the following requirements are satisfied:

(i) It is necessary to find an approach that is relativistic
from the very beginning with the dynamics close
to nonrelativistic Schrödinger dynamics, that is, with
relativistic deuteron wave functions that are close to
the nonrelativistic ones.

(ii) It is necessary to find such a measurable quantity
that, in the chosen approach, is almost independent of
relativistic corrections, MEC, and the internal structure
of nucleons.

In this paper we propose such a relativistic approach—a
variant of the instant form of RHD developed by the authors
in Refs. [12–15]. In this approach the adequate observable is
the component T20(Q2) of the deuteron polarization tensor in
elastic electron-deuteron scattering.

Let us review briefly the dynamics in our relativistic
approach.

III. DYNAMICS OF THE INSTANT FORM OF
RELATIVISTIC HAMILTONIAN DYNAMICS

We use the so-called instant form of relativistic Hamiltonian
dynamics (IF RHD) [34]. In this form the kinematic subgroup
of Poincaré algebra contains the generators of the group of
rotations and translations in the three-dimensional Euclidean
space (interaction-independent generators):

�̂J , �̂P . (1)

The remaining generators of the time translation and Lorentz
boosts are (interaction-dependent) Hamiltonians:

P̂ 0 , �̂N. (2)

The additive inclusion of interaction into the mass square
operator (Bakamjian-Thomas procedure; see, e.g., Ref. [27]
for details) presents one of the possible technical ways to
include interaction in the algebra of the Poincaré group:

M̂2
0 → M̂2

I = M̂2
0 + Û . (3)

Here M̂0 is the operator of invariant mass for the free system
and M̂I is that for the system with interaction. The interaction
operator Û must satisfy the following commutation relations:

[ �̂P , Û ] = [ �̂J , Û ] = [ ��P , Û ] = 0. (4)

These constraints (4) ensure that the algebraic relations of
the Poincaré group are fulfilled for the interacting system.
The relations (4) mean that the interaction potential does not
depend on the total momentum of the system nor on the
projection of the total angular momentum. The conditions
(3) and (4) can be considered only as the model ones. There
are other approaches with potential depending on the total
momentum, but these are outside the scope of this paper.

In RHD the wave function of the system of interacting
particles is the eigenfunction of a complete set of commuting
operators. In IF this set is

M̂2
I , Ĵ 2 , Ĵ3 , �̂P . (5)
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Ĵ 2 is the operator of the square of the total angular momentum.

In IF the operators Ĵ 2, Ĵ3, �̂P coincide with those for the free
system. So, in the system (5) only the operator M̂2

I depends on
the interaction.

To find the eigenfunctions of the system (5) one first has to
construct the adequate basis in the state space of the composite
system. In the case of a two-particle system (e.g., a two-
nucleon system) the Hilbert space in RHD is the direct product
of two one-particle Hilbert spaces: HNN ≡ HN ⊗ HN .

As a basis in HNN one can choose the following set of
two-particle state vectors, where the motion of the two-particle
center of mass is separated and where three operators of the
set (5) are diagonal:

| �P ,
√

s, J, l, S, mJ 〉, (6)

where Pµ = (p1 + p2)µ, p2
1 = p2

2 = M2,M is nucleon mass,
P 2

µ = s,
√

s is the invariant mass of the two-particle system,
l is the orbital angular momentum in the center-of-mass (c.m.)
frame, �S 2 = (�S1 + �S2)2 = S(S + 1), S is the total spin in
the c.m. frame, J is the total angular momentum with the
projection mJ , and the parameters S and l play the role of
invariant parameters of degeneracy. Because in the basis (6)

the operators Ĵ 2 , Ĵ3 , �̂P in system (5) are diagonal, one needs
to diagonalize only the operator M̂2

I to obtain the system wave
functions.

The eigenvalue problem for the operator M̂2
I in the basis (6)

coincides with the nonrelativistic Schrödinger equation within
the following difference between corresponding eigenvalues
(see, e.g., Refs. [26,27]):(

M2
d

4 M
− M

)
− (Md − 2M) = (Md − 2M)2

4 M
= ε2

d/4M. (7)

Here Md is the deuteron mass and εd is the deuteron binding
energy.

The difference (7) is negligible for most problems. Let
us note that if one uses the deuteron bound-state wave
number instead of the binding energy, then the equation for
M̂2

I coincides with the nonrelativistic Schrödinger equation
exactly.

The corresponding composite-particle wave function has
the form

〈 �P ′,
√

s ′, J ′, l′, S ′,m′
J | pc〉= NCδ( �P ′ − �pc)δJJ ′δmJ m′

J
ϕJ ′

l′S ′ (k′),
(8)

where |pc〉 is an eigenvector of the set (5), J (J + 1) and mJ

are the eigenvalues of Ĵ 2 and Ĵ3, respectively, and NC is the
normalization constant.

We use the normalization with the relativistic density of
states:

k2dk → k2dk

2
√

(k2 + M2)
. (9)

This gives the following two-particle wave function of relative
motion for equal masses and total angular momentum and total
spin fixed:

ϕJ
lS(k(s)) = 4

√
sul(k)k, (10)

with the normalization condition∑
l

∫
u2

l (k)k2dk = 1. (11)

Functions ul(k), l = 0, 2 coincide with the model nonrela-
tivistic deuteron wave functions within the difference (7). The
wave function (10) coincides with that obtained by “minimal
relativization” in Ref. [35].

So, in our approach the wave functions in the RHD sense
are close to the corresponding nonrelativistic wave functions
and the dynamical equation is close to the nonrelativistic
Schrödinger equation.

Let us emphasize that our formalism enables one to use
any model wave functions obtained as the solution of the
Schrödinger equation.

In this paper we consider the following models of NN

interaction: the Paris potential [19], versions I, II, and 93 of
the Nijmegen model [20], and the charge-dependent version
of the Bonn potential [21]. The deuteron wave functions for
these potentials give the results for deuteron electromagnetic
properties that differ essentially from one another. It is a
difficult task to give preference to any one of them. Quite
different kind of results are presented for the deuteron wave
functions (MT) [22] obtained in potential less approach to the
inverse scattering problem (see for the details [23]).

Now let us calculate the deuteron electromagnetic form
factors.

IV. DEUTERON ELECTROMAGNETIC FORM FACTORS

The main point of our approach is a construction of the
matrix element of the electroweak current operator. In our
method the electroweak current matrix element satisfies the
relativistic covariance conditions and in the case of electro-
magnetic current also the conservation law automatically. The
properties of the system as well as the approximations are
formulated in terms of form factors. The approach makes it
possible to formulate a relativistic impulse approximation in
such a way that Lorentz covariance of the current is ensured. In
the electromagnetic case the current conservation law is also
ensured.

Usually it is supposed that MEC must be taken into
account to provide gauge invariance and current conservation
[27]. However, today constructing the relativistic impulse
approximation without breaking the relativistic covariance
and current conservation law is a common trend of different
approaches [11,13,28,36,37]. In our approach this is realized
by making use of the Wigner-Eckart theorem for the Poincaré
group. It enables one (for given current matrix element) to
separate the reduced matrix elements (form factors), which
are invariant under the Poincaré group action. The matrix
element of a given operator is represented as a sum of terms,
each one of them being a covariant part multiplied by an
invariant part. In such a representation the covariant part
describes the transformation properties of the matrix element.
The conservation law is satisfied explicitly because the vector
of the covariant part is orthogonal to the vector Qµ. All the
dynamical information on the transition is contained in the
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invariant part (form factors). In our variant of the impulse
approximation (modified impulse approximation) the reduced
matrix elements are calculated with no change of the covariant
part (see Ref. [13] for the details) although MEC are neglected.
The correct transformation properties are thus guaranteed.

The charge, quadrupole, and magnetic form factors of the
deuteron in our approach have the form [14]

GC(Q2) =
∑
l,l′

∫
d
√

sd
√

s ′ϕl(s)gll′
0C(s,Q2, s ′)ϕl′ (s ′),

GQ(Q2) = 2M2
d

Q2

∑
l,l′

∫
d
√

sd
√

s ′ϕl(s)gll′
0Q(s,Q2, s ′)ϕl′(s ′),

GM (Q2) = −MD

∑
l,l′

∫
d
√

sd
√

s ′ϕl(s)gll′
0M (s,Q2, s ′)ϕl′ (s ′).

(12)

Here gll′
0i (s,Q2, s ′), i = C,Q,M are the free charge,

quadrupole, and magnetic two-particle form factors, that is,
the form factors describing electromagnetic properties of
the system of proton and neutron without interaction, the
system having deuteron quantum numbers l, l′ = 0, 2 (orbital
moments) and wave functions ϕl(s) in the sense of RHD.

Free two-particle form factors for a system of two fermions
with total momentum 1 (without taking into account of
D state) were obtained in Ref. [14]. Corresponding equations
for the neutron-proton system with deuteron quantum numbers
are given in Appendix A. Free two-particle charge (only) form
factors of the proton-neutron system without interaction in the
deuteron quantum numbers channel are given also in Ref. [38].

For the deuteron electromagnetic form factors (12) the cor-
respondence principle is valid. The nonrelativistic limit (M →
∞) of Eqs. (12) gives the standard equations for deuteron form
factors in the nonrelativistic impulse approximation in terms
of wave functions in the momentum representation (see, e.g.,
Refs. [39,40]):

GNR
C (Q2) =

∑
l,l′

∫
k2dkk′ 2dk′ul(k)g̃ll′

0C(k,Q2, k′)ul′(k′),

GNR
Q (Q2) = 2M2

D

Q2

∑
l,l′

∫
k2dkk′ 2dk′ul(k)

× g̃ll′
0Q(k,Q2, k′)ul′(k′), (13)

GNR
M (Q2) = −MD

∑
l,l′

∫
k2dkk′ 2dk′ul(k)

× g̃ll′
0M (k,Q2, k′)ul′(k′).

Free charge, quadrupole, and magnetic two-particle form
factors g̃ll′

0i (k,Q2, k′), i = C,Q,M can be calculated as non-
relativistic limits of relativistic two-particle form factors given
in Appendix A. The explicit forms of the free nonrelativistic
two-particle form factors are given in Appendix B.

So, to solve the problem in question we propose the
essentially relativistic approach which makes it possible to
calculate the deuteron electromagnetic form factors and takes
into account the relativistic covariance and the conservation
law for the electromagnetic current. The efficiency of our

approach was demonstrated in a number of calculations
[12–15]. In particular, the values of the neutron charge form
factor extracted from the deuteron charge form factor [15] are
in good accordance with the values of other authors.

Now let us apply our formalism to polarization ed scatter-
ing.

V. POLARIZED ed SCATTERING

The component T20(Q2) of the deuteron polarization tensor
in elastic ed scattering can be written in terms of deuteron form
factors (12) in the following form [11]:

T20(Q2) = −
√

2
Y (Y + 2) + X

1 + 2Y 2 + 4X
, (14)

where

Y = 2

3
η
GQ(Q2)

GC(Q2)
, X = 1

6
η
G2

M (Q2)

G2
C(Q2)

f (θ ),

f (θ ) = 1 + 2(1 + η) tan2 θ

2
, η = Q2

4M2
d

,

where θ is the scattering angle in the laboratory frame.
In the range of existing experiments one can neglect X so

that Eq. (14) takes the form

T20(Q2) = −
√

2
Y (Y + 2)

1 + 2Y 2
. (15)

To elucidate the role of relativistic effects in T20(Q2) let us
calculate the quantity

	(Q2) = T R
20(Q2) − T NR

20 (Q2). (16)

Here T R
20(Q2) is the relativistic value of T20(Q2), calculated

according to Eqs. (14) and (12), and T NR
20 (Q2) is the corre-

sponding nonrelativistic value given by Eqs. (14) and (13).
The dependence of relativistic effects on the choice of the

interaction model is shown in Fig. 1. The calculation was
made using nucleon form factors [41] and different model
wave functions. One can see from Fig. 1 that the relativistic
effects are small for Q2 � 3 GeV2 for all of wave functions.
So, in the region available for current experiments for T20(Q2)

FIG. 1. 	(Q2) calculated following Eq. (16) with nucleon form
factors [41] and different wave functions. Solid line—N-II [20],
dashed line [22], dotted line [19], dot-dashed line—N-I [20], dashed
double-dotted line [21].
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FIG. 2. T20(Q2) calculated with the MT wave functions [22] and
different nucleon form factors: solid line [43], dashed line [41], dotted
line [44], dot-dashed line [11], dashed double-dotted line [45]. The
lines are almost indistinguishable. Experimental data: open circles
[3], open squares [7], open triangles [5], filled circles [6], filled
squares [8], filled diamonds [9], filled triangles [4].

the relativistic corrections calculated in our approach are
small and almost independent of the model wave functions.
At Q2 � 3.5 GeV2 the corrections become larger and depend
upon the model.

Let us discuss the role of the nucleon structure. To estimate
this role we have calculated T20(Q2) for different fits for
nucleon form factors. Let us note that one of the fits is that
given in Ref. [11], taking into account recent data for the ratio
of the charge to magnetic form factors for proton G

p

E/G
p

M ,
obtained in the JLab experiment (see, e.g., Ref. [42]).

The relativistic T20(Q2) calculated with the use of different
nucleon form factors and with the MT wave functions obtained
through the potential-less approach to the inverse scattering
problem in Ref. [22] (see also Ref. [23]) is shown in Fig. 2.
From Fig. 2, one can see, as one would expect (see, e.g., the
discussion in Ref. [11]), that the dependence on the fit for
nucleon form factors is weak. Note that this result does not
depend on the form of wave functions used in the calculation.
So, T20(Q2) depends weakly on the nucleon structure.

Let us discuss the possible contributions of two-particle
MEC to T20(Q2).

It is accepted generally that one has to take MEC into
account in a way compatible with the basic principles of
the chosen approach. So, the value of MEC corrections is
different for different approaches. We hope that we can neglect
MEC in our approach when the relativistic corrections are
small. The base for this is given by the following theorem
(Siegert [17]; see especially the deuteron case in Ref. [18]).
If the electromagnetic current satisfies the conservation law in
its differential form and if the dynamics of the two-particle
system is of nonrelativistic type then the charge density of the
exchange current (the null component) is zero independently
of the kind of potential. So, in the energy range where
nonrelativistic dynamics is valid (the continuity equation is
valid everywhere) the exchange current contributions to the
charge and quadrupole form factors are zero. We suppose that
when the nonrelativistic dynamics is valid approximately then
the MEC contributions to T20(Q2) are small.

In the experimental range of Q2 the approximate
equation (15) is valid for T20(Q2), so that this quantity is a
function of charge and quadrupole form factors only. This
means that the MEC contribution to T20(Q2) is small.

It is interesting to discuss the compatibility of the Siegert
theorem that we use here with the condition of relativistic
covariance of the electromagnetic current operator. Let us
consider, for example, the commutator

[K̂i, [K̂i, ρ̂]] = −ρ̂, (17)

where ρ̂ is the charge density operator and K̂i is the Lorentz
boosts generator. This equation follows from the covariance
condition for the electromagnetic current considered as four-
vector. In IF RHD the boost generators depend on the
interaction, so in the standard impulse approximation, when
instead of the current with interaction one uses the free current
(i.e., when ρ̂ is interaction independent), the implementation
of Eq. (17) seems to be impossible. In our variant of the
impulse approximation, as was mentioned, it is possible to
construct an explicitly covariant current operator without using
MEC. In terms of commutators (17) this means that the charge
density operator ρ̂ depends on the interaction (through the
covariant part of the current operator) as the null component
of the current. So, in our variant of the impulse approximation
the Siegert theorem, that is, the explicit absence of MEC in
the charge density operator, does not contradict the condition
of current covariance in the form (17).

So, in our approach, the quantity T20(Q2) depends weakly
on relativistic effects, on meson exchange currents, and on
nucleon internal structure. This quantity is defined mainly by
the choice of the deuteron wave function, so that polarization
experiments really could be the test experiments for these wave
functions. One can use the experimental data for T20(Q2) to
choose the most adequate deuteron wave functions. In fact, we
have made calculations using different model wave functions
to compare the predictions with the experiment. Figure 3
presents the results of our calculation of T20(Q2) with the use
of different wave functions [19–22] and nucleon form factors
from Ref. [11] as well as the experimental points from the
Refs. [3–9].

FIG. 3. Experimental data (legend as in Fig. 2) and T20(Q2)
calculated with nucleon form factor [41] and different wave functions
(legend as in Fig. 1).
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The calculation was made with the use of nucleon form
factors obtained in Ref. [41]. One can see that the results
are strongly model dependent and the best description of
the experimental data is obtained with the wave functions
obtained by the potential-less approach to the inverse scattering
problem [22]. The results for different models coincide only at
Q2 � 0.5 GeV2. The recent experimental data [9] unambigu-
ously choose the MT wave functions [22] in comparison with
the model wave functions [19–21], which are the most widely
used in today’s nuclear calculations.

The important feature of MT wave functions is the fact
that they are “almost model independent”: No form of the
NN interaction Hamiltonian is used. However, the MT wave
functions are given by the dispersion type integral directly in
terms of the experimental scattering phases and the mixing
parameter for NN scattering in the 3S1-3D1 channel. Regge
analysis of experimental data on NN scattering was used to
describe the phase shifts at large energy.

It is worth noticing that the MT wave functions were
obtained by using quite general assumptions about analytical
properties of quantum amplitudes such as the validity of the
Mandelstam representation for the deuteron electrodisintegra-
tion amplitude. This is just the requirement given by analytical
properties that select the given wave function from the set
of possible phase-equivalent models described in Ref. [46].
These wave functions have no fitting parameters and can
be altered only with the improvement of the NN scattering
phase analysis. The MT wave functions were used in the
nonrelativistic calculation of the deuteron form factors [47]
and for the relativistic deuteron structure in Ref. [48].

The construction of these wave functions is closely related
to the equations obtained in the framework of the dispersion
approach based on the analytic properties of the scattering
amplitudes [30–33] (see also Ref. [13] and especially the
detailed version in Ref. [49]). In fact, this approach is a kind
of dispersion technique using integrals over composite-system
masses. Let us note that the MT wave functions have been
obtained long in advance for the polarization experiments and
contain no parameters to be fitted from deuteron properties.

So, in our approach the problem of determination of
the behavior of deuteron wave functions at small distances
from polarization experiments is solved. Note that in other
approaches with different dynamics a good description of
T20(Q2) also can be achieved. However, in those approaches
it seems impossible to separate the contributions to T20(Q2)
of the dynamics itself, of relativistic effects generated by the
current operator construction, and of the effects of nuclear
structure. This concerns, for example, the light-front RHD
calculations [50]. In the approach of Ref. [50] quite different
dynamics is used, which gives a 16-component deuteron
wave function, and a good description of T20(Q2) is achieved
because of relativistic corrections.

VI. CONCLUSION

In this paper the deuteron tensor polarization T20(Q2)
is calculated through a relativistic Hamiltonian dynamics
approach. It is shown that the experimental data for the

T20(Q2) component of deuteron polarization tensor in elastic
electron-deuteron scattering up to Q2 ≈ 2 (GeV/c)2 can be
described in terms of nonrelativistic theory without accounting
for relativistic effects and meson exchange currents. These data
for T20(Q2) could be a touchstone for nonrelativistic deuteron
wave functions, with the results of calculations depending
crucially on the choice of wave functions. It is also shown
that the wave functions obtained by the dispersion method
of the potential-less inverse scattering problem give the best
results for T20(Q2).

APPENDIX A: RELATIVISTIC FREE TWO-NUCLEON
FORM FACTORS IN THE 3S1-3D1 CHANNEL

The relativistic two-particle form factors of the free (with-
out interaction) np system in the 3S1-3D1 channel are 2 ×
2 matrices. The elements of three corresponding matrices are
given in the following.

The free two-particle charge form factor is

gll′
0C(s,Q2, s ′) = R(s,Q2, s ′)Q2

[
(s + s ′ + Q2)

× (
G

p

E(Q2) + Gn
E(Q2)

)
gll′

CE

+ 1

M
ξ (s,Q2, s ′)

(
G

p

M (Q2)

+Gn
M (Q2)

)
gll′

CM

]
,

g00
CE =

(
1

2
cos ω1 cos ω2 + 1

6
sin ω1 sin ω2

)
,

g00
CM =

(
1

2
cos ω1 sin ω2 − 1

6
sin ω1 cos ω2

)
,

g02
CE = − 1

6
√

2

(
P ′

22 + 2P ′
20

)
sin ω1 sin ω2,

g02
CM = 1

6
√

2

(
P ′

22 + 2P ′
20

)
sin ω1 cos ω2,

g22
CE =

[
1

2
L1 cos ω1 cos ω2 + 1

24
L2 sin(ω2 − ω1)

+ 1

12
L3 sin ω1 sin ω2

]
,

g22
CM = −

[
−1

2
L1 cos ω1 sin ω2

+ 1

24
L2 cos(ω2 − ω1)

+ 1

12
L3 sin ω1 cos ω2

]
. (A1)

The quadrupole two-particle charge form factor is

gll′
0Q(s,Q2, s ′) = 1

2
R(s,Q2, s ′)Q2

[
(s + s ′ + Q2)

(
G

p

E(Q2)

+Gn
E(Q2)

)
gll′

QE + 1

M
ξ (s,Q2, s ′)

× (
G

p

M (Q2) + Gn
M (Q2)

)
gll′

QM

]
,
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g00
QE = sin ω1 sin ω2, g00

QM = − sin ω1 cos ω2,

g02
QE = − 3

2
√

2

{
2P ′

20 cos ω1 cos ω2

−P ′
21 sin(ω1 − ω2) + 1

3

(
4P ′

20 − P ′
22

)
× sin ω1 sin ω2

}
,

g02
QM = 3

2
√

2

{
− 2P ′

20 cos ω1 sin ω2

+P ′
21 cos(ω1 − ω2) + 1

3

(
4P ′

20 − P ′
22

)
× sin ω1 cos ω2

}
,

g22
QE = 3

2

{
L4 cos ω1 cos ω2 − 1

12
L5 sin(ω1 − ω2)

+ 1

6
L6 sin ω1 sin ω2

}
,

g22
QM = −3

2

{
− L4 cos ω1 sin ω2

+ 1

12
L5 cos(ω1 − ω2) + 1

6
L6 sin ω1 cos ω2

}
.

(A2)

The magnetic two-particle charge form factor is

gll′
0M (s,Q2, s ′) = −R(s,Q2, s ′)

[
ξ (s,Q2, s ′)

(
G

p

E(Q2)

+Gn
E(Q2)

)
gll′

ME + (
G

p

M (Q2)

+Gn
M (Q2)

)
gll′

MM

]
,

g00
ME = sin(ω1 − ω2),

g00
MM = 1

2M

{[
γ1 − 1

2
(γ3(s,Q2, s ′)

+ γ3(s ′,Q2, s))

]
cos ω1 cos ω2

+ 1

4

(
γ2(s,Q2, s ′) + γ2(s ′,Q2, s)

)
× cos ω1 sin ω2 + 1

2
γ1 sin ω1 sin ω2

}
,

g02
ME = − 1

4
√

2
(P ′

22 + 2P ′
20) sin(ω1 − ω2),

g02
MM = 1

8
√

2M

{
−

[
2P ′

20γ1 + P ′
21γ2

+ (P ′
22 − 2P ′

20)γ3

]
cos ω1 cos ω2

+
[
P ′

21γ1 + 1

2
(P ′

22 − 2P ′
20)γ2 − 2P ′

21γ3

]
× cos ω1 sin ω2

+
[
P ′

21γ1 − 1

2
(P ′

22 + 6P ′
20)γ2 − 2P ′

21γ3

]
× sin ω1 cos ω2

+ [2P ′
20γ1 + P ′

21γ2 − (P ′
22 + 6P ′

20)γ3]

× sin ω1 sin ω2

}
,

g22
ME = −1

4

{1

2
L2 cos(ω1 − ω2) + L3 sin(ω1 − ω2)

}
,

g22
MM = 1

8M

{[
−L7γ1 − 1

8
L8(γ2(s,Q2, s ′)

− γ2(s ′,Q2, s)) + 1

2
L9(γ3(s,Q2, s)

+ γ3(s ′,Q2, s))

]
cos ω1 cos ω2

+ 1

4
[(L10(s,Q2, s ′) + L10(s ′,Q2, s))γ1

−L9(γ2(s,Q2, s ′) + γ2(s ′,Q2, s))

−L8(γ3(s,Q2, s ′) − γ3(s ′,Q2, s))]

× cos ω1 sin ω2 + 1

4
[8L11γ1 + L12

× (γ2(s,Q2, s ′) − γ2(s ′,Q2, s))

+L13(γ3(s,Q2, s ′) + γ3(s ′,Q2, s))]

× sin ω1 cos ω2

+ 1

2

[
(L14(s,Q2, s ′) + L14(s ′,Q2, s))γ1

− 1

4
L13(γ2(s,Q2, s ′) + γ2(s ′,Q2, s))

+L12(γ3(s,Q2, s ′) − γ3(s ′,Q2, s))

]

× sin ω1 sin ω2

}
. (A3)

The following equation is valid for form factors:

gll′
0i (s,Q2, s ′) = gl′l

0i (s ′,Q2, s), i = C,Q,M.

The previous equations use the following notation:

R(s,Q2, s ′) = (s + s ′ + Q2)√
(s − 4M2)(s ′ − 4M2)

ϑ(s,Q2, s ′)

[λ(s,−Q2, s ′)]3/2

× 1√
1 + Q2/4M2

,

ξ (s,Q2, s ′) =
√

ss ′Q2 − M2λ(s,−Q2, s ′) ,

L1 = L1(s,Q2, s ′) = P20P
′
20 + 1

3
P21P

′
21 + 1

12
P22P

′
22,

L2 = L2(s,Q2, s ′) = P21(P ′
22 − 6P ′

20)

−P ′
21(P22 − 6P20),

L3 = L3(s,Q2, s ′) = 2P21P
′
21 + 4P20P

′
20 − P20P

′
22

−P22P
′
20,

L4 = L4(s,Q2, s ′) = P20P
′
20 + 1

6
P21P

′
21 − 1

12
P22P

′
22,

L5 = L5(s,Q2, s ′) = P ′
21(P22 + 6P20)

−P21(P ′
22 + 6P ′

20),

L6 = L6(s,Q2, s ′) = 8P20P
′
20 + P21P

′
21 + P20P

′
22

+P22P
′
20,

L7 = L7(s,Q2, s ′) = P21P
′
21 + 4P20P

′
20,

L8 = L8(s,Q2, s ′) = P21(P ′
22 + 2P ′

20)

+P ′
21(P22 + 2P20),
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L9 = L9(s,Q2, s ′) = P20P
′
22 + P22P

′
20 + 4P20P

′
20,

L10 = L10(s,Q2, s ′) = P22P
′
21 + 4P21P

′
20 − 2P20P

′
21,

L11 = L11(s,Q2, s ′) = P ′
21P20 − P ′

20P21,

L12 = L12(s,Q2, s ′) = P20P
′
22 − P22P

′
20,

L13 = L13(s,Q2, s ′) = P21(P ′
22 + 2P ′

20)

−P ′
21(P22 + 2P20),

L14 = L14(s,Q2, s ′) = P22P
′
20 − P21P

′
21 − 2P20P

′
20,

γ1 = γ1(s,Q2, s ′) = (s + Q2 + s ′)Q2,

γ2 = γ2(s,Q2, s ′) = ξ (s,Q2, s ′)

× (s − s ′ + Q2)(
√

s ′ + 2M) + (s ′ − s + Q2)
√

s ′
√

s ′(
√

s ′ + 2M)
,

γ3 = γ3(s,Q2, s ′) = ξ 2(s,Q2, s ′)√
s ′(

√
s ′ + 2M)

;

ω1 and ω2 are the Wigner rotation parameters,

ω1 = arctan
ξ (s,Q2, s ′)

M[(
√

s + √
s ′)2 + Q2] + √

ss ′(
√

s + √
s ′)

,

(A4)

ω2 = arctan
α(s, s ′)ξ (s,Q2, s ′)

M(s + s ′ + Q2)α(s, s ′) + √
ss ′(4M2 + Q2)

,

where α(s, s ′) = 2M + √
s + √

s ′; P2i = P2i(z), P ′
2i =

P2i(z′) are the adjoint Legendre functions given by

P20(z) = 1
2 (3z2 − 1), P21(z) = 3z

√
1 − z2,

P22(z) = 3(1 − z2); (A5)

z, z′ are the arguments of the Legendre functions,

z = z(s,Q2, s ′) =
√

s(s ′ − s − Q2)√
λ(s,−Q2, s ′)(s − 4M2)

,

z′ = z′(s,Q2, s ′) = −z(s ′,Q2, s);

and ϑ(s,Q2, s ′) = θ (s ′ − s1) − θ (s ′ − s2), with θ the step
function and

s1,2 = 2M2 + 1

2M2
(2M2 + Q2)(s − 2M2)

∓ 1

2M2

√
Q2(Q2 + 4M2)s(s − 4M2).

The functions s1,2(s,Q2) give the kinematically available
region in the plane (s, s ′). They are obtained in Ref. [13].
G

p,n

E,M (Q2) are Sachs form factors for the proton and neutron.

APPENDIX B: NONRELATIVISTIC FREE TWO-NUCLEON
FORM FACTORS IN THE 3S1-3D1 CHANNEL

The nonrelativistic charge two-particle free form factor is

g̃ll′
0C(k,Q2, k′) = g(k,Q2, k′)

(
G

p

E(Q2) + Gn
E(Q2)

)
g̃ll′

CE,

g̃00
CE = 1, g̃02

CE = g̃20
CE = 0, (B1)

g̃22
CE = P̃20P̃

′
20 + 1

3 P̃21P̃
′
21 + 1

12 P̃22P̃
′
22.

The nonrelativistic quadrupole two-particle free form factor
is

g̃ll′
0Q(k,Q2, k′) = 3

2g(k,Q2, k′)
(
G

p

E(Q2) + Gn
E(Q2)

)
g̃ll′

QE,

g̃00
QE = 0, g̃02

QE = −
√

2P̃ ′
20, g̃20

QE = −
√

2P̃20,

g̃22
QE = P̃20P̃

′
20 + 1

6 P̃21P̃
′
21 − 1

12 P̃22P̃
′
22. (B2)

The nonrelativistic magnetic two-particle free form factor
is

g̃ll′
0M (k,Q2, k′) = − 1

4
√

2M
g(k,Q2, k′)

× [(
G

p

E(Q2) + Gn
E(Q2)

)
g̃ll′

ME + (
G

p

M (Q2)

+Gn
M (Q2)

)
g̃ll′

MM

]
,

g̃00
ME = g̃02

ME = g̃20
ME = 0, (B3)

g̃00
MM = 4

√
2, g02

MM = −2P̃ ′
20, g20

MM = −2P̃20,

g̃22
ME = γ [P̃21(P̃ ′

22 − 6P̃ ′
20) − P̃ ′

21(P̃22 − 6P̃20)]

g22
MM = −

√
2[P̃21P̃

′
21 + 4P̃ ′

20P̃20].

Here

g(k,Q2, k′) = 1

kk′Q

[
θ

(
k′ −

∣∣∣∣k − Q

2

∣∣∣∣
)

− θ

(
k′ − k − Q

2

)]
;

P̃2i = P2i(y), P̃ ′
2i = P2i(y ′) are the adjoint Legendre func-

tions (A5); and y, y ′ are the arguments of the Legendre
functions,

y = y(k,Q2, k′) = −4(k2 − k
′2) + Q2

4kQ
,

y ′ = y ′(k,Q2, k′) = −y(k′,Q2, k),

γ = −1

2

(
2k

′2(1 − y
′2)

Q2

)1/2

= −1

2

(
2k2(1 − y2)

Q2

)1/2

.
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