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Linear-chain structure of three α clusters in 13C
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We investigate a linear-chain configuration of three α clusters with a neutron in 13C. To characterize this
configuration, an operator P is introduced, which is the sum of parity inversion operators for each proton. The
states with positive expectation values for this operator are found to form a rotational band structure, and the
moment of inertia agrees well with the experimentally suggested value. Allowing a small bending angle stabilizes
the linear-chain configuration of three α clusters with a valence neutron, which is a hyper-deformed state.
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The realization of linear-chain configurations has been a
long-standing objective of nuclear structure physics. However,
it is difficult to stabilize this configuration in nuclear systems,
which is contrary to the case in atomic systems. The linear-
chain structure of three α clusters was suggested nearly half
a century ago [1], and the second 0+ (0+

2 ) state of 12C at
Ex = 7.65 MeV just above the three α threshold energy is a
candidate for having this structure. This state is considered
to have an exotic cluster structure that is analogous with the
so-called mysterious 0+ state of 16O at Ex = 6.06 MeV, which
has a 12C+α cluster structure and is not completely explained
by a simple shell-model picture. However, the 0+

2 state, which
plays a crucial role in the synthesis of 12C from three 4He nuclei
in stars [2], has been proven to contain not only the linear-chain
configuration but also various three α configurations by many
microscopic cluster models [3]. The state is gaslike without a
specific geometric shape, and it has been recently reinterpreted
as an α-condensed state [4]. The search for linear-chain states
of α clusters has been extended to heavier N = Z nuclei [5–8];
however, further investigations are needed to confirm that those
states are really linear-chain structures.

The difficulty of the linear-chain configuration is briefly
explained in the following way. From the harmonic-oscillator
point of view, if three α clusters form a linear configuration
on the z axis, four nucleons in the central α cluster occupy
the lowest s orbits; however, eight nucleons in the other
α clusters are excited to higher orbits such as the p(z) and
sd(z2) orbits due to the antisymmetrization effect. If the
system has some bending angle, three α clusters form a
two-dimensional configuration in the xz plane, and in this case
four nucleons corresponding to the sd(z2) orbits are deexcited
to the p(x) orbits. We may conclude that in light nuclei, where
the value of h̄ω is about 20 MeV, it is difficult to prevent the
mixing of states with different bending angles.

Another difficulty comes from the weak-coupling nature of
the nuclear systems. If the state is largely clusterized, i.e., not
only the total system of three α clusters, the α-α subsystem
(8Be) tends to have good angular momentum, since the angular
momentum projection for the intrinsic wave function of 8Be to
the 0+ state induces a decrease in the energy by about 10 MeV.

This angular momentum projection of the subsystem implies
the rotation of two α clusters with respect to their cen-
ter of mass. These considerations show that various three
α configurations can mix.

This discussion suggests that if the linear-chain configu-
ration of three α clusters exists as a sharp resonance state,
there must exist some specific mechanism such that the state
corresponds to a local minimum point on the energy surface,
because the decrease of energy due to the coupling with the
bending motion is large. One of the mechanisms to stabilize
the linear-chain configuration is a symmetry created by adding
valence neutrons. Even if the linear-chain configurations of
only α clusters are difficult to be stabilized in N = Z nuclei,
higher stability is possible when neutrons are added.

Recently, the physics of neutron-rich nuclei has been exten-
sively investigated from both the theoretical and experimental
sides, and the appearance of cluster structure is one of the most
important features. For instance, the presence of rotational
bands with the α-α structure in the excited states of 10Be and
12Be and the breaking of the magic number (N = 8) due to the
clustering of the core have attracted much attention [9–16].
We have suggested, based on the molecular-orbit model,
that these phenomena can be well explained by introducing
single-particle orbits around the α-α cluster structure [15].
Such a molecular orbit has been further introduced to survey
systems with three α clusters [17–19]. If the neutrons occupy
the so-called σ orbit (parallel to the three α axis), a deformed
configuration of the core with an elongated shape is favored,
because it decreases the excitation energy of the valence
neutrons. Eventually, the linear-chain configuration of three
α clusters is stabilized, for example, in 16C dependent on the
neutron configuration; however, the excitation energy of such
states is high (around the 25 MeV region).

From the experimental side, candidates for the linear-chain
configurations of three α clusters in 13C have recently been
suggested [20]. It is surprising that such structure can be
stabilized by adding only one neutron to the three α system
which is placed as a π orbit. In addition, the excitation
energies of the bandhead states are 9.898 MeV (Kπ = 3/2−
band) and 11.080 MeV (Kπ = 3/2+ band), very small values
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(even below the α threshold energy) compared with our
previous result for 16C. Nevertheless, the proposed moment of
inertia is compatible with the interpretation as a linear-chain
configuration of three α’s with the relative α-α distance of
∼3 fm (this means the total length of the system is ∼6 fm),
which agrees with the theoretical estimation [19].

In the present study, we introduce a microscopic cluster
model to explain this rotational band of 13C with a linear-
chain configuration of three α clusters and a neutron. Here, an
orthogonal condition between the cluster states and other low-
lying states of 13C is imposed, which is another mechanism
for stabilizing the linear-chain configuration and has not been
taken into account in our previous analysis for 16C. Since shell-
model-like configurations are dominant in the lower states of
13C, the breaking of an α cluster is included.

The total wave function is fully antisymmetrized and is
given by a superposition of Slater determinants {�k} with
coefficients {ck}:

� =
∑

k

ckP
J
MK�k. (1)

Projection onto a good angular momentum (P J
MK ) is numer-

ically performed, and the coefficients {ck} are determined by
diagonalizing the Hamiltonian matrix after this projection.
Each Slater determinant �k consists of A nucleons,

�k = A[(ψ1χ1)(ψ2χ2) · · · (ψAχA)], (2)

and each nucleon (ψiχi, i = 1 ∼ A) has a local-Gaussian
form as in many conventional cluster models. The oscillator
parameter (b = 1/

√
2ν = 1.46 fm) is common for all nucleons

to exactly remove the center-of-mass kinetic energy. An
α cluster is expressed by assigning a common Gaussian-
center parameter for four nucleons (proton spin-up, proton
spin-down, neutron spin-up, and neutron spin-down).

As for the Hamiltonian, we use the Volkov No. 2 (V2)
effective N -N potential [21] for the central part and the
G3RS potential [22] for the spin-orbit part. To reproduce
the scattering phase shifts of the α + n and α + α systems,
M (Majorana parameter of V2) = 0.6 and V0 (strength of
G3RS) = 2000 MeV should be adopted [23]. Although these
parameters give a slight over-binding for the ground states
of C isotopes [24], we use these values because we focus on
the cluster states around the α threshold energy. Also, values
of B = H = 0.125 are introduced for V2 to reproduce the
binding energy of the deuteron and to remove the bound
state of the neutron-neutron system. By diagonalizing the
Hamiltonian, we obtain many states, and it is necessary to
analyze which state has the linear-chain configuration.

We introduce a new operator P as a measure of the
“linearity” of the chain configurations,

P =
∑

i=protons

Pi, (3)

which is the sum of parity-inversion operators for each proton
(Pi). The eigenvalue of Pi is 1 for a proton in a positive-parity
orbit and −1 for one in a negative-parity orbit. For example, the
expectation value of P (〈P〉) for the lowest state of 12C is −2,
since two protons occupy the s orbits (eigenvalue of Pi is 1),
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FIG. 1. Expectation value of P (see text) for the 0+ states of the
three α system (12C). The horizontal axis is the bending angle of three
α. The solid, dotted, dashed, and dash-dotted lines show results with
the relative α-α distances of 1, 2, 3, and 4 fm, respectively.

and four protons occupy the p orbits (eigenvalue −1) from the
shell-model point of view.

In Fig. 1, the 〈P〉 value for the 0+ states of the three
α system (12C) are presented. Here, the relative distance
between the left α cluster and the central one and that between
the right α cluster and the central one are taken to be equal
(symmetric configuration). The horizontal axis is the bending
angle, and 0 and 120 correspond to linear-chain and equilateral
triangular configurations of three α clusters, respectively. The
solid, dotted, dashed, and dash-dotted lines show the result for
the relative α-α distances of 1, 2, 3, and 4 fm, respectively (op-
timal distance for the linear-chain configuration is 3 fm [19]).

When the system has a linear-chain configuration at 0◦,
the 〈P〉 value is 2 independent of the α-α distance. This is
explained in the following way. The single-particle orbits for
the protons ψ(R), ψ(0), and ψ(−R) are centered at R, 0, −R

on the z axis, respectively. Because of the antisymmetrization
effect, it is possible to rearrange the linear combination of
these orbits. The ψ(0) orbit has positive parity, and in addition
to this orbit, another positive-parity orbit [ψ(R) + ψ(−R) +
aψ(0), a is a constant value] and a negative-parity orbit
[ψ(R) − ψ(−R)], which are orthogonal with each other, can
be defined. Thus the 〈P〉 value becomes 2 (spin degeneracy) ×
(1 + 1 − 1) = 2 at the bending angle of 0◦ independent of
the α-α distance. With the increase of the bending angle,
the 〈P〉 values decrease drastically and converge to −2 at
large bending angles, since two protons occupy the lowest
s orbits and four protons occupy the p(x) and p(z) orbits
(2 − 4 = −2). This example illustrates that the value of P is
very useful in characterizing the linear-chain configuration. If
the calculated expectation value of P is larger than 1, we can
roughly conclude that the bending angle is less than 50◦.

In a different viewpoint, the principal quantum number of
the harmonic oscillator [N = ∑

i �a† · �a(�ri)] for protons is not
a good measure of the linear-chain state, as shown in Fig. 2.
Although the deexcitation feature of protons with increasing
bending angle can be expressed by the 〈N〉 value (for example,
the solid line decreases from 6 to 4 with increasing bending
angle), the value has a quadratical dependence on the α-α
distance. The wave functions for the localized particles contain
higher partial waves if we expand them with respect to the
origin. Since this distance dependence is sensitive, the value
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FIG. 2. Expectation value of the principal quantum number of the
protons (N ) for the 0+ states of the three α system (12C). Definitions
of the horizontal axis and lines are the same as in Fig. 1.

at 0◦ for the dashed line (3 fm) is almost the same as that at
90◦ for the dash-dotted line (4 fm). This situation does not
drastically change when we use the quadrupole moment as a
measure of the linear-chain state, and it is much more useful
to use P to characterize the linear-chain configuration.

To characterize the results, we consider the energy conver-
gence of the three 0+ states of 12C as shown in Fig. 3. The
horizontal axis corresponds to the number of the basis states
introduced. The basis states of type 1 on the horizontal axis
have a 2α + 4N configuration, where the breaking effect of
one of the α clusters is included using a simplified method
to include the spin-orbit interaction (SMSO [25], R = 2 fm,

 = 0.3). The states numbered from 2 to 126 have various
three α configurations, and we introduce generator coordinates
to prepare different configurations. To reduce the number of
the basis states, when the inclusion of one Slater determinant
decreases the sum of the energies of the three lowest 0+ states
by more than 0.03 MeV, this Slater determinant is adopted in
the same way as in the AMD triple-S [26]. The ground 0+ state
is calculated to be at an energy of −92.7 MeV, to be compared
with the experimental value of −92.2 MeV. The 0+

2 state is
calculated at 1 MeV above the threshold (three α threshold is
shown by the dashed line).

These three 0+ states are calculated to have the rms radii
of 2.33, 3.25, and 3.42 fm, respectively, and the values for
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FIG. 3. Energy convergence of three lowest 0+ states of 12C. Basis
state 1 on the horizontal axis has a 2α + 4N configuration (SMSO,
R = 2 fm and 
 = 0.3). Basis states from 2 to 126 have various three
α configurations. Dashed line shows the three α threshold energy.

the second and third 0+ states are large, since they have well-
developed cluster structures. The calculated 〈P〉 values are
−1.70 for the ground state (close to −2 of the shell-model
picture) and −0.01 for the second 0+ state. Since the values
are negative, these states are not linear-chain states. On the
other hand, the third 0+ state has a value of 0.75, and this is
the candidate for the state with small bending angle. The result
is consistent with recent discussions that the third 0+ state has
a banana-like shape of three α clusters [27,28]. However, this
state may correspond to the fourth 0+ state when the resonance
condition is properly treated, as discussed in Ref. [29].

Similar calculations have been further performed for the
K = 3/2 states of 13C, since the lowest orbit around the
three α with the linear-chain configuration is a π orbit with
Kπ = 3/2−. Here, generator coordinates are introduced for the
three α configurations, and the positions of the Gaussian center
parameter of the valence neutron are randomly generated.
We introduce 160 Slater determinants, and the selection of
the important basis states is performed in the same way as
in 12C for each Jπ state independently. Out of the many
obtained energy levels, the states with positive expectation
values for the operator P are plotted with respect to the 3α + n

threshold energy (−82.71 MeV in this model, experimentally
Ex = 12.2 MeV in 13C) as solid circles in Fig. 4. The
obtained states almost form a rotational band structure, and
the moment of inertia agrees with the experimental one,
although the theoretical bandhead energy is higher by several
MeV compared with the experimental one. The states at
1.70 (3/2−), 3.13 (5/2−), 5.81 (7/2−), 6.23 (9/2−), and
9.25 MeV (11/2−) with respect to the threshold have overlaps
with the linear-chain configuration of 0.80, 0.82, 0.69, 0.86,
and 0.87, respectively. The values indicated in this figure show
the calculated 〈P〉 values of individual states. Except for the
7/2− state, the states have similar values around 1.5. Therefore,
it can be concluded that by allowing a small bending angle, the
linear-chain configuration of three α clusters is stabilized by
a valence neutron and appears in the Ex = 15 MeV excitation
energy region around the α threshold energy. The same
analysis has been done for the positive-parity (Kπ = 3/2+)
band. It is considered that the neutron occupies the ungerade?
π orbit. Since the valence neutron has two nodes, this band
appears above the negative-parity band by several MeV. The
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FIG. 4. Kπ = 3/2− rotational band of 13C (theoretical results:
solid circles; experimental: open circles). Measured from the 3α + n

threshold energy at Ex = 12.2 MeV.
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bandhead state (3/2+) at 7.85 MeV from the threshold has
the 〈P〉 value of 0.73 and an overlap with the linear-chain
state of 0.64. The moment of inertia is almost the same as
the negative-parity band; however, further investigation (e.g.,
explicitly imposing the resonance condition) is needed, since
the resonance energy is high. Experimentally, these are two
parity split bands with K = 3/2, corresponding to an intrinsic
9Be + α structure. The single-particle orbit of neutrons for
these doublet bands is discussed in Ref. [20], and such an
analysis is in progress based on the present method. The
〈P〉 value can be calculated also for the neutron part, and
by subtracting the proton part from the neutron part, the
single-particle parity of the valence neutron can be extracted,
since the information on the three α clusters vanishes.

To conclude, we have investigated a linear-chain config-
uration of three α clusters stabilized by adding a neutron
in 13C. An operator P , which is the sum of the parity
inversion operators for each proton, has been introduced
and found to be very useful in characterizing the linear-
chain configuration. The linear-chain structure with a small
bending angle appears around the α threshold energy, and
the moment of inertia agrees well with the experimen-
tally suggested value. Thus the calculation confirms the
experimental result of a hyper-deformed rotational band
in 13C.
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